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Abstract.  In this paper, a simplified planar model is developed for damage estimation of interlocked 
caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the 
basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only 
the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is 
connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model‟s vibration 
analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the 
simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing 
damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson 
system. 
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1. Introduction 
 

Caisson structures are usually designed for gravity-type breakwaters on foundation mounds.  

Over the last decades, severe failure events of caisson breakwaters have been reported from Japan, 

Italy, Spain, and Chile (Oumeraci 1994). Despite considerable lessons that have been learned from 

those failure events (Franco 1994, Oumeraci 1994, Tanimoto and Takahashi 1994), the structural 

failures have been observed in recent years (Maddrell 2005, Taro 2012). Meanwhile, structural 

health monitoring (SHM) has become the key to ensure the safety and serviceability of caisson 

breakwater systems. The adequate assessment of the structural safety and performance is 

prerequisite to estimate the failure probabilities for the design and maintenance of the breakwater 

system (Oumeraci et al. 2001). 

Up to now, vibration-based damage monitoring for civil structures has been widely studied via 

examining the change in measured vibration response (Doebling et al. 1996, Sohn et al. 2003).  

The problems concerned with structural damage detection, localization and characterization can be 

solved by damage detection theories such as modal sensitivity method, modal flexibility method, 
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genetic algorithm, and artificial neural network (Wu et al. 1992, Pandey and Biswas 1994, Kim 

and Stubbs 1995, Yun and Bahng 2000, Chou and Ghaboussi 2001, Koo et al. 2009, Park et al. 

2009). Also, many sensor systems have been proposed for vibration-based SHM of civil structures.  

However, most of SHM systems have been applied to inland structures such as bridges and 

buildings (Wong 2004, Glisic et al. 2005, Jang et al. 2010, Ho et al. 2012). Many challenges still 

remain to develop efficient SHM systems for offshore structures such as breakwaters. 

Over the past three decades, many researchers have investigated global structural failures of 

caisson-type breakwaters such as overturning, sliding or settlement by numerical analyses as well 

as experimental model tests (Yamamoto et al. 1981, Kobayashi et al. 1987, Sekiguchi and Ohmaki 

1992, Sekiguchi and Kobayashi 1994). A few researchers have analyzed vibration responses of 

coastal structures considering soil-structure or fluid-soil-structure interactions (Yang et al. 2001, 

Kim et al. 2005). Recently, a few researchers have attempted to monitor the health status of 

caisson structures using changes in modal parameters (Park et al. 2011, Lee et al. 2011, 2012, 

Yoon et al. 2012). Those studies have mostly concentrated on mono-caisson systems which have 

potential damage in structure-foundation interface. For damage assessment in a real caisson 

breakwater, the following main issues should be considered: (1) the submerged condition of the 

coastal structure limits the accessibility for vibration measurement; and (2) the harbor caisson 

system consists of multiple caisson segments which are normally interconnected with each other 

by shear-keys to resist against the incident wave force acting perpendicular to the front wall. 

In this study, a simplified planar model is presented to estimate damage in the interlocked 

caisson system. Firstly, a conceptual dynamic model of the interlocked caisson system is designed 

on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot 

model allowing only the sway motion is formulated. To represent the condition of interlocking 

mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, 

the accuracy of the planar model concept for vibration analysis is numerically evaluated on a 3-D 

FE model of interlocked caissons. Finally, the simplified model is employed to estimate damage in 

the caisson system. A damage detection method based on modal strain energy is formulated to 

localize damage in the caisson system. 

