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Abstract.  To suppress vibration and noise of mechanical structures piezoelectric ceramics play an 
increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and 
actuating. Out of the various piezoelectric damping methods this paper compares mode based active control 
strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of 
the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical 
investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent 
transducers are discussed in detail. Based on the proposed distribution a discrete design for modal 
transducers is implemented, tested and verified on an experimental setup. For active control the modal 
sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in 
order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works 
without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but 
it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an 
arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific 
advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is 
obtained. 
 

Keywords:  smart structures; plate vibrations; piezoelectric transducers; modal transducers; nilpotent 

transducer; shunt damping, modal control 

 
 
1. Introduction 
 

Smart structure technology is a key technology for the design of so-called intelligent, civil, 

mechanical and aerospace structures. These intelligent or smart structures automatically react to 

external disturbances similar to human beings. For reviews see Crawley (1994) or Tani et al. (1998) 

and future challenges and opportunities were discussed in Liu et al. (2005). Typically smart 

structures are used to meet the increasing demand for effective damping mechanisms in order to 

avoid undesired oscillations, structural borne sound and material fatigue, see Nader (2008).   

Concerning the application of smart structures for active vibration control we refer to Alkhatib and 
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Golnaraghi (2003) and for noise reduction see e.g., Nestorovic et al. (2007). Practical applications 

range from wind turbines, to helicopter blades, to robot arms, to flexible space structures, and so 

on. Different strategies are available to reduce vibrations and have been extensively studied in the 

literature; e.g., active vibration control in Fuller et al. (1996), Preumont (2002), or shape control, 

which can completely compensate the oscillations by a transient distribution of actuation stresses 

for a known set of forces. Implementations of shape control can be found in Nader (2008) , 

Zehetner and Irschik (2005), Irschik et al. (1999, 2003), Yu et al. (2009) for beams and in 

Gattringer et al. (2003) , Nader et al. (2003), Krommer and Varadan (2005), Tzou  et al. 

(1994)  for plates and shells; for a review of shape control see Irschik (2002). A prominent 

example for putting smart structures into practice are piezoelectric transducers, which play an 

increasing role as sensors and actuators of a damping system due to their light weight, good 

operating characteristic and simple implementation on general components; see e.g., Hagood and 

von Flotow (1991), Moheimani and Fleming (2006), Niederberger (2005). 

The study of smart structures requires a multi-disciplinary approach, which involves coupled 

multi-field modeling of the structure, the communication between the structure and a controller 

(enabled by means of suitable sensor and actuator systems), the structural integration of the smart 

system, its practical implementation and experimental verification. A key aspect within these 

topics is the proper functioning of the communication between the structure and the controller; this 

communication has been denoted as control-structure interaction in the literature, see 

Gabbert and Tzou (2000). In particular, sensors are responsible for converting mechanical energy 

into information about the state of the structure, which must be interpreted and properly processed 

by the controller to provide the actuator with information about what to do. A crucial point is the 

spatial distribution of sensors and actuators, both for monitoring as well as control, as the 

structures under consideration are typically continuous structures. 

In the present paper the topic of optimal distribution of sensors/actuators or more general 

transducers in order to put distributed transducers into practice is crucial. Recently, 

Gupta et al. (2010) have reported on the various optimization criteria that are known in the 

literature (in particular, maximizing modal forces/moments applied by piezoelectric actuators, 

maximizing deflection of the host structure, minimizing control effort/maximizing energy 

dissipated, maximizing degree of controllability, maximizing degree of observability, and 

minimizing spill-over effects) and included an exhaustive list of references, to which we would 

like to refer the reader of the present paper. In contrast to the methods reported by 

Gupta et al. (2010), research on continuously distributed strain transducers has also attracted a lot 

of attention in the literature. In the framework of strain sensors (actuators can be treated analogous, 

if they are collocated to the sensors) the latter are also known under the notion of a spatial filter as 

they filter certain spatial information; e.g., the celebrated concept of modal filters, which filter the 

modal content of only one vibration mode of a structure (Lee and Moon 1990), displacement 

filters, which filter the displacement of a specific point in a specific direction 

(Krommer and Irschik 2007) or volume displacement filters (Preumont et al. 2005). Spatial filters 

are widely used in structural control (e.g., Preumont et al. 2003) and structural health monitoring 

(e.g., Deraemaeker and Preumont 2006). It has been mentioned in the literature that spatial filters 

can be put into practice either by continuously distributed sensors or approximated by arrays of 

dense sensors. For both cases the use of piezoelectric sensors is popular; on the one hand, because 

piezoelectric sensors can actually be put into practice as continuously distributed sensors, and on 

the other hand, because sensor arrays can be easily implemented by means of piezoelectric patches. 

In the present paper we are using the concept of spatial filters and their optimal approximation by 
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sensor arrays to design modal transducers for thin plates. Moreover, we include a paragraph, in 

which our method is compared to other methods reported in the literature.  

As we have mentioned the proper distribution of the sensing and actuation is crucial for the 

control of continuous structures. Once the sensor and actuator systems have been properly 

designed the functioning of the communication between the structure and the controller is enabled 

and vibration control can be implemented. Typically, methods for vibration control are either 

passive (see Hagood and von Flotow 1991, Moheimani and Fleming 2006) or active (see e.g., 

Fuller et al. 1996, Preumont 2002). Concerning passive methods we mention piezoelectric shunt 

damping, which is the combination of passive electrical networks with piezoelectric patches 

attached to a mechanical structure. The resulting efficient damping system is autonomous of 

electrical sources, it guaranties stability and it is robust in case of variation of parameters at low 

weight and costs. Concerning active control modal control is one of the most commonly used 

approaches. In general modal control applies a transformation between physical and modal sensors 

and actuators, see Hanson and Snyder (1997) or Inman (1997), such that each mode can be 

controlled by one controller individually. Hence, modal transducers are combined with individual 

modal controllers. Although this concept has originally been designed for active vibration control 

it can as well be used in combination with passive shunt damping, in which spatial modal filters 

are used. The combination of spatial filters (in particular displacement filters) with shunt damping 

has recently been introduced by Schöftner and Irschik (2009) and Schöftner and Krommer (2012). 

The present paper is concerned with the design of modal filters for thin plates, with the 

experimental verification of the resulting piezoelectric transducer arrays and with the application 

of the modal transducers for passive and active noise control of a test structure. It is structured as 

follows: In the first part of the paper the governing equations and the notation of the Kirchhoff 

plate theory are shortly summarized. Based on the concept of colocation the reader is introduced to 

the theory of spatial filters, such as modal and nilpotent filters. The theoretical investigations are 

demonstrated for a clamped rectangular plate. Next, an approximation of the continuously 

distributed modal transducers by a discrete sensor array is introduced. After complementing the 

theoretical part in section four with the description of the implemented experimental setup and the 

verification of the proposed design of the discrete piezoelectric transducer array, vibration control 

is the issue of the remaining part of the paper. A comparison of active modal control and passive 

shunt damping using the discrete piezoelectric transducer array for the reduction of vibrations and 

noise in plates is presented. Firstly, passive shunt damping is introduced and tuned RL-circuits are 

designed for damping the first three eigenmodes. Secondly, active modal control is considered. 

