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Abstract.  Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring 
(SHM) of large-scale structures. According to the mathematical background and implicit assumptions made 
in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP 
method for the Canton Tower focusing on application demands. In contrast to existing methods, the 
presented method renders the corresponding target mode shape partitions as linearly independent as possible 
and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal 
assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of 
the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness 
of the proposed method. Numerical investigations suggest that the proposed method outperforms the 
original EfI method in all instances as expected, which is looked forward to be even more pronounced 
should it be used for other multi-dimensional optimization problems. 
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1. Introduction 
 

Large and complex civil infrastructures are being placed in new and extreme conditions for 

extended periods of time. The Canton Tower located in Guangzhou, China, assures a place among 

the supertall structures worldwide by virtue of its total height of 610 m (Ni et al. 2009). It consists 

of a 454 m high main tower and a 156 m high antenna mast. The main tower is a tube-in-tube 

structure consisting of a steel lattice outer structure and a reinforced concrete inner structure. The 

outer structure has a hyperboloid form, which is generated by the rotation of two ellipses, one at 

the ground level and the other at an imaginary horizontal plan 454 m above the ground. The 

tightening caused by the rotation between the two ellipses forms the characterizing “waist-line” of 

the tower. The antenna mast is made of a steel structure founded on the top of the main tower, the 

lower part of which is a steel lattice structure with an octagon cross-section and the upper part is a 

steel box structure. The hyperbolic shape makes the Canton Tower interesting and attractive from 
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an aesthetics perspective, and it also makes it mechanically complex. Civil engineers require a 

reliable method to resolve their concerns about two fronts: first in the safe operation and 

maintenance of the project to ensure a long service life and second in insuring safety and 

efficiency of modern design practice (Housner et al. 1997). Both of these intentions can benefit 

from on-line monitoring of the structure, whether it is at the global level, using accelerometers, or 

at a local level using strain sensing elements. 

An effective health monitoring system needs sensors to be located appropriately on the 

structure since the characterization of the dynamic behavior of a structure is possible only if a 

minimum amount of information is available. This, in turn, implies that designing efficient sensor 

networks is necessary for economical and efficient issues (Yi et al. 2011). Normally, the sensor 

placement may base on engineering judgment or trial-and-error approach. However, for a 

large-scale complicated structure like the Canton Tower, a systematic and efficient approach is 

needed to solve the problem. The problem of sensor placement can be investigated from several 

approaches, as can be seen from the abundance of literature. Among them, the Effective 

Independence (EfI) method is one of the most influential and commonly cited sensor placement 

approaches (Kammer et al. 1991, 1994). In this method, Kammer argued that the optimal 

arrangement for measuring and estimating structural vibration was that which minimized the norm 

(usually either trace or determinant) of the Fisher information matrix (FIM), which was 

constructed from the modal and measurement covariance matrices. There were several derivative 

methods based on the EfI method. The so-called energy optimization technique was derived from 

modal kinetic energy (MKE) and EfI by optimizing the kinetic energy matrix measured by 

candidate sensor locations (Heo et al. 1997). In one study (Coote et al. 2005), it was shown that 

the energy optimization technique appeared more favorable because the EfI resulted in clustering 

of sensors and did not reduce the off-diagonal Modal Assurance Criteria (MAC) terms particularly 

well. Other derivative methods were adding weights (residue weighted or mass weighted) for 

different mode shapes in order to compromise the EfI and other methods. For example, the 

EfI-DPR was a compromise between the EfI and an energetic approach, in which the modes in EfI 

were weighted by the corresponding driving-point residues (Meo and Zumpano 2005). Similar to 

the EfI, a SVD-based method directly decomposed the mass weighted information matrix (Park 

and Kim 1996). It complemented the EfI by providing a guide for an allowable number of degrees 

to be deleted at each iteration stage, which rendered the selection computation faster. Recently, Li 

et al. (2007) had discovered that the EfI was an iterated version of MKE with re-orthonormalized 

mode shapes though the QR decomposition and that the latter was an iterated version of the former 

for the case of a structure with equivalent identity mass matrix. With the aid of this connection, the 

EfI could be easily computed through the row norm of the orthonormal Q matrix (Li et al. 2009).  