 

 

2. Planar model of interlocked caissons 
 

2.1 Equations of motion 
 

As shown in Fig. 1, the caisson system is subjected to an impulsive breaking wave force that 

results in forced vibration responses.  Since the wave action is usually perpendicular to the 

caisson array axis (i.e., x-direction), the vibration in the impact direction (i.e., y-direction) is 

relatively larger than other directions (Lee et al. 2011, 2012, Yoon et al. 2012). Therefore, only the 

sway motion of caissons (i.e., y-direction) is taken into account in this study. Based on a few 

existing simplified models (Smirnov and Moroz 1983, Marinski and Oumeraci 1992, Goda 1994, 

Oumeraci and Kortenhaus 1994, Vink 1997), a planar model of three interlocked caissons is 

proposed as shown in Fig. 2. In the simplified model, caissons are treated as rigid bodies on elastic 

half-space foundations which can be described via the horizontal springs and dashpots. To 

represent the condition of interlocking mechanism, springs and dashpots are also simulated 

between adjacent caissons.  

By equating to the equilibrium conditions of the free-body diagrams of caissons (see Fig. 2), 
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the sway motion can be formulated in matrix form as 
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where mj is the total horizontal mass of the j
th
 caisson; kFj and cFj separately represent the 

horizontal spring and dashpot of the j
th
 caisson‟s foundation (j=1-3); kFj and cFj, respectively, 

represent the horizontal spring and dashpot of the k
th
 shear-key connection (k=1-4); jjj uuu  and , 

are, respectively, the horizontal acceleration, velocity and displacement of the j
th
 caisson; and Pj(t) 

is the external force placed at the center of gravity of the j
th
 caisson. 

 

 

 

Fig. 1 A caisson system of three units 

 

 

 

Fig. 2 Simplified dynamic model of three interlocked caissons 
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2.2 Determination of structural parameters 
 

2.2.1 Mass parameter 
When the caisson is oscillated by an impact load, the surrounding media (i.e., soil and water) 

are forced to move with the structure. Therefore, the total horizontal mass of the j
th
 caisson (mj) 

includes not only the mass of the caisson (m
cai

j) but also the horizontal hydrodynamic (m
hyd

j) and 

the horizontal geodynamic masses (m
geo

j) as follows 

cai hyd geo

j j j jm m m m                            (2) 

For calculating the horizontal hydrodynamic mass, the equation presented by Oumeraci and 

Kortenhaus (1994) is used 

20.543hyd

j j w wm L H                            (3) 

in which the quantities Lj and Hw represent the j
th
 caisson‟s length and the water level, as shown in 

Fig. 1; and the quantity w is the mass density of sea water. 

According to Richart et al. (1970), the horizontal geodynamic mass can be computed as 

)2/(76.0

2/3

v
LB

m
jj

s
geo
j 
















                     (4) 

where s and  are respectively the mass density and Poisson‟s ratio of the foundation soil; and Bj 

is the j
th
 caisson‟s width, as sketched in Fig. 1. 

 

2.2.2 Stiffness parameter 
It is commonly accepted in geotechnical engineering that the horizontal spring constant (kFj) of 

the elastic foundation is the function of the horizontal modulus of subgrade reaction (b) as, the j
th
 

caisson width (Bj) and length (Lj), follows 

jjFj BbLk                                  (5) 

The modulus of subgrade reaction of various soil types, which has the unit of pressure per 

length, can be found in literature by Bowles (1996). The same formulas have also been adopted by 

Goda (1994) and Vink (1997).  

Unlike the foundation mound, the theoretical basis for determination of the shear-keys‟ stiffness 

is weaker since it depends on the linking capacity between contacted units in the real caisson 

breakwater (Lamberti and Martinelli 1998, Oumeraci et al. 2001). Normally, caisson segments are 

designed with the uniform linking capacity, where kS2 = kS3. Since the rest of caisson array is not 

represented in the planar model, the stiffness of the last shear-keys (i.e., kS1 and kS4) is smaller than 

that of the middle shear-keys (i.e., kS2 and kS3). This condition can be expressed as: 

1 4 2 3S S S Sk k ak ak                           (6) 

where a is an empirical value ranging from 0 to 1 (Lamberti and Martinelli 1998). In computation, 

the stiffness parameters are obtained by adjusting the vibration responses of the simplified model 

to fit those of the 3-D FE model. 
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2.2.3 Damping parameter 
In this study, the Rayleigh damping, which is often used in the dynamic mathematical model, is 

used to simulate the energy dissipation in the caisson system. The Rayleigh damping is assumed to 

be proportional to the mass and stiffness matrices (Wilson 2004) 