The control algorithm is designed for the first three eigenmodes. In the conclusion the paper is 

summarized and the benefits of the design of the discrete piezoelectric transducer array as well as 

the damping strategies are highlighted. 

 

 

2. Problem formulation 

 
As we are studying the control of vibrations of a thin plate, we first introduce shortly the basic 

equations of thin plate theory, which serve as the basis for the design of distributed sensors and 

actuators. Throughout this part of the paper we use a direct tensor notation, which can be found in 

Lurie (2002) for three-dimensional problems; concerning the use of a direct tensor notation for 

thin plates we refer the reader to our own work (Krommer 2003), but also to the textbook by 

Selvadurai (2000), in which a notation very similar to the one used in the present paper can be 
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found. 

For the case of pure bending of thin elastic plates in a geometrically linear regime we impose 

the Kirchhoff kinematical hypotheses (see the original paper by Kirchhoff (1850)); hence, we have 

the following set of governing equations: The balance equation 

 

2

2

( , )
: ( , ) ( , ) ,z

d w t
A t p t P

dt
  

x
M x x             (1) 

which must be satisfied within the domain A of the plate for every point x and at any time t > 0, 

the boundary conditions 

 
 

    

: 0    or  

   or   
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q w w

       

       

M n n n

M n M n s s
 (2) 

which must be satisfied at the boundary A and the conditions 

  0sn)(M : iP    or  0                         (3) 

which must be satisfied for every point Pi of the boundary A, at which the local coordinate system 

has a discontinuity; hence, where the unit normal and tangential vectors n and s are discontinuous. 

 stand for the jump of an entity at the point Pi of the boundary. A sketch of the plate is shown in 

Fig. 1. 

 

 

 
Fig. 1 Sketch of a thin plate with reference surface A, boundary A and discontinuity point Pi at the 

boundary 

 

 

In the above equations  is the invariant two dimensional differential operator in the plane of 

the plate. M(x,t) is the plane second rank moment tensor, M(x,t) = Q(x,t) stands for the 

divergence of M(x,t), which is balanced by the transverse shear vector  Q(x,t) and M(x,t) is 

the divergence of the transverse shear vector, the sum of which with the distributed external 
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transverse force loading pz(x,t) is balanced by the inertia force. P denotes the mass per unit area 

and w(x,t) stands for the transverse deflection.  m  and  q  are prescribed values for the normal 

moment and the Kirchhoff shear force at the boundary, and  w  and   are prescribed deflection 

and normal derivative of the latter in case of inhomogeneous kinematical boundary conditions. 

The symmetric moment tensor is related to the symmetric second rank tensor of linearized 

curvatures  = - sym(w) by means of the constitutive relation 

*
MDM  .                            (4) 

D stands for the double contraction of the fourth rank tensor of plate stiffnesses D and the 

second rank tensor of linearized curvatures  (see e.g., Bonet and Wood (2008) for the 

corresponding notation used in a three-dimensional formulation). M
*
 is a tensor, which 

characterizes a source of self-stress, which includes effects of non-mechanical sources; e.g., 

thermal expansion strains or piezoelectric strains that can be used to actuate the plate. The notion 

of sources of self-stress dates back to the first half of the 20
th
 century and was introduced by 

Reissner (1931), Nemenyi (1931); more recent discussions can be found e.g., in Mura (1987) or 

Irschik and Ziegler (1988). Here, we also denote this tensor as actuation tensor. If it is separable in 

space and time, we introduce this separation as M
*
 (x,t) = S

a
(x)f(t), in which S

a
(x) is the actuator 

shape tensor characterizing the spatial distribution of the actuation and f(t) is the time variation of 

the actuation. 

The set of governing equations is completed by introducing a sensor equation in the form of a 

strain-induced sensor as 

 ( ) ( ) .s

A
y t dA  S x  (5) 

Here, S
s
(x) denotes the double contraction of the second rank sensor shape tensor S

s
(x) and 

the tensor of linearized curvatures . Such a sensor relation holds e.g. for the case of piezoelectric 

sensors. The sensor shape tensor represents the distribution of the sensing authority throughout the 

plate domain A. If S
s
(x) = S

a
(x) holds, actuation and sensing are called collocated; for details 

concerning the notion of collocation we refer to Preumont (2002), Kugi (2001). 

 

 

3. Modal sensors and actuators 

 
In the following we focus our attention on collocated shape tensors; hence, on cases, for which 

S
s
(x) = S

a
(x) = S(x). S(x) is denoted as shape tensor, which we assume symmetric. In case of 

sensors, the signal can be reformulated according to 

 ( ) ( ) ( , ) .
A

y t w t dA   S x x  (6) 

Applying the Gauss integral theorem twice, we obtain 
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Here, we consider problems with homogenous kinematical boundary conditions, such that only 

those parts of the boundary, for which dynamical boundary conditions apply, say Am and Aq, are 

kept in the above integrals. In order to assign a mechanical interpretation to the signal, we 

introduce a problem, through which the shape tensor is related to statically admissible stress 

tensors due to force loadings. It follows directly from Eq. (7) as 

d
q

dm

d
z

q:A

m:A

p:A

  ss)n)((SnS)(      

  n n)(S          

S       





 0

                       (8) 

in which the distribution of the static forces pz
d
(x),  q

d
(x) and  m

d
(x) is arbitrary. Then, the signal 

of the sensor is 

  ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) .
q m

d d d

z
A A A

y t p w t dA q w t dS m w t dS
 

      x x x x x x n      (9) 

Hence, a proper choice of the static forces finds a sensor, the signal of which is the work 

conjugate to these forces. An overview discussing different choices of them has been given by 

Krommer and Irschik (2007) in a three-dimensional context. Clearly, Eq. (9) constitutes a spatial 

filter, whose ability to filter certain spatial information strictly depends on the choice of the static 

forces. 

A classical example for such a spatial filter is a modal filter, which was introduced by Lee and 

Moon (1990). It is put into practice by a shape tensor, for which the signal filters the i-th modal 

coordinate Ai(t) from the total deflection 

 
1

( , ) ( ) ( )i i

i

w t W A t




x x ; here, Wi(x) is the i-th 

eigenmode of the plate. The corresponding eigenvalue problem is governed by 

   2 sym ,i i iP W W   D     (10) 

in which i is the i-th eigenfrequency. Keeping in mind that the eigenmode must satisfy 

homogenous dynamical boundary condition at Aq and Am, namely that  q i = 0 and  m i = 0, we 

assume static forces in Eq. (8), such that 
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holds. Then, the signal of the sensor is 

 
2( ) ( , ) ( ).i i i

A
y t P W w t dA A t  x                        (12) 

Here, the eigenmodes have been assumed to be orthonormalized with respect to the linear 

inertia P times the eigenfrequency i
2
. Hence, a modal filter is obtained. The shape tensor Si is 

computed from Eq. (11); yet, we note that the solution to this latter problem is not unique, as 

boundary conditions must only be satisfied at those parts of the boundary with dynamical 

boundary conditions. At the rest, no boundary conditions must be satisfied. Shape tensors S
nil

(x), 

which are responsible for this non-uniqueness are called nilpotent. In general, nilpotent shape 

tensors exist for redundant plates only and the signal of a sensor put into practice by means of a 

nilpotent sensor shape tensor is always trivial. If a nilpotent shape tensor is used as an actuator 

shape tensor it produces no deflection, but only moments. For a detailed discussion of nilpotent 

sensors and actuators for beams we refer to Irschik et al. (1998). 

