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Abstract.  Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. 
The composition and mechanics features of BSS are discussed. The main principles of wavelet packet 
transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been 
reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature 
extraction and PCA. The feature vectors are used for training and classification as the inputs of the support 
vector machine. The method is used to a single one-way arched beam string structure for damage detection. 
The cable prestress loss and web members damage experiment for a beam string structure is carried through. 
Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces 
are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse 
excitation. Test results verify this method is accurate and convenient. The damage cases of web members on 
the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet 
decomposition is applied to the structural response signals under ambient vibration, feature vectors are 
obtained by feature extraction method. The feature vectors are used for training and classification as the 
inputs of the support vector machine. The structural damage position and degree can be identified and 
classified, and the test result is highly accurate especially combined with principle component analysis. 
 

Keywords:  beam string structure; damage detection; wavelet packet decomposition; support vector 

machine; principle component analysis 

 
 
1. Introduction 
 

Space structures, such as space trusses and latticed shells, are three-dimensional representations 

of equilibrium equations and symbols of structural design, simulation and construction in civil 

engineering. Space structures are widely used for many advantages such as large stiffness, light 

mass and low cost, and the structural styles are also novel and prolific. As other building structures, 

space structures are inevitable to subject to environmental corrosion, long term fatigue effects or 

natural disasters, and then the damage accumulates during long service period. Furthermore, many 

large space structures are constructed as important building such as gymnasium, exhibition hall 

and station hall, etc. Therefore, it is necessary to detect the potential damage accurately and 

promptly in order to assure structural capacity and safety. Under this background, intelligent heath 

monitoring and damage detection for structures become an important technology.  
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The damage detection is realized by placing various sensors which collect signals and 

analyzing the data with detection algorithms in the computers at the terminal. Because the service 

environment is complicated and the degrees of freedom of large and complex structures are 

excessive, there are no perfect damage detection methods for space structures. As a new type of 

space structure, beam string structures (BSS) are made by combining tension members with such 

rigid members as flat arches, beams and struts. Beam string structures are applied in large 

buildings gradually for having better stiffness and stability and light weight. Hence, it is important 

to improve the method for detecting the damage patterns and locations on beam string structures 

with less sensors and more accurate algorithms. 

In this study, wavelet packet decomposition is applied to the structural response signals under 

ambient vibration and the feature vectors such as energy of wavelet frequency bands are obtained 

by feature extraction method. After principal component analysis (PCA), the feature vectors are 

used to establish SVMs and classify different damage patterns. Hence, a new structural damage 

detection method is presented. This method is applied to a single one-way arched beam string 

structure for damage detection and the results demonstrated that this method is accurate. 
 

 

2. Beam string structures 
 

As a new type of hybrid prestressed string structures and a typical self-balancing space system, 

beam string structure is composed by lower string cables, struts, compressive and bending 

members and vertical connecting members (Saitoh and Okada 1999). By combining the 

advantages of high bending stiffness of rigid members and strong tensile strength of flexible 

members, beam string structure can be made with long spans for its strong stiffness, stability and 

light weight. In general, a single beam string structure behaves as a system with plane stress state 

though the section of beam, arch and truss, while the combination of multiple beam string 

structures form a spatial stress state structure.   

The strings are the most important members in the BBS system. The effects of strings are as 

follows:(1) formation of a balanced system and supplying global stabilization; (2) bracing effects; 

(3) stress control of bending or compressive members; (4) control of displacement and frames 

shape; (5) enhancing geometrical stiffness.  

The prestress is introduced to the string with optimum amount in order to realize the functions 

as follows: (1) additional performance in resistance for compressive force of strings. (2) security of 

straightness for strings. (3) additional stiffness, especially geometrical stiffness. (4) elimination of 

initial stretch of strings. (5) decrease in the stress of bending members and compressive members. 

(6) control of deformation and the shape of frames. 

Beam string structures are applied in several gymnasiums such as Green Dome Maebashi, 

Ogasayama Dome and Urayasu Municipal Sports Hall in Japan, and BBS is also used in the 

terminal building of Shanghai Pudong aerodrome and Guangzhou international exhibition center 

in China. Because beam string structure is a partial flexible structure with strong responses under 

dynamic excitations, the seismic responses and effects under wind load are the dominating factors 

for structural design (Wu 2008, Xue 2009). The prestress loss of steel string on the BSS will occur 

under strong dynamic effect, and the compressive and bending members and vertical connecting 

members will be damaged also. It is important to monitor the performance of the prestress on the 

string and other major members in order to protect the total mechanical property. Hence, it is 
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necessary to detect the damage status in order to assure the safety, durability and applicability of 

BSS.  