     KMC                                 (7) 

in which  is the mass-proportional damping coefficient; and  is the stiffness-proportional 

damping coefficient. Due to the orthogonality conditions of the mass and stiffness matrices, this 

equation can be rewritten as 

1

2 2

n
n

n


  


                              (8) 

where n is the critical-damping ratio for mode n; and n is the n
th
 natural frequency. 

If the damping ratios (e.g., i and j) corresponding to two specific frequencies (e.g., i and j) 

are known, the two Rayleigh damping factors (i.e.,  and ) can be evaluated from the following 

equation 
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                         (9) 

When damping ratios for both frequencies are set to an equal value, i = j = , the Rayleigh 

damping factors are calculated as (Wilson 2004) 

ji 







2
       and         ji                 (10) 

 

 
3. Validation of planar model for vibration analysis 
 

3.1 Target caisson structure 
 

A lab-scaled caisson system consisting of three concrete caisson modules (i.e., Caisson 1, 

Caisson 2 and Caisson 3) was chosen as the target caisson structure. The geometry of the target 

caisson-type breakwater is sketched in Fig. 3. As shown in the figure, caissons are designed with 

shear-key connections to prevent them from shear motions. The caissons are filled with sand and 

covered by concrete caps with the thickness of 0.06 m. The width, height and length of a caisson 

unit are 0.34 m, 0.4 m and 0.34 m, respectively. The foundation consists of a 0.08 m thick mound 

of medium-dense sand and a 0.02m thick layer of medium gravel. The whole caisson system is 

placed on the sea bed of dense sand. The water depth measured from the sea bed at both sides of 

the caisson system is 0.44 m. 
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Fig. 3 Geometry of target caisson structure 
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Simplified planar model for damage estimation of interlocked caisson system 

A 28-day compressive strength of 28 MPa, an elastic modulus of 24 GPa and a Poisson‟s ratio 

of 0.2 are designed for concrete caissons.  For foundation soils (i.e., medium-dense sand and 

medium gravel), soil parameters are selected according to the geotechnical engineering handbook 

by Look (2007). The material properties of the target caisson structure are provided in Table 1. 

 
 

Table 1 Material properties of target caisson structure 

 
Concrete Medium-dense sand Medium gravel 

Mass density (kg/m
3
) 2400 2000 2100 

Elastic modulus (MPa) 24000 30 50 

Poisson's ratio 0.2 0.325 0.3 

 

 

(a) 3-D FE model 
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(b) Interlocking conditions 
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(c) Boundary conditions 

Fig. 4 3-D FE model of target caisson structure 

447



 

 

 

 

 

 

Thanh-Canh Huynh, So-Young Lee, Jeong-Tae Kim, Woo-Sun Park and Sang-Hun Han 

3.2 3-D FE analysis of target caisson structure 
 
3.2.1 3-D FE Model 
A 3-D FE model of the target caisson structure is simulated using SAP2000 software as shown 

in Fig. 4(a). In the 3-D FE model, the elastic characteristic of the sea bed (dense sand) is described 

by an area spring system (see Fig. 4(c)). According to the previous experimental studies on 

foundation analysis by Bowles (1996), the spring constant for dense sand is recommended to be 64 

to 128 MN/m/m
2
. Therefore, 96 MN/m/m

2
 is selected for the spring constant of the sea bed. The 

interlocking condition is simulated by y-directional 1-D links at the shear-keys, as shown in Fig. 

4(b). In this study, the stiffness of links is assumed to be 25 MN/m/m
2
. Due to additional 

hydrodynamic damping effects, the damping ratios of caisson breakwaters are relatively higher 

than those of general concrete structures (e.g., 3%). In the previous experimental studies by Gao et 

al. (1988), the damping ratios of real caisson structures were found to be 3.2-7.5%. Hence, 5% of 

the damping ratio is assumed for all modes in the 3-D FE model. 