A straightforward solution for the modal shape tensors is 

 sym .i i iW    S D M                        (13) 

Hence, the shape tensor is taken as the negative modal moment tensor Mi. Modal filters are 

very well known types of spatial filters and are widely used in vibration control (e.g., Lee and 

Moon 1990 or Donoso and Bellido 2009), but also in the context of structural health monitoring, 

as introduced by Deraemaeker and Preumont (2006). 

Shape tensors for modal actuators are identical, which follows directly from collocation; for 

more details in the three dimensional case we refer to Krommer and Irschik (2007). The modal 

shape tensor as introduced in Eq. (13) is of particular interest. If it is used as an actuation, M
*
(x,t) 

= Si(x) f(t) = Mi(x) f(t), with a constant time variation f(t), a deflection identical to an eigenmode 

w(x,t) = Wi(x) is produced, but no stresses are induced. Such self-stress tensors are called impotent 

in the literature, see e.g., Mura (1987). In general, any self-stress tensor (in the context of thin plate 

theory rather self-moment tensor) can be uniquely decomposed into a nilpotent and an impotent 

part; a detailed discussion concerning this decomposition can be found in Nyashin et al. (2005). In 

other words, we can compute all possible modal self-stress tensors from 

  
1 1

( )

sym ( ) ( ) ( ) ( ).

imp
i

nil imp nil

i i j j i j j

j j

W  
 

 


       
S x

S D x S x S x S x           (14) 

Here, Si
imp

 refers to the impotent modal shape tensor and Sj
nil

 is any of the generally infinitely 

many nilpotent shape tensors. 

Clamped rectangular plate As an example, we consider a rectangular acryl plate with all four 

edges clamped. The dimensions of the plate a  b are 0.76 m  0.56 m. We assume isotropic 

material behavior, such that we have a plate stiffness D = 357.4Nm and a linear inertia P = 11.81 

kgm
-2

. For rectangular plates we introduce a notion, for which two indices are used to identify an 

eigenmode Wij. In this case the governing equations for the eigenmodes follow from Eq. (10) as 

 
4 ,ij ij ijW W                  (15) 

in which the eigenvalue λij
4
 = (P/D)ωij

2
 has been introduced. For the isotropic plate under 
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consideration we consider the shape tensor spherical, Sij = SijI, such the statically admissible shape 

function Sij is then computed as any solution of 

   0.ij ijS W                                 (16) 

Note that the plate stiffness D is omitted in the above relation. No boundary conditions must be 

satisfied, because all boundary conditions are purely kinematical. Therefore, a straightforward 

solution is Sij = - ΔWij. The results for the distribution of these modal shape functions for the first 

three eigenmodes are shown in Fig. 2. Note that we used Finite Differences to compute these 

solutions; this is done throughout the paper as far as solutions are concerned with plates. 

 

 

   

(a) 
11

imp
S  (b) 

12

imp
S  (c) 

21

imp
S  

Fig. 2 Impotent modal shape functions 

 

 

Moreover, these shape functions correspond to impotent shape tensors. Nilpotent shape tensors 

are computed by first computing alternative modal shape functions, which are solutions of 

 

4: 0,

: 0.

 ij ij ij

ij

A S W

A S

  

 
     (17) 

The resulting modal shape functions are shown in Fig. 3. Computing the difference between 

corresponding shape functions taken from the two sets of solutions for modal shape functions must 

therefore lead to a set of shape functions, which are nilpotent; the latter either measure a trivial 

signal independent of the actual deformation, or, if used as actuator shape functions, they produce 

no deflection independent from the time variation the actuation is applied with. As mentioned 

before in the context of actuation only, nilpotent sensors and actuators have been studied by 

Irschik et al. (1998) and Krommer and Irschik (2007). The results for the nilpotent shape functions 

are presented in Fig. 4. 
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Fig. 3 Alternative modal shape functions 
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Fig. 4 Nilpotent shape functions 

 

 

These nilpotent shape functions can be superposed upon any of the two sets of modal shape 

functions without changing the characteristics of neither the actuation nor the measured signal. In 

this paper we seek in particular for a superposition, for which the intensity of the shape function is 

low in the center of the plate and high in the vicinity of the edges.  
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3.1 Sensor / actuator array design 

 
In many practical problems a distributed sensing or actuation by means of shape tensors cannot 

be put into practice - it rather must be approximated by an array of discrete sensors and actuators. 

For that sake we introduce a simple method to compute the locations and the individual intensities 

of the discrete sensors and actuators. 

The plate domain A is decomposed into k = 1,..,n sub-domains with area Ak. In each 

sub-domain we compute the tensor valued 0
th
 order moment S

0
ij,k of the shape tensor Sij(x) as 

 
0

, ( ) ,
k

ij k ij
A

dA S S x       (18) 

and a vector valued 1
st
 order moment s

1
ij,k from 

 dA
kA

ijk,ij x(x)Ss  
1  (19) 

Within each sub-domain one discrete sensor or actuator is located; the latter has a constant 

shape tensor Sk = const., an intensity center xk, and it covers the domain kA , which is a 

sub-domain of Ak. We enforce the moments of the discrete distributions to be identical to the ones 

of the shape tensors, such that we find (3 + 2)n relations 

 SS 00  k,ijkk A and 010  k,ijkij,k sxS                    (20) 

from which the constant shape tensors Sk and the locations xk can be computed for a given shape 

tensor Sij(x). The proposed simple method for the approximation of the distributed shape tensors is 

a straightforward extension of a method previously developed for sensor array design for beams by 

Krommer et al. (2009). We can use the method for approximating a modal sensor or actuator by an 

array of discrete sensors and actuators.  

Clamped rectangular plate As an example we use the three modal shape functions for the 

rectangular clamped plate. For spherical shape tensors, we replace Eq. (20) by 

 ( ) 0    and   ( ) ( ) ,
k k k

k k ij k ij ij
A A A

S A S dA S dA S dA     x x x x x 0  (21) 

which represents three equations for each of the k = 1,..,n sub-domains. We further note that any 

modal shape function can be written as 

 
,

( ) ( ) ( );imp nil

ij ij kl kl

k l

S S S x x x  (22) 

due to the symmetry properties of the problem of a homogenous rectangular plate only those 

nilpotent shape functions, to which the same symmetry conditions as for the corresponding 

impotent modal shape function apply, are used in Eq. (22); e.g., for i odd and j odd, k and l should 

both be odd. 