The state-of-the-practice is to select individual sensor locations/directions from a candidate set 

based upon one of several available criteria, which may results in the nonoptimal placement of 

triaxial sensors. Considering that, Kammer (Kammer and Tinker 2004, Kammer 2005) extended 

the EfI method and proposed a new technique, called the triaxial EfI which placed triaxial sensors 

as a single unit in an optimal fashion. Experimental results verified that triaxial sensor 

configurations produced by the triaxial EfI technique consistently produced larger FIM 

determinants than configurations generated by expanding uniaxial EfI results. 

Generally, the underlying idea of the conventional optimization formulation is to identify a 

sensor layout that could maximize some performance measure (optimal criteria), such as target 

mode signal strength or linear independence. However, this kind of sensor placement strategy 

doesn’t consider the ill-posed of modal matrix which may cause the solving infeasible. In this 
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paper, a new strategy is presented based upon the triaxial EfI for the design of a multi-dimensional 

sensor system that renders the corresponding target mode shape partitions as linearly independent 

as possible and, at the same time, maintains the stability of the modal matrix in the iteration 

process. The remainder of this paper is organized as follows. Section 2 deliveres the main feature 

and detailed implementation steps of the proposed method. Section 3 gives the optimization 

criteria used for sensors locations. Section 4 outlines the computing model of the Canton Tower.  

Section 5 shows the comprehensive evaluation of this novel method for the OSP in the Canton 

Tower. Finally, some conclusions are drawn in Section 6. 

 

 

2. Multi-dimensional sensor placement method 
 

Ambient excitations not only induce a vibration response of a structure in both the longitudinal 

and transversal directions, but also produce torsional effects which are more complex to be 

detected during full-scale experimental tests. These torsional effects are mainly due to the fact that 

the center of mass does not coincide with the stiffness center of the building. Thus, to detect the 

environmental-induced effects, the sensors placement on the structure must be designed in order to 

identify a preferable topology (i.e., combination and locations of the sensors) able to provide 

information on the horizontal and torsional response. In general, candidate nodes have six 

associated degrees of freedom (DOF), three translations and three rotations. However, the vertical 

displacement is much less than the two horizontal displacements for the high-rise structures, and 

thus the DOF of vertical translation is disregarded for each node in the computing model. This 

paper considers this case and the goal of the work presented here is to reformulate the EfI such that 

candidate sensor directions can be deleted by node and the stability of the modal matrix in the 

iteration process can be maintained. 

The mathematical background and implicit assumptions made in the triaxial EfI method are 

adopted and extended here (Kammer and Tinker 2004, Kammer 2005). Instead of a candidate set 

of sensor locations, a candidate set of nodes with triaxes is chosen. Thus the FIM can be 

decomposed into the contributions from each candidate set of nodes with 5 DOFs in the form 

5 5 5 5 5

1 1

n nn n
T T

i i i

i i

Q Q 
 

                                  (1) 

where, Q  is termed as the FIM; 5  stands for the modal matrix, i.e., 

5 [ , , , , ]x y yz xz xy       , 
x  and y  are two translations, yz , xz , and xy  represent 

three rotations in yz , xz  and xy , respectively； 5i  means the target modal matrix partitioned to 

the five rows corresponding to the thi  node; nn  denotes the number of candidate nodes. 

The new FIM with the thi  node deleted can be written as 

5 1

5 5 5 5 5[ ]i T T

i i i iQ Q Q I Q                                 (2) 

where, 5I  is a five dimensional identity matrix. 

   The determinant of the FIM with the thi  node removed can be written as 

         5 1

5 5 5 5 5det det det det deti T

i i iQ Q I Q Q I E                        (3) 
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in which 

1 1 1 1 1

5 1 5 1 5 1 5 2 5 1 5 3 5 1 5 4 5 1 5 5

1 1 1 1 1

5 2 5 1 5 2 5 2 5 2 5 3 5 2 5 4 5 2 5 5

1 1 1 1 1 1

5 5 5 5 3 5 1 5 3 5 2 5 3 5 3 5 3 5 4 5 3 5 5

5 4

T T T T

i i i i i i i i i i

T T T T T

i i i i i i i i i i

T T T T T T

i i i i i i i i i i i i i

i

Q Q Q Q Q

Q Q Q Q Q

E Q Q Q Q Q Q

Q

         

         

           



    

    

     



 

1 1 1 1 1

5 1 5 4 5 2 5 4 5 3 5 4 5 4 5 4 5 5

1 1 1 1 1

5 5 5 1 5 5 5 2 5 5 5 3 5 5 5 4 5 5 5 5

T T T T T

i i i i i i i i i

T T T T T

i i i i i i i i i i

Q Q Q Q

Q Q Q Q Q

        

         

   

    

 
 
 
 
 
 
 
  

             (4) 

where, 
5iE  is a 55  fully populated matrix containing the EfI values of the individual sensors 

corresponding to the thi  node on the diagonal; 5ir means the thr  row from the target mode 

partition corresponding to the thi  node. 