To simulate the submerged condition of the target caisson structure, the effective mass of sea 

water (Mw) is added to the 3-D numerical model, as shown in Fig. 4(c). The added mass of sea 

water is calculated by Westergaard‟s hydrodynamic water pressure equation (Westergaard 1933) as 

follows 

dhhHM ww

h

h
w . 

8

72

1

                            (11) 

where Mw is the hydrodynamic mass; w is the water density; Hw and h are the depth from water 

level to the foundation and that to the action point of hydrodynamic pressure, respectively. It 

should be noted that Eq. (3) is a simplified form of Eq. (11) when h1 = 0 and h2 = Hw. 

In order to obtain vibration responses of the caisson system, forced vibration analysis is 

designed considering limited accessibilities. An impact force, which has corresponding direction 

of incident wave (i.e., y-direction), is applied perpendicularly to the front wall of Caisson 2 as 

denoted in Fig. 5. The impact force is assumed to be a half sine function with 10N-power and 

0.01s-duration. The y-directional acceleration responses are measured at nine points (i.e., 1-9) on 

the top of the caisson caps as shown in Fig. 5. The sampling frequency is set as 1 kHz. 

 

 

 

Fig. 5 Impact excitation and acceleration acquisition points 

448



 

 

 

 

 

 

Simplified planar model for damage estimation of interlocked caisson system 

Fig. 6 shows acceleration signals in y-direction of points 2, 5 and 8. It is observed that the 

vibration of Caisson 2 is propagated into Caisson 1 and Caisson 3. However, the vibration 

amplitude of the unexcited caisson are only about a half of that of the excited one. This implies 

that a certain amount of energy is apparently subtracted from the excited caisson by wave 

propagation along the caisson system. This observation is similar to previous experimental studies 

reported by Lamberti and Martinelli (1998). 

 

 

  

(a) Point 2 (Caisson 1) (b) Point 5 (Caisson 2 

 

(c) Point 8 (Caisson 3) 

Fig. 6 Y-directional acceleration signals of 3-D FE model 

 

 

3.2.2 Vibration modal analysis 
The frequency domain decomposition (FDD) method (Otte et al. 1990, Yi and Yun 2004) is 

used to extract modal parameters such as natural frequency and mode shape. The singular values 

of the power spectral density (PSD) function matrix S() are used to estimate the natural 

frequencies instead of the PSD functions themselves as follows 

)()()()(  VUS T                           (12) 

where  is the diagonal matrix consisting of the singular values (i‟s) and U and V are unitary 

matrices. Since S() is symmetric, U becomes equal to V. In the FDD method, the natural 
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frequencies can be determined from the peak frequencies of the singular value, and the mode 

shape from anyone of the column vectors of U() at the corresponding peak frequencies.  

Generally, the first singular value 1() among i‟s (i=1,…, N) is used to estimate the modal 

parameters except in some special cases such as with two or more identical excitations. 

 

 

Fig. 7 Singular values of FDD procedure for 3-D FE model 

 

 
(a) Mode 1 

 

(b) Mode 2 

 

(c) Mode 3 

Fig. 8 Y-directional mode shapes of 3-D FE model 
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The y-directional acceleration responses measured at points 1, 3, 4, 6, 7 and 9 on the top of the 

caissons (see Fig. 5) are used to extract natural frequencies and mode shapes of the 3-D FE model.   

The singular values of the FDD procedure are shown in Fig. 7. In the frequency range of 0-200 

Hz, three peaks that are selected for the target modes are 25.33 Hz, 47.59 Hz and 71.32 Hz, as 

listed in Table 2. The corresponding mode shapes are shown in Fig. 8. It is noted in the figure that 

the three caissons mostly move together in the same phase for mode 1 and mode 3 while the 

opposite phase is observed for the mode 2. 