 

 
3. Reviews on damage detection methods 

 

Intelligent heath monitoring and damage diagnosis for structures become an important 

technology to study (Housner 1997), detecting and predicting the structural damage in time is 

necessary for future engineering. Detecting structural damage state by its dynamic characteristics, 

such as frequencies, modal shapes and frequency-domain transfer function is an important method 

of structural damage detection. However, these damage detection methods based on vibration 

testing have respective limitation (Yan and Cheng 2007).  

For slight damage, damage detection by frequency or modal shape changes directly is nearly 

infeasible (Yuen et al. 1985, Rizos et al. 1990, Salawu et al. 1997). Curvature modal analysis 

needs adequate measuring points to ensure the accuracy (Sampaio 1999). Flexibility matrix 

method is hard to reflect structural local damages (Pandey and Biswas 1994). Modal strain energy 

method can obtain different results using different test modals (Yao et al. 1992). 

Structural health monitoring (SHM) is a multidisciplinary and integrated technology; hence it is 

difficult to resolve many practical problems for large and complex structures based on vibration 

testing merely. Improving the finite element updating technology for health monitoring and state 

evaluation, combing modern signal analysis technology and soft computing theory, mining 

structural characteristic data deeply, realizing the real-time, online dynamic monitoring and control, 

is the developmental direction for SHM. 

Recently, many advanced technology and intelligent methods, such as digital filter technology, 

wavelet transform (WT) analysis (Wang 1999, Moyo 2002, Sun 2003, Hera 2004, Li 2009a,b, Yi 

2011, Yi 2012), artificial neural networks (ANNs) (Teboub 1990, Wu 1992) and genetic algorithm 

(GA), are studied to detect the structural global and local damage information, and to optimize the 

SHM system. 

Wavelet packet transform (WPT) is a new method of signal processing that has recently been 

applied to various science and engineering with great success (Yi 2013). The specific local 

properties of wavelet packet can be particularly useful to describe signals with sharp spikes or 

discontinuities. It is effective for the structural damage signals process by wavelet packet because 

its multi resolution analysis capability and time-frequency localization (Peng 2012). As an 

effective time-frequency tool, wavelet could detect whether damage has occurred but it is not 

effective to detect different damage states. Intelligent tools are needed to solve the damage 

classification problem, which includes damage location and degree. 

Artificial neural networks (ANNs) have been applied in structural damage detection as 

generalization or classification problems based on learning pattern from examples or empirical 

data model (Amaravadi 2002). The ANN method for structural damage detection has some 

advantages such as strong self-adaptive and fault-tolerant capabilities, and it has been approved to 

be effective for some elements and simple structures (Fang 2005). However, the traditional neural 

networks suffers from a number of weaknesses, including the need for a large number of 

controlling parameters, difficulty in obtaining a stable solution and the danger of over-fitting.  

Compared to traditional feed-forward ANN, Support vector machines (SVMs) (Vapnik 1995) 

do not have some problems such as local minimization, the number selection of nodes in hidden 

layer and the dimension disaster. SVM, which based on statistical learning theory, are gaining 
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applications in the areas of machine learning, data classification and pattern recognition because of 

the high accuracy and good generalization capability (Cristianini 2000. Samanta 2003, Yao 2012). 

 

 

4. Wavelet packet decomposition 
 

The wavelet transform is devised to maintain both the time and frequency properties of a signal. 

This analysis is based on a complete set of localized functions (named wavelets) that span both the 

time and frequency domains. The WT of f(t) is thus a function of two parameters a and b, where a 

represents a frequency scale, and b indicates the time location of the wavelet 

,

1
( , ) ( ) ( ) ( ) ( ) f a b

t b
W a b f t t dt f t dt

aa
 

 

 


  

                     (1) 

where f(t) is measured over a finite time interval T. ( )t is called the mother wavelet and
, ( )a b t

is a scaled and translated wavelet. Unlike the Fourier transform, there are numerous mother 

wavelets, and ( )t is chosen according to the problem.   