The superposition of nilpotent shape functions results into additional degrees of freedom αkl 

that can be used in the design of an array of discrete sensors and actuators approximating the 

distributed ones. As an example we consider the design shown in Fig. 5. We decompose the plate 

domain into 8 triangular sub-domains with equal area. Within each of the 8 sub-domains 1 group 

of sensors/actuators is attached. From the symmetries of the problem we conclude that studying a 

quarter of the plate with two triangular sub-domains is sufficient. In particular we consider the 
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right upper quarter and denote the upper triangle as domain 1 and the lower one as domain 2, see 

Fig. 5. 

 

 

 

Fig. 5 Sensor/actuator array design with sub-domains 

 

 

 

In both domains the location of the discrete array and the covered area are fixed, but the 

intensities are not. In particular the ratio between the two areas is 
2

1

4

3

A

A
  according to the 

number of individual constituents representing the discrete actuator/sensor within each sub-domain. 

Hence, only one unknown intensity remains in the 3 equations, Eq. (21), for each of the two 

sub-domains. To still compute a solution of Eq. (21) for the two sub-domains, we use 4 nilpotent 

shape functions superposed upon each of the impotent modal shape functions in Eq. (22). In 

particular, we consider the first three modal shape functions; here, we have 

 

11 11 11 11 13 13 31 31 33 33

12 12 12 12 14 14 32 32 52 52

21 21 21 21 23 23 41 41 25 25

,

,

imp nil nil nil nil

imp nil nil nil nil

imp nil nil nil nil

S S S S S S

S S S S S S

S S S S S S

   

   

   

    

    

    

 (23) 

and 

 
1 1 1

2 2 2

1 1

2 2

3 0    and   ,

4 0    and   ,

ij ij ij
A A A

ij ij ij
A A A

S S dA S dA S dA

S S dA S dA S dA

   

   

  

  

x x 0

x x 0
 (24) 

with x1 and x2 fixed, see Fig. 5. In Table 1 we show the results computed from Eq. (24) for the 

constant intensities S1 and S2 normalized with respect to S2. 
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Table 1 Intensities of modal sensor and actuator networks for the first three modes 

 (11) - mode (12) - mode (21) - mode 

S1 / 1
 

1.17 2.68 0.69 

S2 / 1 1 1 1 

 

 

Clearly, the intensities in the two domains are different; yet, in some practical problems further 

design constraints may apply. E.g. we assume the two intensities to be identical, S1 = S2 = S in Eq. 

(24). We do not add any more nilpotent shape functions, such that we have 6 equations from Eq. 

(24), but only 5 unknowns. We solve this problem by a least square method. Once we have a 

solution for S and for the coefficients αkl, we compute the optimal modal shape functions from Eq. 

(23). The results are shown in Fig. 6.  

 

 

   

(a) 
11

opt
S  (b) 

12

opt
S  (c) 

21

opt
S  

Fig. 6 Optimal modal shape functions 

 

 
Table 2 Optimal intensities and locations of modal sensor and actuator networks for first three modes 

 (11) - mode (12) - mode (21) - mode actual design 

S1 / N 1 1 1 1 

S2 / N 1 1 1 1 

x1 / m 0.087 0.087 0.087 0.087 

y1 / m 0.349 0.359 0.340 0.345 

x2 / m 0.244 0.236 0.247 0.245 

y2 / m 0.116 0.116 0.116 0.116 

 

 

Also, we recompute the locations and intensities by plugging these optimal shape functions into 

Eq. (24); these results are presented in Table 2; the x-coordinate is pointing rightwards and the 

y-coordinate is pointing upwards with the coordinate center in the center of the plate. 
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Obviously, the proposed design from Fig. 6 represents a design, which is optimal for the 

approximation of the first three modal shape functions in the framework of the method presented 

in this paper. As we are using a least square method, the locations are not exact, but the deviation 

is within an acceptable range. 

Discussion Within this section we have introduced a novel methodology to design transducer 

arrays to put modal transducers into practice. The methodology itself is however not restricted to 

the design of modal transducers, but it can be used for the design of arbitrary transducers for plates 

with arbitrary boundary conditions. Concerning sensors, any kinematical entity can be measured as 

long as it represents the work conjugate to a force entity. Such sensors are denoted as spatial filters 

in the literature (Lee and Moon 1990, Krommer and Irschik 2007, Preumont et al. 2005, Preumont 

et al. 2003, Deraemaeker and Preumont 2006) and they can be put into practice either by 

continuously distributed sensors or approximated by arrays of dense sensors. Concerning actuators, 

any actuation that produces a displacement identical to the one induced by external forces can be 

put into practice. The design of such actuators is typically referred to as shape control (Irschik et al. 

2003, 1999, Yu et al. 2009, Gattringer et al. 2003, Nader et al. 2003, Krommer and Varadan 2005, 

Tzou and Hollkamp 1994, Irschik 2002). Likewise to sensors, actuators are realized either 

continuously distributed or by means of dense actuator arrays. 

Our methodology is based on the computation of the distribution of a continuously distributed 

transducer in a first step; then, we seek to approximate the continuous distribution using a 

transducer array. In the second step, we have only used a small number of individual constituents 

to the transducer array and computed the weights and locations of these individual transducers 

from an optimization procedure, for which the proper superposition of continuously distributed 

nilpotent transducers was advantageously applied. Hence, we were able to approximate the 

continuous distribution of a modal transducer with a transducer array using only a small number of 

individual transducers and, moreover, include an additional design constraint involving the 

possible locations of the transducers. 

As the proposed method has been used in the context of only a small number of transducers, it 

is near at hand to shortly discuss other methods, which target at the same type of problems. Here, 

we refer to Gupta et al. (2010), who have reported on the various optimization criteria that are 

known in the literature for such problems; e.g., maximizing the modal forces/moments applied by 

piezoelectric actuators, minimizing the control effort/maximizing the energy dissipated, 

maximizing the degree of controllability or observability and minimizing spill-over effects. In the 

latter reference an exhaustive list of references is included; for instance, Hac and Liu (1993) 

proposed to use the observability/controllability Grammian matrix as a measure of 

observability/controllability. Transducer locations are then obtained such that selected eigenvalues 

of the observability/controllability Grammian matrix corresponding to the desired modes are 

maximized (Bruant and Proslier 2005). However, most of the methods discussed in Gupta et al. 