 
Table 2 Natural frequencies of 3-D FE model 

Natural frequency (Hz) 

Mode 1 Mode 2 Mode 3 

25.33 47.59 71.32 

 

 

3.3 Planar model of 3-D FE simulation 
 

The 3-D FE model of the target caisson structure is simplified using the proposed theoretical 

model. The impulsive load (see Fig. 5) is applied only on Caisson 2 in the simplified model. The 

total horizontal masses are computed as m1 = m2 = m3 = 149.52 kg by using Eqs. (2) - (4). The total 

horizontal mass includes the mass of concrete, the mass of sand filled, the added masses of sea 

water, and the added mass of foundation soil. The stiffness parameters are determined by matching 

vibration responses of the simplified model and the 3-D FE model using try-and-error method.   

The modulus of subgrade reaction of the foundation mound is selected as 25x10
6
 N/m

3
 which is 

equivalent with that of medium dense sand (Bowles 1996). By using Eq. (5), the spring constants 

of the foundation mound are calculated as kF1 = kF2 = kF3 = 2.89x10
6
 N/m. By assuming kS1 = kS4 = 

0.5kS2 = 0.5kS3 (Martinelli and Lamberti 2011), the stiffness of the middle and last shear-keys are 

obtained as kS2 = kS3 = 3.179x10
6
 N/m and kS1 = kS4 = 1.59x10

6
 N/m, respectively. 

For calculating the damping parameter, the first two natural frequencies (f1 = 25.33 Hz and f2 = 

47.59 Hz) and the critical damping ratio (5%) of the 3-D FE model are utilized to calculate the two 

Rayleigh damping coefficients (see Eq. (10)). The calculated mass-proportional damping 

coefficients () and stiffness-proportional damping coefficient () are, respectively, 10.387 and 

0.000218. 

To solve the equations of motion, the Runge–Kutta scheme supported in Matlab R2012b is 

utilized (Press et al. 1988). In the calculation process of vibration responses, the time interval is 

selected as 0.001 second. 

 

3.4 Validation of simplified Model for vibration analysis 
 
3.4.1 Vibration response in time domain 
It is noted that the acceleration acquisition coordinate used in the simplified model is differed 

from that in the 3-D FE model, as described in Fig. 9. In the 3-D FE model, acceleration signals on 

the top of caissons are measured, whereas acceleration signals of the simplified model are 

computed at the mass centroids of the caissons. The difference in acceleration acquisition 

coordinates causes the difference in amplitudes of acceleration signals obtained from the 

simplified model and the 3-D FE model, as shown in Fig. 10. The vibration amplitudes of the 
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simplified model are only about half of those of the 3-D FE model. To validate the accuracy of the 

simplified model in vibration analysis, the acceleration signals of the simplified model should be 

compared with those measured at the caissons‟ centroids of the 3-D FE model. However, it is 

almost impossible to measure directly these signals from real caisson breakwaters. 

 

 

 

Fig. 9 Difference in acceleration acquisition coordinates between 3-D FE model and simplified model 

 

 

  

(a) Caisson 1 (b) Caisson 2 

 

(c) Caisson 3 

Fig. 10 Y-directional acceleration signals of 3-D FE model and simplified model with different 

acceleration acquisition coordinates 
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Point 8 of 3D model

Simplified model
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In order to match the acceleration acquisition coordinates between the simplified model and the 

3-D FE model, the following procedure is performed by estimating the acceleration signals of the 

mass centroids of the caissons from the ones measured on the caisson caps in the 3-D FE model.  

Firstly, y-directional acceleration signals of additional locations on the front walls (i.e., points 10, 

11 and 12) are measured as shown in Fig. 11(a). By comparing the acceleration signals of the 

upper points (i.e., 3, 6 and 9) and the lower points (i.e., 10, 11 and 12), the inclinations of the 

caissons can be obtained. Secondly, the mass centroid of each caisson is computed considering the 

added mass of sea water by Eq. (3) and added mass of soil by Eq. (4), as indicated in Fig. 11b.  