WT can also be viewed as a discrete set of filters. Generally, an exact quadrature mirror filter

( )h k  is defined as 

,( 2 ) ( 2 ) i j

k

h k j h k j      ( ) 2
k

h k                       (2) 

In multi-resolution analysis, the orthonormal scaling function ( )t and wavelet function ( )t

satisfy the dyadic scaling equation 

( ) 2 ( ) (2 - )
k

t h k t k                            (3)            

( ) 2 ( ) (2 - )
k

t h k t k                            (4) 

where ( )=( 1) (1 )kg k h k－ + . Let 0 ( )w t and 1 ( )w t , the above dyadic scaling equations can 

be expressed as the following recursive equations 

                        
2 ( ) 2 ( ) ( 2 - )n n

k

w t h k w t k                        (5) 

2 1( ) 2 ( ) (2 - )n n

k

w t g k w t k                        (6) 

Then, the functions ( )nw t form an orthonormal basis and are called the orthonormal wavelet 

packets of function ( )t .If the operations for decomposition of multi-analysis are defined as 

 ( ) 2 ( 2 )k k

k

H s i s h k i                          (7) 
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   ( ) 2 ( 2 )k k

k

G s i s g k i                         (8) 

Thus, we have 

2 2 1( - ) 2 ( 2 ) ( - ) ( 2 ) ( - )
2 2

n n n

k

t t
w t l h l k w k g l k w k             (9) 

If a signal f(t) satisfies 

 
1( ) (2 - )j j

k n

k

f t s w k                       (10) 

its j-layer binary decomposition in the basis of orthonormal wavelet packets can be deduced as 

 
1 1

2 2 1( ) 2 ( ) (2 ) 2 ( ) (2 )j j j j

k n k n

i i

f t H s i w i G s i w i   


                 (11) 

By wavelet packet decomposition, any signal can be decomposed into two parts, i.e., the project 

on  1

2 (2 1)j

nw     operated by H and that on  1

2 1(2 1)j

nw  

   operated by G clearly. 

Wavelet packet decomposition of a signal has better localization effect than that of wavelet. 

Therefore, it used to adaptively choose the corresponding frequency bandwidth according to the 

characteristics of the detection signal and to enhance the resolution both in frequency and time 

domains for damage detection. 

 

 

5. Signals feature extraction and reduction 
 

As the differences of signals between original and damaged structures are generally 

insignificant in the early stage of damage, extraction of damage index directly from the measured 

form of signal (even decomposed by wavelet packets) is still difficult. Therefore, the energy 

spectrum analysis is used to enhance the sensitivity of damage features. 

The second order norm of an original signal f(t) is 

                    

22

2
( )

R
f f x dx                           (12) 

Then, it is the equivalent energy of the original signal in time domain. For allowable wavelet , 

we have 

2 2

2
( , ) /

R
W f a b a dbda f                     (13) 

Thus, there is an equivalent relationship between the energy of wavelet transform and that of 

the original signal. Therefore, it is reliable to express energy variation in the original signal by 

energy spectrum of the response signal decomposed by wavelet packets. Hence, in the energy 

spectrum of wavelet packets, the sum of square of the decomposed signal is selected as the energy 

feature within every subspace (frequency span). In subspace
2 j i

V , i.e., the ith frequency span of the 
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jth layer, the result of wavelet packet decomposition is expressed by  MkkSi ,...,2,1),(  , and its 

energy is expressed by 

2

2
1

( )j

M

ii
k

E S k



                          (14) 

where M is the length of samples in the subspace. 

In the processes of structural health monitoring, the structural response signals, such as 

acceleration, strain and stress, vary when a structure suffers different damage including grade and 

location, and the vibration energy of elements be heightened or be reduced. Hence, the coefficients 

in some frequency bands are different for structural joint signals, and the energy in the frequency 

bands can be extracted as feature vectors to detect damage. The proposed procedure for feature 

extraction consists of four steps: 

Step1: Calculate the wavelet packet transform of a set of signals. The acceleration or strain 

signals are collected by the sensors on the structural joints. Apply wavelet packet transform to the 

signal, and the result of wavelet packet decomposition in the Nth layer is SNJ, j = 1,2,, 2
N
, and the 

frequency band number is 2
N
. 

Step2: Reconstruct wavelet packets and calculate the energy of all the frequency bands. The 

energy of the reconstruct signals NjS is
2 2

1

( )
n

Nj Nj jk

k

E E t dt x


  , where, jkx is the amplitude of 

the kth discrete point and n is the number of the discrete points. The modulus of SNj is NNj = 

(ENJ)
1/2

.    