Note that the determinant of 5iQ reduces to zero and the target modes are no longer 

independent when E5i possesses an eigenvalue is equal to 1. This indicates that the thi  node is 

vital to the independence of the target modes. Thereby, at least one of the five DOFs associated 

with the thi  node must have an EfI value of 1.0. Without loss of generality, let the first DOF from 

the thi  node be critical to the independence of the target modes. The (1,1) term in E5i gives the 

corresponding EfI value as follows 

1

5 1 5 1 1T

i iQ                                 (5) 

Premultiplying both sides of Eq. (5) by 5 1

T

i  produces 

1

5 1 5 1 5 1 1 5 1 5 1

T T T T

i i i i i iQ P                               (6) 

  In which 

1

1 5 1 5 1

T

i i iP Q                                (7) 

5 5

5 5 5 5 5

1 1 1 1

n nn n
T T

ir ir ir

i r i r

Q Q  
   

                          (8) 

5 5 5

T

ir ir irQ                                 (9) 

  Premultiplying Q  by 
1iP  produces 

1

1 5 1 5 1 5 1 5 1 5 1

T T

i i i i i iP Q Q Q Q                          (10) 

In Eq. (10), the 
1iP Q  can be expanded as follows 

5 5

1 1 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 1 5

1 1 1 1

n nn n

i i ir i i i i i i i i i i i jr

i r j j i r

P Q P Q P Q P Q P Q P Q P Q P Q
    

                (11) 

  In which 

                             1

1 5 1 5 1 5 1 5 1 5 1

T T

i i i i i iP Q Q                             (12) 
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The Eq. (12) can be simplified by Eq. (5) as follows 

1 5 1 5 1 5 1 5 1

T

i i i i iP Q Q                             (13) 

Thus, from Eqs. (13) and (11) can be further transformed into the form 

5 5

1 5 5 1 1 5 2 1 5 3 1 5 4 1 5 5 1 5 5 1

1 1 1 1

n nn n

i ir i i i i i i i i i i jr i

i r j j i r

P Q Q Q P Q P Q P Q P Q P Q Q
    

                  (14) 

   i.e. 

             
5

1 5 2 1 5 3 1 5 4 1 5 5 1 5

1 1

0
nn

i i i i i i i i i jr

j j i r

P Q P Q P Q P Q P Q
  

                    (15) 

According to the matrix theory, matrices 
1iP  and 5 jrQ  are positively semidefinite, therefore, 

their product is also positively semidefinite. The individual terms in the sum of Eq. (13) must then 

vanish. Specifically 

              
1 5 0i irP Q       2 , 3 , 4 , 5r                         (16) 

The Eq. (16) can be further transformed into the form 

                    1

1 5 5 1 5 1 5 1 5 5 1 5 1 5 10T T T T

i i r i i i i r i i r iP Q a              2,3,4,5r             (17) 

In which 

1

1

T

r si sira Q      2 , 3 , 4 , 5r                        (18) 

From Eq. (18), it can be found that 
ra  is a constant. To ensure Eq. (17) established, the 

coefficients of the matrix should always be 0, thus 0ra  . 

The form of 
5iE  reduces to 

 

1 1 1 1

2 2 2 3 2 4 2 5

1 1 1 1 1

5 5 5 3 2 3 3 3 4 3 5

1 1 1 1

4 2 4 3 4 4 4 5

1 1 1

5 2 5 3 5

1 0 0 0 0

0

0

0

0

T T T T

si si si si si si si si

T T T T T

i i i si si si si si si si si

T T T T

si si si si si si si si

T T

si si si si si

Q Q Q Q

E Q Q Q Q Q

Q Q Q Q

Q Q Q

       

         

       

     

   

    

   

  

 

1

4 5 5

T T

si si siQ 

 
 
 
 
 
 
 
  

              (19) 

which obviously has an eigenvalue of 1.0. 

Therefore, if one of the sensor directions associated with the thi  node is vital to the 

independence of the target modes, 
5iE  has an eigenvalue of 1.0 and the determinant of 5 5- iI E  

becomes zero. The FIM Q  is positively definite, while 5iQ  is at least positively semidefinite. 