Thirdly, for each caisson unit, the acceleration signal of the mass centroid (i.e., C1, C2 or C3) is 

linearly-estimated based on its inclination (i.e., 1, 2 or 3) and the measured signal at the top 

center location (i.e., point 2, point 5 or point 8). 

Fig. 12 shows the comparison between the estimated y-directional acceleration signals and the 

true ones of the caissons‟ centroids. It is noted that the true signals are measured directly at the 

caissons‟ centroids in the 3-D FE model. As observed in the figure, the estimated signals show 

good agreement with the true ones. Next, the estimated y-directional acceleration signals at the 

caissons‟ centroids in the 3-D FE model are used to compare with those of the simplified model, as 

sketched in Fig. 13. It can be seen in the figure that the signals of both models are well-matched. 

 

 

 

(a) Additional acceleration acquisition points 10, 11 and 12 
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(b) Linear relationships of acceleration signals 

Fig. 11 Estimation of y-directional acceleration signals of caissons‟ centroids 
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(a) Centroid of Caisson 1 (b) Centroid of Caisson 2 

 

(c) Centroid of Caisson 3 

Fig. 12 Y-directional acceleration signals at caissons‟ centroids in 3-D FE model 

 

  

(a) Centroid of Caisson 1 (b) Centroid of Caisson 2 

 

(c) Centroid of Caisson 3 

Fig. 13 Y-directional acceleration signals of 3-D FE model and simplified model with equivalent 

acceleration acquisition coordinates 
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3.4.2 Vibration response in frequency domain 
The PSDs of y-directional acceleration signals of the caissons‟ centroids are computed using 

Fast Fourier Transform (FFT) for the both models (i.e., simplified model and 3-D FE model), as 

shown in Fig. 14. It can be seen that the magnitudes and frequencies of the first two peaks 

obtained from the two models are well-matched. The FDD method (Otte et al. 1990, Yi and Yun 

2004) is performed to extract modal parameters from the acceleration signals. The extracted mode 

shapes and corresponding natural frequencies are sketched in Fig. 15 and given in Table 3, 

respectively. It can be seen that the modal parameters of the simplified model are similar to those 

of the 3-D FE model. 

In order to improve the understanding of mode shapes of target caisson structure, modal 

analysis of the 3-D FE model is carried out in SAP2000 software. The first and second mode 

shapes of the target caisson breakwater are shown in Fig. 16. It is observed that three caissons 

mostly move together in the same phase for the first mode, but in the opposite phase for the second 

mode. These results are well comparable with those sketched in Fig. 15. 

From these above observations, it is concluded that the simplified model of the interlocked 

caissons successfully represents the horizontal vibrations of the 3-D FE model. Hence, the 

proposed model can be used for dynamic analysis of interlocked caisson systems. 

 

 

  

(a) Centroid of Caisson 1 (b) Centroid of Caisson 2 

 

(c) Centroid of Caisson 3 

Fig. 14 The PSDs of y-directional acceleration signals of 3-D FE model and simplified model 
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(a) Mode 1 

 

(b) Mode 2 

Fig. 15 Y-directional mode shapes of 3-D FE model and simplified model 

 

 

  
(a) Mode 1 (b) Mode 2 

Fig. 16 Mode shapes of 3-D FE model by modal analysis 
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Table 3 Natural frequencies of 3-D FE model and simplified model 

Mode 
Natural frequency (Hz) 

FE model Simplified model Difference 

Mode 1 25.33 25.88 2.13% 

Mode 2 47.59 47.36 -0.49% 

 

 

4. Feasibility of planar model for damage estimation 
 

4.1 Modal strain energy-based damage detection 
 

The simplified model of the interlocked caissons is utilized to design a damage detection model 

on the basis of the MSE-based damage detection method (Kim and Stubbs 2002). For a linear, 

undamaged caisson system, as shown in Fig. 2, the i
th
 modal strain energy, Ui, is written by 

2 2

1

1 1

1 1
( )

2 2j j

nc n

i ij F ij ij S

j j

U k k   

 

                       (13) 

where nc is the number of caisson units; n is the number of shear-key connections; ij is the i
th
 

modal displacement at the j
th
 caisson; kFj represents the stiffness of the j

th
 caisson‟s foundation; and 

kSj is the stiffness of the j
th
 shear-key connection.  