Step3: Construct feature vectors. The modulus of NjS  in all the frequency bands can be calculated 

and a sequence can be obtained as ,   1,2, ,2N

NjN j  . Therefore, a feature vector corresponding 

to the energy can be constructed as  1 2 2
,  ,  ,  NN N N

p N N N . 

After the feature vectors are extracted, data compression technique such as principal 

component analysis (PCA) is recommended to reduce the dimensions and amplify the diversity. 

Principal component analysis is a statistical technique that linearly transforms an original set of 

variables into a substantially smaller set of uncorrelated variables that represents most of the 

information in the original set of variables (Joliffe 1986). It can be viewed as a classical method of 

multivariate statistical analysis for achieving a dimension reduction. Because of the fact that a 

small set of uncorrelated variables is much easier to understand and use in further analysis than a 

larger set of correlated variables, this data compression technique has been widely applied.     

 

 

6. Review on support vector machine 
 

As a novel network algorithm, support vector machine (SVM), has developed to a powerful 

tool for data analysis. It is powerful for the problem with small sampling, nonlinear and high 

dimension. 

In the two-dimensional case, the SVM action can be illustrated in Fig. 1. A series of points for 

two different classes of data are shown, circles (class A) and squares (class B). The SVM attempts 

to place a linear boundary (solid line) between the two different classes and orients this line in 
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such a way that the margin (space between dotted lines) is maximized. The nearest data points 

used to define the margin are known as support vectors (gray circles and square). Support vectors, 

not the number of input features, contain all of the information needed to define the classifier. One 

remarkable property of SVM is its ability to learn can be independent of the feature space 

dimensionality. This means that SVM can generalize well in the presence of many features.  

 

 

 

Fig. 1 Separation of two classes by SVM 

                                

 

Given a set of training data 

   1 1( , ), , ( , ), , ( , ) ,   R ,  1,  1n

i i n nD y y y y     x x x x              (19)  

where ix is the training data, n is the number of training data and yi is the class label (1 or−1) for

ix . 

Firstly, a nonlinear function is employed to map the original input space R
n
 to N-dimensional 

feature space.  

1 2( ) ( ( ), ( ), , ( ))N    x x x x                        (20) 

Then the separating hyper plane is constructed in this high dimension feature space. The 

classifier takes the form as 

y( )=sgn ( ( ) )b x w x                         (21) 

where w is the weight vector and b is a scalar.  

To obtain the optimal classifier, || w || should be minimized under the following constraints 

[ ( ) ] 1 ,   1,2, ,  i iy b i n      w x                       (22) 

The variables ξi are positive slack variables, which is necessary to allow misclassification. Thus, 

according to principle of structural risk minimization, the optimal problem can be formulated as 

minimization of the following objective function J 
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2

1

1
minmize      ( , )  

2

subject to    [ ( ) ] 1 ,    0,   1,2, ,

n

i

i

i i i

J C

y b i n

 
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

 

      

w w

w x

          (23) 

where C is the margin parameter. 

According to Lagrangian principle, the above problem can be transformed to its corresponding 

form as follows 

, 1 1

1

1
maximize    ( ) ( ( ), ( ))

2

subject to     0,    0 ,   1,2, ,

n n

i j i j i j i

i j i

n

i i i

i

W a a a y y a

a y a C i n

 
 



  

    

 



x x

          (24) 

If ai > 0, the corresponding xi is called support vector. In general, support vectors are only a 

small part of the training samples. Eq. (24) is a quadratic programming problem constrained in a 

convex set, and the solution is unique. 

Finally, the optimal separating hyperplane is obtained as follows 

SV

( , ) 0i i ia y K b  x x                           (25)  

where SV are the support vectors. Then the nonlinear classifier is 

SV

sgn( ( , ) )i i iy a y K b  x x                       (26) 

This distinguishing function is the so-called SVM. From the above analysis, it can be 

concluded that SVM is decided by training samples and kernel function.  

The feature vectors extracted from the signals after PCA can be used as the input vectors of 

SVMs. SVMs can be applied to structural damage detection and classification as a classifier. A set 

of training samples are    1 1( , ), , ( , ), , ( , ) ,   R ,  1,  1n

i i n nT y y y y     x x x x , where ix

is the input vectors, yi is the expectation value, n is the number of training data. Assume the 

number of support vectors is N in all the input and they are SV1，SV2，…，SVN respectively.   