(2010) are targeted at modal transducers, and not at general transducers; hence, the present method 

is more general. This is also true concerning boundary conditions, which are arbitrary for the 

present method, but which are restricted to cantilevered or simply supported smart plate structures 

in the paper by Gupta et al. (2010). Concerning the study of clamped plates, which is the example 

problem used in the present paper we refer e.g., to Hwang et al. (1997) and Ma (2003), in which 

the transducers are not located along the clamped boundaries, but in the interior of the plate, which 

would not be suitable for our problem. A simple method, which is related to the present one is to 

place the transducers at the locations of the maximum modal strains. However, if one uses modal 

strains rather than modal stresses (as in the present paper) as a criterium for transducer placement, 
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the superposition of nilpotent distributions is no longer possible, because such distributions do not 

exist in the context of strain, but only in the context of stress. This would result into optimal 

placements, which are not restricted to the vicinity of the boundaries. Again, we point out the 

superiority of our method based on stress distributions compared to methods based on strain 

distributions. 

As a conclusion for this part of the paper, we note that our method is a general one; it can be 

used to design different types of transducer arrays, it can be applied to arbitrary boundary 

conditions and it works for both, a large number or a small number of individual transducers. 

Moreover, the criteria used for transducer placement and weight assignment can be further refined 

to extend the applicability to a broader frequency range; this has been done previously in Krommer 

et al. (2009) for beams. Within the present paper, where only four individual transducers are used 

such extensions are not possible; one would need a larger number of transducers to do so. In the 

following we will experimentally verify the proposed method and apply the obtained transducer 

array design for passive and active modal control of a thin plate structure. 

 

 

4. Experimental verification 

 
In the present section, the experimental setup, to which the proposed theoretical approach will 

be applied, is presented. Due to the limitations of distributed sensors and actuators in real 

applications, piezoelectric sensors and actuators are put into practice with discrete piezoelectric 

patches. The dimensions of the experimental setup and the placement of the piezoelectric patches 

is specified. The resulting design of the modal sensor and actuator array is experimentally verified. 

 

4.1 Experimental setup 

 
Sensors and actuators of type DuraAct A15 are attached to an acryl glass plate (PMMA with 

Young's modulus Y = 4530 Nmm
-2

, Poisson ratio v = 0.38 and density  = 1181 kgm
-3

) based on 

the results of the previous section (see Fig. 6 and Table 2) which were computed by accounting for 

several design constraints concerned with the location of the piezoelectric patches as well as with 

their intensities. The corresponding experimental setup is shown in Fig. 7(a). The piezoelectric 

patches are attached at the inner side of the plate. The plate itself has the dimensions 562 mm  

762 mm  10 mm and it is fixed along its clamped boundary to a medium density fiberboard 

housing (MDF with Young's modulus Y = 2700 Nmm
-2

, Poisson ratio v = 0.41 and density  = 695 

kgm
-3

). In Fig. 7(b) the details of the design of the sensor and actuator array are shown; 28 

piezoelectric patches are attached in total. A loudspeaker is put into the housing in order to excite 

vibrations of the acryl plate and accordingly results into structure-borne sound outside the housing. 

The general goal of this experimental setup is to reduce this structure-borne sound. 

First, we validate the plate model used in the previous section with experimental and numerical 

results; in particular, we compare the measured first three eigenfrequencies and eigenmodes with 

the computed ones, which do not account for the stiffening effect of the attached patches. In Table 

3 the eigenfrequencies are presented, for which numerical results using Finite Elements, which 

take the influence of the housing and of the imperfect clamping into account, are shown as well 

(analytical refers to the Finite Difference thin plate solution). The Finite Element results were 

computed with the commercially available code Ansys

. The built-in mesh generator of Ansys


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was used to generate the Finite Element mesh of the system; this resulted into the use of 21389 

solid186 (3D 20-Node Structural Solid) elements and 312 solid187 (3D 10-Node Tetrahedral 

Structural Solid) elements for the housing, 7340 solid186 elements and 12 solid187 elements for 

the acryl plate and 24 solid186 elements for each of the 24 piezoelectric patches. 

Electromechanical coupling due to the direct piezoelectric effect has not been taken into account in 

the Finite Element computations. 

 

 

  

(a) Experimental setup (b) Sensor and actuator network 

Fig. 7 Details of the plate 

 

 
Table 3 Eigenfrequencies 

 
f11 / s

-1
 f12 / s

-1
 f21 / s

-1
 

measured 85 135 189 

analytical 79.3 131.4 187.8 

numerical 85.8 138.6 187.9 

 

 

Fig. 8 shows the corresponding eigenmodes, which were either measured using a scanning laser 

vibrometer, computed with the Finite Elements or computed for the plate model. We conclude that 

the results computed using the model of an isotropic plate from the previous section are close 

enough to the measured results to base the network design problem on the plate model. In 

particular, because we can see that the acryl plate, which is fixed to the housing, behaves like a 

clamped plate in the frequency range that is of interest to us for the design of the piezoelectric 

transducer network. 
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Fig. 8 Eigenmodes: top - measured, middle - finite elements and bottom - plate theory 

 

 

4.1.1 Sensor/actuator array verification 
The details of the sensor/actuator array design are shown in Fig. 7(b). This design has been 

shown in the previous section to represent an approximation of the first three optimal modal shape 

functions, which are shown in Fig. 6. In particular, with respect to one quarter of the plate; the 

centers of the patch group with four patches and of the one with three patches are very close to the 

intensity centers of the three optimal modal shape functions, the ratio between the areas covered 

by these two groups is 4 / 3 and the intensities are identical. From these latter facts we conclude on 

the fact the 7 patches within each of the four quarters of the plate can be used in a parallel 

connection; the resulting four groups of 7 piezoelectric patches are denoted as ALT, ART, ALB and 

ARB, see Fig. 7(b). 

Each of the four groups can be characterized by a so-called transducer equation 

 , , , ,m

k p k kQ C V Q k ALT ART ALBand ARB                  (25) 

in which Qk is the total charge, Cp the combined capacity of the 7 patches, Vk the voltage and Qk
m
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stands for the mechanical part of the total charge, see e.g., Krommer (2003). Denoting the area 

with three patches as ,1kA  and the one with four patches as ,2kA  this mechanical part of the total 

charge is defined as 

  
,1 ,2

( , ) ( , ) ,
k k

m

k k
A A

Q S w t dA w t dA    x x                   (26) 

because the intensity Sk is identical in the two groups. For the actuator mode the voltage Vk is 

applied, whereas for the sensor mode Vk is measured under open circuit conditions Qk = 0. To put 

the first three modal sensors and actuators into practice by the array of piezoelectric patches the 

following rules, which are a direct result of the symmetry properties of these three modes, are 

applied: 

 For the first mode all four groups are used in a parallel connection. For the actuator mode this 

results into the same voltage applied to all patches, VALT = VART  = VALB  = VARB  = V, and for the 

sensor mode we have the total charge Q, which is zero for the open circuit conditions, as the sum 

of the four charges 

  0 4 .m m m m

p ALT ART ALB ARBQ C V Q Q Q Q          (27) 

Hence, the measured voltage is proportional to the sum of all four mechanical parts of the total 

charge. 