The contribution of the j
th
 caisson‟s foundation to the i

th
 modal strain energy, Uij, is defined as 

21

2 jij ij FU k                                 (14) 

Then, the fraction of the undamaged modal strain energy (i.e., the undamaged modal sensitivity) 

of the i
th
 mode and the j

th
 caisson is given by 

i

ij

ij
U

U
F                                   (15) 

For the caisson system with only foundation damage, the damaged modal sensitivity of the i
th
 

mode and the j
th
 caisson can be expressed as 





 
i

ij

ij
U

U
F                                 (16) 

in which the quantities Uij
*
 and Ui

*
 are calculated by 

* *2 *1
 

2 Fj
ij ijU k                             (17) 

* *2 * * * 2

1

1 1

1 1
( )

2 2j j

nc n

i ij F ij ij S

j j

U k k   

 

                       (18) 
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For damage localization in the caisson system, a damage index j for the j
th
 caisson is defined 

via the ratio between the relative change in the modal sensitivity for the i
th
 mode with respect to 

the j
th
 caisson and the relative change in the stiffness of the j

th
 caisson‟s foundation as follows 

*

*

/

/
j j

ij ij

j

F F

F F

k k
                                 (19) 

in which j >1 indicates damage at the j
th
 caisson. 

On substituting Eqs. (14)-(17) into Eq. (19), and by rearranging, the damage localization index 

j of the j
th
 caisson is simplified as the following 

*2

2 *

ij i

j

ij i

U

U





                               (20) 

in which the i
th
 modal strain energies of pre- and post-damage cases can be expressed as 

1

2
i i iU M                            (21a) 

* * *1

2
i i iU M                           (21b) 

where Mi and Mi
*
 are the i

th
 modal masses; i and i

*
 are the i

th
 eigenvalues. It is assumed that the 

i
th
 modal mass remains unchanged during the damaging event. Then, the relationship between the 

quantities Ui and Ui
*
 is simplified as 

* *

i i

i i

U

U




                              (22) 

By substituting Eq. (22) into Eq. (20), a damage localization index j of the j
th
 caisson is 

computed for nm measured modes as follows 

2*

1

2 *

1

nm

ij i

i
j nm

ij i

i

 



 









                             (23) 

in which the components of the right hand side of Eq. (23) are measurable from the real caisson 

structure.  

If we treat damage location indices as normally distributed random variables, the normalized 

damage indices are defined according to the standard rule as 

( )j

jZ




 




                             (24) 

where  and  are the mean and the standard deviation of the collection of j values, respectively.  

Next, the damage is localized utilizing hypothesis testing. The null hypothesis (i.e., Ho) is that the 
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structure is undamaged at the j
th
 element and alternate hypothesis (i.e., H1) is that the structure is 

damaged at the j
th
 element.  For damage localization, the following decision rule is defined: first, 

select H1 if Zj < Zo; or choose Ho if Zj > Zo, where Zo is statistical confidence level of the 

localization test. 

 

4.2 Verification of MSE-based damage detection 
 
4.2.1Description of simulated damage 
As a damage scenario, it is assumed that the structure-foundation interface of the caissons is 

scoured under extreme wave loading. Three damage cases of the foundation (i.e., Damage 1, 

Damage 2 and Damage 3) are simulated by removing armor gravel elements as shown in Fig. 17.  