The expression 1

5 5

T

k i iI Q    must then be at least positively semidefinite. The eigenvalues of 
1

5 5

T

k i iI Q    can be expressed in the form 
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   1 1

5 5 5 51T T

k i i i iI Q Q                               (20) 

The sign definiteness of 1

5 5

T

k i iI Q    then requires that  1

5 5 1T

i iQ    . Based on its form, 

1

5 5

T

i iQ    is also positively semidefinite. Therefore, the eigenvalues of 1

5 5

T

i iQ    must satisfy the 

inequality 

 1

5 50 1T

i iQ                                (21) 

which then implies that 

    1

5 50 1T

k i iI Q                              (22) 

Using this result, Eq. (3) indicates that the range on the determinant of 
5 5iI E  is given by 

                   5 50 det 1iI E                              (23) 

The five dimensional EfI measure (i.e., EfI5i
) is then given by the expression 

5 5EfI5 1 det( )i iI E      0 E f I 5 1i                      (24) 

   As known, the sensitivity of the structural responses means the sensitivity extent of the 

structural responses by the performance measure which reflects certain performance of the 

structures. The robustness of the system is the characteristic of maintaining certain performance 

under certain perturbations. In the optimal sensor placement, this “robustness” shows the stability 

of the performance measure in the search process of most advantageous sensor measuring points. 

Generally, the underlying idea of the conventional OSP is to identify a sensor layout that could 

maximize some performance measure, such as the effective independence coefficients in the EfI. 

However, with the ability to detect and discriminate relevant data features increase, the system 

robustness may be decreased. That is to say, the objectives of structural responses’ sensitivity and 

system robustness have certain contradiction. Thus, to establish a judicious method for sensor 

placement, the structural response sensitivity and system robustness should be comprehensively 

considered. Unfortunately, the above derivation doesn’t incorporate any system robustness for 

ill-posed of modal matrix which may cause the solution infeasible. 

   Sensor placement belongs to a kind of inverse problems in engineering. In these one often has 

to solve operator equations of the first kind, which are usually ill-posed. It means that the hardest 

issue in the numerical computation of inverse problems is the instability of the solution with 

respect to the noise from the observation data; that is, small perturbations of the observation data 

may lead to large changes on the considered solution. Thus to ensure a feasible and stable 

numerical approximation solution, it is necessary adopting some appropriate strategies that can 

keep the system robust. 

 The operator equations of the first kind can be expressed as 

                              A x y    x F , y D                          (25) 

where, A  is the integral operators, or differential operator, or matrix; F  denotes the parameter 

space and D  means the observation space. 
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The vector of the measured structural responses denoted by 
sy  can be estimated as a 

combination of N  mode shapes through the following expression 

1

N

s i i

i

y q q  


                               (26) 

where,   is the matrix of FE model target mode shapes; q  denotes the coefficient response 

vector;   represents the sensor noise vector, which could be assumed stationary Gaussian white 

noise variance 2 ; N  means the column number of   ( n  by N  matrix, n  being the 

number of the candidate sensor positions) and 
i  stands for the thi  column of   that is the 

thi  target mode shape selected. 

By comparing the Eqs. (25) and (26), it can be easily found that A  is equivalent to  . The 

condition number is a measure of stability or sensitivity of a matrix to numerical operations. 

Matrices with condition numbers near 1 are said to be well-conditioned. Matrices with condition 

numbers much greater than one are said to be ill-conditioned. Thus, the quality of system 

robustness can be measured by the condition number of the FIM corresponding to the target modal 

partitions. Known by the matrix theory, the condition number of the   is larger, the estimation 

error of the q  is larger, accordingly the monitoring results of the located sensors are worse. 

The 2-norm condition number of   can be expressed as 

 
 
 

max1

2 2 2
min

T

T
cond






 

    
 

                       (27) 

where, 
max  and 

min  are maximal and minimal eigenvalues T  , respectively. 

By getting the eigenvalues of the conjugate matrix of the modal matrix, the corresponding 

singular values as well as the condition number and the norm of the matrix can be obtained. Thus, 

the relationship between the 2-norm condition number and 2-norm can be established by the 

singular value decomposition of the matrix. 