According to SVM algorithm and mechanism, the classification training process end when the 

classification results satisfy the demand. The basic SVM algorithm is about two-class problem. For 

multi-class problem, one of the classic algorithms is Improved Sequential Minimal Optimization 

(SMO) and all the classes can be treated by a set of two-value classifiers. The trained SVMs can be 

used as an effective tool for structural damage detection. 

 

 

7. Damage detection test on beam string structure 
 

In this paper, the dynamic test and damage detection for a single one-way arched beam string 

structure is presented. The experimental model is constructed with the scaling factor of 1/15. The 

original model is an arched beam string structure as shown in Fig. 2. The span of upper arch l is 3 

m. The radius vector f of the upper arch and the sag of the lower chord are both 0.5 m. If the 
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horizontal and vertical coordinate of the arch and the cable is x and y respectively, the parabolic 

equation of arch axis is y=4fx(3-x)/l
2 

under uniformly distributed loads along whole span. The 

upper arch is a reversed triangular truss, the width is 200mm and the height is 150 mm. The 

external diameter of the upper chords is 32 mm and the thickness is 2.5 mm. The corresponding 

dimension of the lower chords is 32 mm and 2.5 mm, and 18 mm and 1.2 mm for the web 

members. The external diameter of the struts is 32 mm and the thickness is 2.5 mm. The diameter 

of the cable is 10 mm. According to the service load, two counter weight blocks with the total 

weight of 30 kg are fixed on each board of the upper joints. Because the thrust on the end of arch 

is resisted by the cable but not the supports and the beam string structure is a self-balancing system, 

the supports are composed of one hinged bearing and one slideable elastic bearing. 

 

 

 

Fig. 2 Side view of BSS model 

 

 

Fig. 3 Scheme of accelerometers placement (red for vertical and green for horizontal) 

 

 

Fig. 4 Force sensor on the tension side of the cable 
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For the dynamic damage detection test on beam string structure, 16 accelerometers were 

installed. Among them, 11 sensors were fixed on the lower chord joints of the arch truss in the 

horizontal and vertical direction alternatively, and two sensors were placed on the two middle 

spans of the cable. Two sensors in horizontal and vertical respectively were fixed on the hinged 

bearing and one vertical sensor was on the slideable bearing. The arrangement and numbering plan 

is shown in Fig. 3. A force sensor is installed near the tensioning end on the cable, as shown in Fig. 

4. 

 

7.1 Prestress identification 
 
Cables are the most critical structural components in beam string structures. The tension force 

in the cable controls the internal force distribution. Therefore, the cable tension force is an 

important index in the damage detection and long-term health monitoring. A dynamic and a static 

data acquisition system were used respectively to collect and analyze the signals of acceleration 

and strain. In order to simulate the different cases of prestress loss, six types of prestress were 

applied to the cable from the slack state step by step, and the prestress value is adjusted by 

controlling the strain value on the force sensor. The strain and prestress values from the force 

sensor directly are shown in Table 1.  

In each of six cases, the two middle spans of the cable were knocked on respectively, as shown 

in Fig. 5 and the acceleration signals were analyzed by Fast Fourier transformation.  

Ignoring the effect of the sag and flexural rigidity, the simplest relationship to calculate the 

cable forces based on the vibration frequency is the so-called “taut string” chord equation 

2 2

2

4 nl f
T

n


                                 (27) 

where T is cable tension; ρ is cable mass per unit length; l is length between cable fixed ends; and 

fn is n
th 

natural frequency. The fundamental frequencies of the cable in different cases are computed 

and the cable tensions are calculated according to conventional formulas, the results are compared 

with the measured tensions. 

 

 

 

Fig. 5 The accelerometer on the cable 
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The actual mass per unit length of the cable is 0.338 kg/m and the length of the middle span is 

1.2 m. The measured fundamental frequencies and the calculated tensions are listed in Table1. The 

total mass of the accelerometer and the binding material is 0.123 kg, and the influence of sensor 

could not be ignored for this scale model, and it is converted into linear density and the modified 

cable mass per unit length is 0.420 kg/m.    