 For the second mode the two groups on the top are in a parallel connection, as are the two 

groups at the bottom; their connection however is anti-parallel. Hence, for the actuator mode we 

have VALT  = VART  = - VALB  = - VARB  = V and for the sensor mode 0 = 4CpV + (Q
m

ALT + Q
m

ART - 

Q
m

ALB
 
- Q

m

ARB
 
holds. 

 For the third mode the two groups on the right are in a parallel connection, as are the two 

groups on the left; their connection however is anti-parallel. Hence, for the actuator mode we have 

VALT  = - VART  = VALB  = - VARB  = V and for the sensor mode 0 = 4CpV + (Q
m

ALT - Q
m

ART  + Q
m

ALB
 
- 

Q
m

ARB holds. 

Accordingly, three operating modes corresponding to the first three eigenmodes can be realized 

for both, actuation and sensing. All the measurement results in this section have been obtained 

using a sine sweep excitation; either for the input voltage of the loudspeaker or for the voltage 

applied to the piezoelectric actuator array. 

In Fig. 9 the amplitude spectra of v , which is the measured velocity of the plate per input 

voltage applied at the piezoelectric patches at x = 122 mm and y = 175 mm are shown for the case 

the piezoelectric patch array is used in its three actuator modes. The frequency range shown in the 

figures covers the first 8 eigenfrequencies of the plate. One can clearly see the ability of the 

actuator array to actuate a single mode; yet, the use of the array results into non ideal modal 

actuators, which can also be seen from the figure. 

In Fig. 10 we show the measured amplitude spectra for using the array in its three operating 

modes as modal sensors; the plate is excited by the loudspeaker. The amplitude V  denotes the 

output voltage of the piezoelectric patch per input voltage of the loudspeaker. One can see that our 

design approximately results into modal filters, as desired. 
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(a) Operating mode 1: (11) - mode (b) Operating mode 2: (12) - mode 

 

(c) Operating mode 3: (21) – mode 

Fig. 9 Measured velocities due to modal actuation 

 

 

  
(a) Operating mode 1: (11) - mode (b) Operating mode 2: (12) - mode 

 

 

(c) Operating mode 3: (21) – mode 

Fig. 10 Measured modal voltages due to loudspeaker excitation 
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4.1.2 Alternative sensor array 
To facilitate active vibration control two arrays of piezoelectric patches would be needed. One 

could add a second array on the opposite side of the plate (in our case the outer side) made of 28 

patches designed identical to the one implemented at the inner side of the plate. This would require 

a high number of additional patches as well as additional wiring. In order to avoid that, we use 

only four patches attached to the outer side of the plate, see Fig. 11, as an alternative sensor array, 

which is used for active vibration control. 

 

 

 

Fig. 11 Details of the alternative sensor array (Berger 2011) 

 

 

The four sensor patches are attached in the middle of each lateral edge as near as possible to the 

clamping. The first three eigenmodes can be clearly identified by correct summation, which has 

been stated by Fuller et al. (1996) :  

 Operating mode 1: Summation or parallel connection of all four sensors SB, ST, SL and SR 

leads to the measurement of the first mode, the second and the third mode are filtered out. 

 Operating mode 2: Subtraction or anti-parallel connection of the bottom sensor SB and the top 

sensor ST to measure the second mode; the other two sensors are not active. The first and third 

mode are filtered out. 

 Operating mode 3: Subtraction or anti-parallel connection of the left sensor SL and the right 

sensor SR (the other two sensors are not active) results into measuring only the third mode, 

whereas the first and second mode are filtered out. 

The results for the alternative design for the modal sensor array using only the four sensor 

patches are shown in Fig. 12; the voltages at the piezoelectric patches are measured for the 

loudspeaker excitation. 

Again the amplitude V denotes the output voltage of the piezoelectric patch per input voltage 

of the loudspeaker. Here, we can see that the signal levels are lower than for the original array with 

28 patches due to the use of less sensors. Qualitatively, the results for the first and second mode 

are comparable; for the third mode the filtering ability is worse than for the original array with 28 

patches. This can be attributed to the fact that the experimental setup does not exactly satisfy the 

symmetry conditions that would be required by the design of the alternative sensor array for 
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operating mode 3 to function better. Due to the use of only two sensor patches (SL and SR) small 

deviations from the ideal symmetry conditions can result into significant interference with the 

desired modal filtering ability. The two side peaks in Fig. 12(c) correspond to the (11) - mode and 

the (13) - mode of the acryl plate, which are symmetric with respect to the y-coordinate. From this 

fact we conclude on certain unsymmetries in the experimental setup for the modes that ideally 

would be symmetric with respect to the y-coordinate, but not for the modes that ideally would be 

symmetric with respect to the x-coordinate, because we have no such side peaks for operating 

mode 2. 

 

  

(a) Operating mode 1: (11) - mode (b) Operating mode 2: (12) - mode 

 
(c) Operating mode 3: (21) – mode 

Fig. 12 Measured alternative modal voltages due to loudspeaker excitation 

 

 

Although our design of the sensor and actuator arrays is only approximate, we conclude that it 

is sufficient for further use concerned with the control of the vibrations of the plate in the low 

frequency range. Concerning shunt damping the array with 28 patches, which works well as a 

sensor and as an actuator array, will be used and for active control the actuator array with 28 

patches will be used in combination with the sensor array with 4 patches; in this latter case the 

deviations for operating mode 3 for the alternative sensor array will be compensated by the proper 

functionality of the actuator array for this operating mode. 

 
 
5. Vibration control 

 

On our experimental setup, two different vibration control techniques are implemented to proof 
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the efficiency of the design of the modal sensor and actuator arrays. The two control strategies are 

shortly introduced in the following without going into any detail, as this would go beyond the 

scope of this paper. Experimental results for the controlled plate structure will conclude the present 

paper. 

 

5.1 Piezoelectric shunt damping 

 
Piezoelectric shunt damping is a common and popular method to damp vibrations in elastic thin 

structures such as beams and plates. An electrical circuit is connected to the piezoelectric patches, 

which are attached to the mechanical structure to be damped. This damping method uses the 

patches as sensors as well as actuators at the same time and has been introduced by Hagood and 

von Flotow (1991). It can be classified in active and passive methods and these moreover in linear 

and nonlinear techniques, see Moheimani and Fleming (2006) for further details. 

In the present paper we focus on the most effective passive shunt damping devices, the 

so-called resonant circuits, which are independent of any additional sources and can be interpreted 

analogous to a tuned mass damper (see e.g., Den Hartog (1985)). Their design can be computed 

with the help of the equivalent electric circuit of a piezoelectric transducer, which describes the 

electromechanical relations electrically with a current source I
m
, the piezoelectric capacitance Cp as 

a function of the permittivity and the patch dimensions (see Moheimani and Fleming (2006) and 

Krommer (2003)), and the impedance Z, which represents the electrical networks; see Fig. 13 for a 

connected RL circuit. 