The 2-norm of   can be expressed as 

  2

max 12

T                              (28) 

The singular value decomposition of matrix   can be expressed as 

TU V                                 (29) 

where, 1

2

0
0
  
  

; 
1 1 2.( ... )rdiag     (

1 2. ... r    ) and 
2 0  . 

   The singular value of matrix   is 

 T

i i                               (30) 

where, r  is the number of nonzero eigenvalues, 1,2,...i r . 

    According to Eqs. (30) and (27) can be written as 

  1
2

r

cond



                            (31) 
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As well known in matrix analysis theory, different matrix norms are equivalent in the sense that 

one norm can be always bounded in a range by another norm with appropriate constant scaling 

factors. The trace, the determinant and the maximum singular value are just different norms of a 

matrix (Golub and Van 1996). Therefore, 
5iE  matrix and 2-norm of   are the same in essence.  

It can be remarked from Eqs. (28) and (31) that the 2-norm condition number of   may not 

be able to obtain the maximum value when the 2-norm of   gets the maximum value. However, 

the procedure for selecting the best sensor placements usually required by the condition number is 

minimized while the FIM is maximized. 

Owing to the FIM and condition number equally important for the sensor placement, a new 

method considering the coordination of sensitivity and robustness is given here. 

 2

1
EfI5 EfI5new

i i

icond
 


                         (32) 

where, 
i  is the modal matrix after thi  node deleted in  . 

Since the order of magnitude for  2 icond   is about 910 ,  21/ icond   is nearly 0 and the 

range of values for the EfI5i
 of EfI5 new

i  is 0 to 1. To better express the coordination between 

them, the condition number is transferred as follows 

                  i

i

z z

z z




 





                               (33) 

where, 
iz  is the value of  2 icond   after the thi  deleted; z  and z are the maximum and 

minimum, respectively. 

From Eq. (33), the value of   changes from 0 to 1 and has the same order of magnitude with 

EfI5i
, which means the sensitivity and robustness can be better coordinated. Thus, the Eq. (32) can 

be written as 

EfI5 EfI5new

i i i                            (34) 

Outline of the proposed method is as follows: 

Step (1): Carry out the modal analysis and determine the number of mode shapes needed to be 

selected; 

Step (2): Calculate the FIM Q  and EfI5i
 by Eqs. (1) and (24), respectively;  

Step (3): Carry out loop calculations in candidates nodes to obtain the  2 icond   and then 

calculate the i  by Eq. (33); 

Step (4): Calculate the EfI5 new

i  by Eq. (34) and sort them from largest to smallest, and delete 

the smallest one; 

Step (5): Update the modal matrix, repeat Step (2) to Step (4) until the number of sensors 

needing to be placed on the building has been reached. 

What need to be mentioned is that the proposed method can be easily generalized to the other 

case, such as two dimensions which mean only the translational DOFs are considered for possible 

sensor installation. 
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3. Formulation of computing model 
 

The proposed method is applied and compared with standard approaches on the Canton Tower 

(Fig. 1(a)) to demonstrate its effectiveness. 

 

3.1. Formulation of five-dimensional FE model 
 
In order to provide input data for the proposed method, a FE model of the tower should be built 

first. Here, a fine three-dimensional FE model of the Canton Tower constructed of by Lin et al. 

(2010) using the ANSYS software (ANSYS, Inc., Canonsburg, PA, USA) is adopted, as shown in 

Fig. 1(b). The 3D full-order model contains 122,476 elements, 84,370 nodes, and 505,164 DOFs in 

total. In the model, the PIPE16 and BEAM44 are employed to model the outer structure, antenna 

mast, and connection girders between inner and outer structures. Four-node and three-node shell 

elements with six DOFs at each node are used to model the shear walls of the inner structure and 

the floor decks. It’s clear that the computational run-time will be long to carry out modal analysis 

for an FE model involving 505,164 DOFs. To facilitate the model analysis and other model-related 

studies, an equivalent reduced-order FE model is also formulated by Lin et al. as depicted in and 

Fig. 1(c). In the reduced-order model, the whole structure is characterized by 37 beam elements, 

with 27 elements for the main tower and 10 elements for the antenna mast. Since the vertical 

displacement is disregarded, as a result, each node has two horizontally translational DOFs and 

three rotational DOFs, and the reduced-order model has a total of 185 unconstrained DOFs. 
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Fig.1 The Canton Tower and its computing model 
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3.2. Formulation of two-dimensional FE model 
 

In some cases, only translational DOFs could be considered for possible sensor installation as 

rotational DOFs may be difficult to measure. Thus, the five-dimensional FE model should be 

reduced again. A thought of taking the horizontal DOF as the master DOF and rotational DOF as 

the slave DOF, and reducing the slave DOF by the model reduction is implemented by Yi et al. 