The modified cable tensions are list in Table 1 also, and it can be found that the values are 

similar to the measured values, as shown in Fig. 6. The method based on frequencies is simple and 

accurate, while the installation of force sensor need to cut off the cable first and the safety of the 

cable have been reduced artificially. Hence, the cable tension could be calculated from 

accelerometers in stead of placing force sensors in long-term monitoring of cable, and the 

excitations can be ambient vibration or instantaneous electronic impulse from micro device on the 

sensors. 

 

 

 

Fig. 6 Computed cable force and test value 

 

 
Table 1 Strain and tension of cable 

Prestress 

Cases 
Strain 

Measured 

Tension (N) 

Fundamental 

Frequencies (Hz) 

Calculated 

Tension (N) 

Modified 

Tension (N) 

1 473.11 4636.43 45.62 4090.11 5052.48 

2 602.69 5906.36 50.38 4987.29 6160.76 

3 722.49 7080.44 54.08 5746.74 7098.91 

4 860.64 8434.23 58.10 6631.94 8192.39 

5 985.33 9656.24 61.99 7550.04 9326.52 

6 1092.9 10710.51 65.32 8383.79 10356.44 

 

 

The monitoring of the prestress loss on the cable could also be realized by energy spectrum 

from wavelet packet. A group of acceleration signals is collected under ambient vibration, and the 

sampling time lasts 300 seconds for each state and the sampling frequency is 2000. The signals are 

decomposed by three-level wavelet packet, and the wavelet type belongs to Daubechies series.  
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Each sample signal is transformed into a set of normalized eight-dimension energy vectors as 

shown in Fig. 7. In the figure, the abscissa is frequency bands and the ordinate is normalized 

energy vector, the subgraphs (1)-(6) represent the case 6 to case 1respectively. It can be seen that 

the energy of frequency bands concentrate to low frequency and the natural frequencies descend 

gradually along with the loss of prestress. Hence the damage on cable can be detected, but the 

sampling time is longer and the tension values can not be calculated accurately. 

 

 

 

Fig. 7 Frequency band energy from wavelet packet decomposition 

 

 

7.2 Damage detection for web members 
 
 

 

Fig. 8 Cloud picture of distributed axial force on BBS (Unit: 10
6 
N/m

2
) 

 
 

The cable tension value is 10711 N when the prestress loss test ended. The positive bending 

moment is equal to the negative bending moment for the whole beam string structure, and the 

damage detection test on the arch truss is studied in this state. Where, the positive bending moment 

means the moment on the upper arch produced by the vertical load alone, and the 

negative bending moment is the moment which is supplied only by the prestress. The distributed 
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axial force on BSS is analyzed by finite element model, and the stress of the web member near the 

bearing is maximal besides the stress on the cable, as shown in Fig. 8 and Table 2. The chords on 

the arch truss and the struts could not be damaged in order to maintain the integrity of BBS, so 

four web members near the bearing is selected to be cut at one end one by one in order to simulate 

the failure statuses as shown in Fig. 9. For each damage member, the damage degrees include two 

cases as 50% and 100%, and parts are shown in Figs. 10 and 11. In general, there are 9 cases 

which include 8 different damage states and one health state to be detected. 

 

 

 

Fig. 9 Damage location of web member 

 

 

 

Fig. 10 100% damage of one end of web member 1 

 

 

The acceleration signals of all the sensors on the BBS are collected under ambient vibration in 

order to verify the detection method of wavelet packet and support vector machine. Ten groups of 

signals are collected totally and each lasts 60 seconds and the sampling frequency is 2000. To 

enhance the actual analysis efficiency, only the signals from four sensors marked 13-16 in Fig. 3 

are decomposed considering they are most sensitive to the damage locations and degrees. 
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Fig. 11 100% damage of four web members 

 

 

Fig. 12 Energy of 1st-3rd Frequency bands 

 

 

Fig. 13 Frequency bands energy of Sensor 1 
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The signals are decomposed by three-level wavelet packet which belongs to Daubechies series. 

The first three energy vectors of three groups of signals selected with random are shown in Fig. 12 

with the example of sensor 15, and the abscissa is frequency bands and the ordinate is energy 

vectors. In the figure, the columns have the same color represent the energy vectors in the same 

damage cases. It can be seen that the vectors in the same case are close and can be obviously 

distinguished from other cases. 

All the energy vectors under different damage cases from sensor 15 are shown in Fig. 13. In the 

figure, the subgraphs (1)-(9) represent the cases which are from being intact to all the four web 

members are damage totally respectively. 