Only single damage is made in each damage scenario. The percentage loss of the gravel layer of 

Caisson 1 in Damage 1, of Caisson 2 in Damage 2 and of Caisson 3 in Damage 3 are 2.7%, 10.5% 

and 6.9%, respectively. In Damage 2 and Damage 3, the damaged areas are expanded to the 

foundation-caisson contact region. 
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  (a) Undamaged       (b) Damage 1          (c) Damage 2          (d) Damage 3 

Fig. 17 Foundation damage cases 

 

 

4.2.2 Damage detection results 
For detecting foundation damage, y-directional acceleration signals of the points 2, 5 and 8 of 

the 3-D FE model (see Fig. 5) before and after the damaging event are measured. Next, the natural 

frequencies and mode shapes are extracted from those signals (by FDD method). Table 4 

summarizes the natural frequencies of the caisson system for all damage cases. Only the first and 

the second modes are listed due to that these modes well match with those of the simplified model.  

As given in the table, natural frequencies are decreased according to the damage growth. Fig. 18 

shows the y-directional mode shapes of the 3-D FE model. It is observed that the relative motions 

between caissons are changed after the damaging events, and the first mode is more sensitive to 

the foundation damage than the second one. 

Next, the MSE-based method is employed to predict damage locations in the 3-D FE model. 

The normalized damage index is calculated by Eqs. (23) and (24). Damage localization results are 

illustrated in Fig. 19. Here, the criterion value Zo is chosen as 1.26 which is corresponding to the 

confidence level of 90%. It is found that for all damage cases with different damage severities, the 

MSE-based method has successfully localized the damaged caissons. 

459



 

 

 

 

 

 

Thanh-Canh Huynh, So-Young Lee, Jeong-Tae Kim, Woo-Sun Park and Sang-Hun Han 

 

(a) Model 1 

 

(b) Mode 2 

Fig. 18 Y-directional mode shapes of 3-D FE model with foundation damage 

 

 

  

 

Fig. 19 Damage localization results in 3-D FE model 
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Table 4 Natural frequencies of 3-D FE model with foundation damage 

Case Damage scenario 
Natural frequency (Hz) 

Mode 1 Mode 2 

Undamaged - 25.33 47.59 

Damage 1 Removed 2.7% of armor gravel 25.13 (-0.78%) 47.54 (-0.11%) 

Damage 2 Removed 10.5% of armor gravel 24.77 (-2.25%) 46.98 (-1.31%) 

Damage 3 Removed 6.9% of armor gravel 24.85 (-1.92%) 47.43 (-0.33%) 

*Parentheses indicate variation of natural frequencies with respect to undamaged case 

 

 

5. Conclusions 

 
In this study, a simplified planar model was developed for damage estimation of interlocked 

caisson system.  The following approaches were performed. Firstly, a conceptual dynamic model 

of the interlocked caisson system was designed on the basis of the characteristics of existing 

harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion was 

formulated. To represent the condition of interlocking mechanism, each caisson unit was 

connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model‟s 

vibration responses was numerically evaluated for a 3-D FE model of interlocked caissons.  

Finally, the simplified planar model was employed for damage estimation in the interlocked 

caisson system. For localizing damaged caissons, a damage detection method based on modal 

strain energy was formulated for the caisson system. 

The following observations have been made from numerical tests on the 3-D FE model of the 

caisson system. Firstly, the proposed planar model successfully estimated the horizontal vibration 

of the caisson system. The vibration features (i.e., power spectral density, natural frequency and 

mode shape) of the simplified model were well consistent with those of the 3-D FE model.  

Hence, the planar model was reliable for the dynamic analysis of the caisson system. Secondly, the 

MSE-based damage detection method formulated for the simplified planar model successfully 

identified damage locations with high confidence level. 

Despite the feasibility of the proposed planar model of the caisson system for vibration analysis 

and damage estimation, several issues still remain: (1) the damage severity in the foundation 

should be studied extensively by quantifying its magnitude; (2) the simplified planar model should 

be experimentally verified on real or lab-scaled caisson breakwaters for structural health 

assessment; and (3) a more complex simplified model should be developed  to better represent 

the dynamic behavior of the caisson system subjected to realistic wave action. 
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