 

 

 

Fig. 13 Equivalent electrical circuit with RL shunt 

 

 

In our problem we have the transducer equation 

 4 ,m

ij p ij ijI C V I   (28) 

in which ij is either 11, 12 or 21. Here, we combine the design of the piezoelectric transducer array 

with 28 piezoelectric patches for the first three modes with shunt damping devices designed for the 

designated mode. We use single-mode RL circuits, which are designed to compensate one mode 

with the eigenfrequency ij; the impedance of the electrical circuit in Fig. 13 is  

 .Z R j L                  (29) 

With a known Cp, the essential inductance L can be expressed as 
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 2

1
;

4ij p

L k
C

  (30) 

the inductance depends on the capacitance Cp, the eigenfrequency, for which the vibrations are 

meant to be damped and a factor k with an empiric value k  0.995, which has been observed in 

many experiments, see Zenz (2011). Concerning the value of the eigenfrequency ij one must keep 

in mind that there exist two limiting cases for piezoelectric structures. (1) the short-circuit 

eigenfrequency for V = 0 and (2) the open-circuit eigenfrequency for I = 0. Indeed, these two are 

different and the efficiency of shunt damping strongly depends on the gap between the two, which 

is normally characterized by the so-called electromechanical coupling coefficient (EMCC), see 

e.g., Trindade and Benjeddou (2009). In the present paper, the open-circuit eigenfrequency has 

been used in Eq. (30). 

The proper value for the resistors R is crucial for the efficiency of the resonant circuit; if R is to 

small two resonant peaks close to the eigenfrequency to be controlled are observed and if R is to 

large the damping effect is reduced or, in the worst case, even lost. For R   open-circuit 

conditions are observed. As there is no correct analytical approach to determine the proper value, 

optimization techniques have to be used. A common challenge of resonant shunt circuits are the 

high values of the inductance. To avoid these huge components there are several options: The use 

of a large number of piezoelectric patches in parallel, additional parallel capacitances or the use of 

virtual or synthetic circuits. By using the modal transducer arrays in the present experimental setup 

we can avoid these large inductance values as all patches can be connected either parallel or 

anti-parallel, connecting the electrodes corresponding to the respective mode - in any case the total 

capacitance is 28 times the capacitance of a single patch. 

As passive shunt damping devices are defined as circuits, for which no additional power is 

supplied to the system, stability of the shunted systems can be guaranteed, which has been 

extensively studied in the literature. For further details see e.g. Moheimani and Fleming (2006). 

Experimental results The electrical components were determined experimentally as shown in 

Table 4 based on a first estimation using Eq. (30) and an optimization algorithm for the resistor 

values. All 28 patches are connected according to the three operating modes. Therefore attention 

has to be paid on the proper connection of the individual electrodes of the patches, or otherwise the 

damping effect is lost. In case of the first mode all patch groups are connected parallel, whereas for 

the second and third mode the corresponding patch groups are connected anti-parallel. For the 

second and third mode also alternative shunt circuits were considered where two independent 

resonant circuits are designed; in case of the second mode the electrodes at the top (ALT, ART) and 

the ones at the bottom (ALB, ARB) are used individually in a parallel connection. In case of the 

third mode the electrodes at the left (ALT, ALB) and the ones at the right (ART, ARB) are also 

connected correspondingly. Consequently two different capacitance values for the second and the 

third mode arise, the smaller value indicating the two independent circuits, see Table 4. 

 

 
Table 4 Electric values of the shunt damping circuits 

 (11) - mode (12) - mode (21) - mode (12) - mode (21) - mode 

Cp / nF 1212 1212 1212 606 606 

Lopt / H 2.87 1.18 0.583 2.33 1.166 

Ropt /  170 110 70 160 100 
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The results for vibration reduction using the shunt circuits are shown in Fig. 14; in particular, 

the amplitude spectrum of the measured lateral velocity per unit voltage of the loud speaker, which 

is used for the excitation of the plate (by means of a sine sweep excitation), at the point x = 122 

mm and y = 175 mm are shown. As a reference the results for short-circuited electrodes as well as 

an open-circuit are included. 

 

  

(a) Vicinity of (11) - mode (b) Vicinity of (12) - mode 

 
(c) Vicinity of (21) – mode 

Fig. 14 Measured results for shunt damping 

 

 

Using solely an inductance (inductive-circuit) the network almost annihilates the vibrations in a 

narrow spectrum, but typical resonance peaks of a vibration absorber occur beside this suppression, 

see Fig. 14(a), in which an inductive-circuit has been tested for the first mode. These side peaks 

can be avoided by introducing an additional resistor, though flattening the response such that the 

vibration reduction is reduced from -12.5dB to -3.5dB at the eigenfrequency. Figs. 14(b) and 14(c) 

show the effect of an optimally tuned resonant circuit on the second and third mode. The two types 

of circuits discussed above were realized. First the approach with two individual resonant 

RL-circuits was used (denoted as resonant circuit). Secondly, the transducer array was operated 

either in its second or third operating mode with only one RL-circuit for each mode (denoted as 

modal resonant circuit). The advantage of the second method is obvious. Only one circuit must be 

put into practice and furthermore a significantly smaller inductance values due to the doubled 

piezoelectric capacitance is needed, whereas the damping effectivity remains unchanged with a 

reduction of -2.5dB. Besides the reduction in dB, the modal damping ratio is of interest as well; 

Table 5 shows these ratios for the open-circuit conditions and for the single RL-circuits for each 

mode. 
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Table 5 Modal damping ratios 

 (11) – mode (12) – mode (21) - mode 

open-circuit 0.037 0.044 0.047 

RL-circuit 0.074 0.075 0.07 

 

 

Of course the observed reductions of the amplitudes are only valid at the measurement point. 

Measuring the reductions at the anti-node of each mode, where the maximum vibration amplitude 

is measured, a reduction of up to -23dB for an inductive circuit (L-circuit) and -5dB for an 

RL-circuit can be achieved. Multi-mode circuits could reduce the first three eigenmodes 

simultaneously. In this case one multi-mode shunt circuit for every group of the array (ALT, ALB, 

ARB, ART) must be designed, see Moheimani and Fleming (2006). The maximum achievable 

damping rate would be alike each separate single-mode circuit of Fig. 14, see Zenz (2011). 

 

5.2 Active modal control 

 
Generally speaking active modal control is a control approach, which can control each mode 

separately without affecting the others. Therefore each controller loop can be designed 

individually (Fuller et al. (1996)) due to the orthogonality of the eigenmodes. Based on the 

derivation of Hanson and Snyder (1997), Fuller et al. (1996), Preumont (2002) and Herold (2003) 

the local sensor signals can be written in terms of modal values; or in an inverse sense, the modal 

signals can be computed from the local sensor signals. 