 

 
Table 2 Illustration of distributed axial force 

Location Mechanical Behavior Stress Distribution 

Upper Chords under compression Maximum in middle spans 

Lower Chords under compression Maximum in middle spans 

Web Members under compression besides 

tension mostly near supports 

Maximum tension near supports 

maximum compression in middle 

spans 

Struts under compression  

Cable under maximum tension  

Support Vertical Members less stress  

 

 

Table 3 Results of the classification by SVM method 

Actual Cases 

Results 
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Accuracy 

SVM1  1 2 3 4 4 6 5 3 9 1 2 3 4 3 6 5 8 9 66.7% 

SVM2  3 2 3 4 3 6 8 8 2 1 2 3 4 4 6 7 8 9 61.1% 

SVM3  1 2 3 4 4 6 7 8 2 1 2 3 4 3 6 7 8 9 61.1% 

SVM4  6 5 3 4 4 6 5 8 8 1 2 3 4 4 6 5 8 9 50.0% 

Integrated 1 2 3 4 4 6 5 8 2 1 2 3 4 4 6 7 8 9 66.7% 

 

 

For each accelerometer, six groups of signal are selected as the training samples for the support 

vector machine and other four groups are test samples. The test samples are classified after the 

support vector machine has been established, and the results are listed in Table 3. In the table, 

SVM1-SVM4 indicates the support vector machine established according to the signals from 

sensors 16-13 respectively, and the damage cases indicates the cases from heath to the state that all 

the four web members damaged completely. The false results are marked with rectangular frames 

and the final integrated result is defined as the result that has most proportions in the four results.  

The final correct classifying rate is 66.7%. The method above is feasible but need to be 

improved in view of some false results are close to the actual cases.   

Each group of the original energy vector discomposed from wavelet packet is transformed 

based on principal component analysis. The accumulation variance percentage is over 92% for the 

first four principal components so they are chose as the efficient vectors. These four vectors of 

three groups of signals selected with random are shown in Fig. 14 with the example of sensor 15.  
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After PCA, all the energy vectors under different damage cases from sensor 15 are shown in 

Fig. 15. In the figure, the subgraphs (1)-(9) represent the cases which are from being intact to all 

the four web members are damage totally respectively. 

 

 

Fig. 14 Energy of Frequency bands by PCA 

 

 

Fig. 15 Damage vectors of Sensor 15 by PCA 

 

 
Table 4 Results of the classification by SVM method after PCA 

Actual Cases 

Results 
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Accuracy 

SVM1  1 2 3 4 3 6 5 8 9 1 2 3 4 5 6 7 8 9 88.9% 

SVM2  1 2 3 4 4 6 7 8 9 1 2 3 4 3 6 7 8 9 88.9% 

SVM3  1 2 3 4 3 6 7 8 9 1 2 3 4 6 6 6 8 2 77.8% 

SVM4  1 2 3 4 4 6 5 8 9 1 2 3 4 4 6 5 8 9 77.8% 

Integrated 1 2 3 4 4 6 7 8 9 1 2 3 4 6 6 7 8 9 88.9% 

 

The variance of difference components is obvious and new SVMs can be reestablished without 

other change, partial results are listed in Table 4. The final integrated correct classifying rate is 
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88.9%. Hence, the classification and detection method based on PCA and SVM is satisfactory, and 

the method is proved to be simple, rapid and accurate.  

 

 
8. Conclusions 
 

In this study, beam string structure (BSS) is introduced as a new type of hybrid prestressed 

string structures. The composition and mechanics features of BSS are discussed. The main 

principles of wavelet packet transform (WPT), principal component analysis (PCA) and support 

vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and 

feature vectors are obtained by feature extraction and PCA. The feature vectors are used for 

training and classification as the inputs of the support vector machine. The method is used to a 

single one-way arched beam string structure for damage detection. The structural damage location 

and degree can be detected and classified, and the result is relative accurate. This method has some 

advantages, such as engineering oriented, low cost and convenient.  

However, there are still some important details to be studied. The damage data are only 

obtained from the experimental results and the fine finite element model is needed and the model 

modification should be applied in order to get much more date and enlarge the damage classes. For 

SVM, determining the proper parameters is still a heuristic process, and automation of this process 

could be beneficial. The maximum possible size of the training set is to be searched. Optimal 

selection of wavelet basis for different structural styles needs to be addressed in order to assure the 

accuracy. Some problems such as optimal placement of sensors are also needed additional studies. 
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