(2011). According to the analytical results in reference [5], the Iterated Improved Reduced System 

(IIRS) (Friswell et al. 1995) method is adopted here due to its faster convergence and higher 

accuracy. Fig. 1(d) demonstrates the two-dimensional FE model of the Canton Tower. 

 

 

4. Objective function 
 

It should be noted that an objective function stresses one perspective whereas another pays 

more attention to another aspect. That means the effectiveness of a certain sensor placement 

method depends on the evaluation criteria to some extent. Thus, compromises of several objective 

functions need to be made to verify the effectiveness of the proposed method. In this section, three 

influential criteria are selected both from historical points of view and from their impacts on 

practices and the development of sensor placement theory. 

Objective function (1): MAC 

The first is the biggest value in all the off-diagonal elements in the MAC matrix. The reason for 

the selection of these fitness functions is that the MAC matrix will be diagonal for an optimal 

sensor placement strategy so that the size of the off-diagonal elements can be taken as an 

indication of the fitness. 

 1=max MACij
i j

f
                              (35) 

Objective function (2): Determinant value of the FIM 

Maximizing FIM would lead to the minimization of the covariance matrix and, thus, the best 

state estimate the vector of target modal coordinates from the perspective of statistics. According 

to the Fedorov’s study (1972), the determinant value of the FIM for the best linear estimate is 

largest for all linear unbiased estimators. However, the determinant value is sometimes very small. 

In order to highlight the effectiveness of the proposed method, the ratio of the determinant value of 

the FIM is adopted here. 

2

1

(FIM)

(FIM)

iDet
f

Det


                              (36) 

where, Det(FIM)i means the determinant of the FIM after the ith node deleted and Det(FIM)1 

denotes the determinant of the original FIM. 

Objective function (3): Condition number value of the FIM 

The quality of system robustness can be measured by the condition number value of the FIM 

corresponding to the target modal partitions, which directly respects the extent of linear 

dependence between mode shape vectors. The smaller the condition number is, the better the linear 

dependence will be. 
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 3 =min (FIM)f cond
                            (37) 

 

 

  

(a) EfI2 (b) EfI2new 

Fig. 2 MAC values obtained by EfI2 and EfI2new 

 

 
5. Comparative studies with different methods 
 

To show the performance improvement achieved by the proposed method, two cases are carried 

out and their features are compared. Wang et al. (2007) analyzed the dynamic characteristics of the 

Canton Tower by the ANSYS software; he found that at least 10 modes should be considered 

according to the modal mass participation ratio when the vibration response of the structure was 

investigated. In order to improve the results of optimal sensor layout, the first 50 modes of the 

Canton Tower are selected to calculate. Here, it’s assumed that the number of sensors needing to 

be placed on the building is 25 and thus optimal location is the target of this paper. For simplicity, 

the original method in 2 and 5 dimensional proposed by Kimmer are termed the EfI2 and EfI5, 

respectively; and the paper proposed method in 2 and 5 dimensional are termed as the EfI2new 

and EfI5new, respectively.  

Case (1): EfI2 and EfI2new are compared 

Figs. 2(a) and 2(b) demonstrate the MAC values obtained by the EfI2 and EfI2new, 

respectively, using the first objective function. A close look at the results presented in Fig. 2 

indicates that two methods are little similar from the intuitive. Therefore, in order to highlight the 

effectiveness of the proposed method, another figure is plotted in each of the modes (Fig. 3). It is 

evident from Fig. 3 that all of the maximum MAC off-diagonal values obtained by the EfI2new in 

each of the modes are smaller than EfI2 method, which means the proposed method is superior to 

the original EfI method in keep the linear independence of the modal vectors. 

Fig. 4 compares the ratio of determinant values for each of the truncation analyses over the 12 

iterations. In this case the method of EfI2new clearly maintains larger values than the EfI2 method 

although two curves are close to each other, which implies using the proposed method could 

results in a sensor configuration possessing a smaller estimate error covariance matrix yielding 

better state estimates. However, what need points out is that with the iteration increased (especially 

after 5 iterations), the values become more and more small which reflect the FIM gradually 
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become ill-conditioned. The reason for such phenomenon is that the removal of more and more 

additional sensors would render the target modal partitions dependent. 