Our system consists of the vibrating plate itself and the attached sensors and actuators. Using 

the four local sensor signals as output, the three modal sensor signals, which are equal to the 

negative control error, can be computed from 
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In the previous section we have validated this transformation experimentally, see Fig. 12. Here, 

the four local signals represent the measured voltages at the four patches shown in Fig. 11. The 

modal signals y(t) = - e(t) are fed into three individual modal controllers, which produce the three 

modal inputs u(t) with uij(t) = fij (yij(t)), which have to be transformed from the modal space to the 

physical space. This transformation follows from the previous section as 
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As we have seen before, this transformation results into modal actuators, see Fig. 9. Note that 

in this control method the three modal controllers are designed individually; the effectiveness of 
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such an approach strongly relies on the functionality of the modal filtering capability. To verify 

this latter ability we show the measured amplitude spectrum of the nine modal transfer functions 

  
T

y
ij

/u
kl

with ij and kl equal to 11, 12 and 21 in Fig. 15, where a sine sweep excitation has been used 

for the actuator voltages and the sensor voltages have been measured. 

 

  

(a) Actuation of (11) - mode (b) Actuation of (12) - mode 

 
(c) Actuation of (21) – mode 

Fig. 15 Amplitude spectrum of transfer functions 

 

 

 

Fig. 16 Closed loop individual modal control (Berger 2011) 

 

 

Hence, we conclude on the functionality of our sensor/actuator array design for modal control. 

To achieve an effective vibration control the piezoelectric patches were calibrated to balance 

possible deviations in between them resulting from diverse effects like variation of the patches, 

imprecise positioning, different intensity of the adhesive layer and also different material 

characteristics. The second peak in Fig. 15(c) can be contributed to these effects as well as to 

unsymmetries in general; see also the discussion at the end of section 4.1.2. 
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We can conclude from the results of Fig. 15 that the transfer matrix of the MIMO system with 3 

modal inputs and 3 modal outputs is approximately diagonal. Therefore, we can design three 

individual controllers for the three modal transfer functions. The corresponding control scheme is 

shown in Fig. 16, see also Berger (2011). 

 

 

 
(a) 

 
(b) 

Fig. 17 Controller design for (11) - mode (Berger 2011) 

 

 

The controller is designed in the frequency domain individually for each mode, see Fig. 16 
Every closed loop consists of the following components: The system itself Gij(s), the controller 

Rij(s) and the disturbance d(t) with the disturbance transfer function Gij,d(s). Therefore the modal 

controller error follows to 

 ( ) ( ) ( ) ( )ij ij ij ije t r t y t y t     (33) 

for a vanishing command variable rij(t). The overall aim to minimize the transfer function of the 
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disturbance 
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can be satisfied by maximizing the transfer function of the open loop Lij(s) = Rij(s) Gij(s). Thereby 

the conditions of a high magnitude over the controlled bandwidth for a high disturbance rejection, 

a small magnitude for higher frequencies for avoiding the amplifying of higher modes and criteria 

of relative stability in order to provide a stable feedback system must be fulfilled, see Nader (2008) 

or for further details Dorf and Bishop (2005).  

Regarding exemplarily the transfer function for the first modal system shown in Fig. 17(a), a 

second order low-pass filter (LP2(s)), an additional second order high-pass filter (HP2(s)) and the 

proper selection of a proportional part Kp fulfill these requirements and yield to the open loop of 

the controlled system shown in Fig. 17(b) with the resulting function of the controller 

 
2 2( )  ( ) ( ).ij pR s K LP s HP s     (35) 

 

 

  
(a) Nyquist plot of the open loop of the first mode (b) Nyquist plot of the open loop of the second 

mode 

 
(c) Nyquist plot of the open loop of the third mode 

Fig. 18 Nyquist plots of the implemented modal controllers 

 

 

In order to verify the stability of the closed-loop system including the designed feedback 

control system with the applied modal controller the Nyquist stability criterion is used; in 

particular, the simplified Nyquist criterion can be used in our case, see (Lunze (1996)). Therefore, 

the Nyquist plot of the open loop system of all three modes to be controlled is shown in Fig. 18. 

All three plots prove an asymptotic stable behaviour of the closed loop system, as the point (-1,0) 

573



 

 

 

 

 

 

Georg Zenz, Wolfgang Berger, Johannes Gerstmayr, Manfred Nader and Michael Krommer 

in the phase plane is not encircled for  = 0… . 

Experimental results As before the lateral velocities at x = 122 mm and y = 175 mm due to a 

loudspeaker excitation are measured; the result for a sine sweep excitation is shown in Fig. 19 

together with the corresponding results for shunt damping. Note that the maximum voltages 

applied to the piezoelectric actuator array were constrained to 100 V. 

 

 

Fig. 19 Comparison of active and passive damping methods (sine sweep excitation) 

 

 

For the first, second and third eigenfrequency the vibration amplitude was reduced by -18dB, 

-18dB and -7dB, a result that is clearly superior to the one for the passive shunt damping. Due to 

the fact that there are no more peaks in the controlled response, we cannot extract corresponding 

damping ratios for the case of active modal control. Finally, Fig. 20 presents the FFT-analysis of 

the uncontrolled and the actively controlled plate structure, when all three modes are actuated 

simultanously. The input voltage of the loudspeaker was chosen as the superposition of three 

sinusoidal signals with the first three eigenfrequencies of the system as the three excitation 

frequencies; the amplitude ratios of the excitation were chosen such that the corresponding three 

tones were subjectively sensed with the same loudness. Thereby the amplitudes were reduced by 

-17dB, -13dB and -12dB. This effective active control in combination with the design of the modal 

transducer arrays led consequently to the patent Gerstmayr et al. (2011). 

 

 

  

Fig. 20 FFT analysis of the first three eigenfrequencies (simultaneous excitation) (Berger 2011) 
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6. Conclusions 

 
In this paper an active modal control technique and passive resonant shunt circuits for the 

suppression of vibrations of a rectangular plate with the help of distributed piezoelectric modal 

transducers have been evaluated and compared. Based on the Kirchhoff plate equations, a set of 

modal sensors/actuators has been found by adding nilpotent sensors/actuators, such that the 

interior of the plate domain can be left uncovered. This new distribution is especially attractive for 

damping transparent plates. The modal sensors/actuators were then implemented by applying 

distributed discrete piezoelectric transducers along the edge of an experimental setup. Their 

advantage to randomly placed sensors/actuators is to sense or actuate only the specific mode for 

which they are configured. After verifying both, the analytical and the discrete approach, the 

damping strategies have been implemented. 

The modal control approach is suitable to result into a broad banded and very effective 

damping device. It can also handle variable stimulations at small expenses of efficiency. In this 

paper the first three eigenmodes could be suppressed with a reduction of up to -20dB, which is 

superior to other results reported in the literature. Shunt damping mechanisms are most suitable for 

an autonomous and light weighted system. Without the use of any active parts like power 

amplifiers, a shunt circuit with an inductance leads to an annihilation of the vibration at a certain 

frequency. Nonetheless, utilizing a resonant circuit with an additional resistor to avoid the 

appearing side peaks can still damp the vibration amplitude up to -5dB. The common challenge of 

high values for the inductance could be prevented by using the modal transducers due to higher 

piezoelectric capacitance without losing any damping efficiency. For handling more modes 

multi-mode techniques can be used. 
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