Results for the condition number of FIM are presented in Fig. 5. It’s clearly that the method of 

EfI2new could yields a configuration with a much smaller condition number than the 

corresponding EfI2 configuration, which results in less sensitivity in the estimates to analytical 

modeling error. Also, the condition number resulting form the EfI2new method seems to be much 

more stable and predictable than the condition number resulting from sensor truncation based on 

the EfI2 method that can be easily verified by Fig. 5. As illustrated in Fig. 5, after 10 iterations the 

condition number obtained by the EfI2 method become dramatically instable while the proposed 

method can always remain stable. The sensor locations retained in the final set of 25 obtained by 

the EfI2new method are listed in Table 1. 

 

 

 

Fig. 3 Maximum MAC off-diagonal value in each of the modes 

 

 

  
Fig. 4 Variation curves of the ratio of determinant 

values of the FIM with the iteration 

increased 

Fig. 5 Variation curves of the condition number 

values of the FIM with the iteration 

increased 
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Table 1 Sensor configuration of the Canton Tower obtained by EfI2new method 

Sensor number 1 2 3 4 5 6 7 8 9 10 11 12 13 

Node number 1 2 5 7 8 9 10 12 13 14 15 16 17 

Sensor number 14 15 16 17 18 19 20 21 22 23 24 25  

Node number 18 19 20 24 26 27 29 30 31 33 35 36  

 

 

  

(a) EfI5 (b) EfI5new 

Fig. 6 MAC values obtained by EfI5 and EfI5new 

 

 

 

Fig.7 Maximum MAC off-diagonal value in each of the modes 
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Case (2): EfI5 and EfI5new are compared 

Further to demonstrate the effectiveness of the proposed method, the maximum MAC 

off-diagonal values obtained by the EfI5 and EfI5new methods are compared each other in Fig. 6 

and Fig. 7, respectively. Note that the use of EfI5new method yields slightly better results although 

the values closely approximate the results derived from truncating the sensor locations based on 

the EfI5 method. The ratio of determinant values is also monitored during the iteration sequence to 

track the goodness of the selected sensor sets in Fig. 8. In this case, the results derived from 

EfI5new method come close to duplicating but outperforms these results for the EfI5new method. 

While compared condition numbers with each other in Fig. 9, the performance of the EfI5new 

method is found to be of the better performance as expected. Accordingly, the sensor locations 

retained in the final set of 25 obtained by EfI52new method are listed in Table 2. 

 

 

  
Fig. 8 Variation curves of the ratio of determinant 

value of the FIM with the iteration increased 

Fig. 9 Variation curves of the condition number 

values of the FIM with the iteration 

increased 

 

 
Table 2 Sensor configuration of the Canton Tower obtained by EfI5new method 

Sensor number 1 2 3 4 5 6 7 8 9 10 11 12 13 

Node number 1 3 5 7 8 9 10 12 13 14 15 16 17 

Sensor number 14 15 16 17 18 19 20 21 22 23 24 25  

Node number 19 20 24 25 27 28 29 31 33 35 36 37  

 

 

6. Conclusions 

 
Considering the characteristics of the OSP techniques in the high-rise structures, this paper 

presents an effective method for the optimal design of SHM system sensor arrays. The 

state-of-the-practice is to select individual sensor locations that could maximize some performance 

measure, such as target mode signal strength or linear independence. However, this kind of sensor 
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placement strategy doesn’t consider the ill-posed of modal matrix which may cause the solving 

infeasible. The proposed method based upon the triaxial EfI for the design of a multi-dimensional 

sensor system that could render the corresponding target mode shape partitions as linearly 

independent as possible and, at the same time, maintains the stability of the modal matrix in the 

iteration process. The method for ranking sensor locations presented in this paper was applied to 

locate sensors for structural health monitoring of the Canton Tower. For demonstration purposes, 

three influential criteria are selected and two cases are carried out to show the performance 

improvement achieved by the proposed method. Numerical investigations suggest that the 

proposed method outperforms the original EfI method in all instances as expected, which is 

expected to be even more pronounced should it be used for other multi-dimensional optimization 

problems. In addition, it is important to note that the proposed method in its present form does not 

determine how many sensors are required to identify the target modes in the presence of sensor 

noise, high modal density, and sensor failure. The number of sensors required to guarantee 

identification of the target modes is a subject of further research. 
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