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Abstract. We present an approach, based on the state dependent Riccati equation, for designing 
non-collocated seismic response control strategies for buildings accounting for physical constraints, with 
particular attention to force saturation. We consider both cases of active control using general actuators and 
semi-active control using magnetorheological dampers. The formulation includes multi control devices, 
acceleration feedback and time delay compensation. In the active case, the proposed approach is a 
generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel 
generalization of the well-established modified clipped optimal approach. As discussed in the paper, the 
main advantage of the proposed approach with respect to existing strategies is that it allows to naturally 
handle a broad class of non-linearities as well as different types of control constraints, not limited to force 
saturation but also including, for instance, displacement limitations. Numerical results on a typical building 
benchmark problem demonstrate that these additional features are achieved with essentially the same control 
effectiveness of existing saturation control strategies. 
 

Keywords:  structural control; seismic structural protection; active bracing systems; magnetorheological 

dampers; state dependent Riccati equation 

 
 
1. Introduction 
 

The seismic protection of civil engineering structures through response control strategies is a 

promising research field that, however, still presents several open issues. In fact, differently from 

strategies designed to satisfy limit states criteria under wind loads (Yan et al. 1999, Varadarajan 

and Nagarajaiah 2004) whose return periods can be relatively short (Gusella and Materazzi 1998, 

Hong et al. 2011), the activation of the system in the unpredictable moment of the earthquake is 

still a rather problematic issue. Another major concern is represented by the physical constraints 

that limit the performances and the reliability of control devices. Such limitations, like force 

saturation (Forrai et al. 2003, Cao et al. 2004, Ying et al. 1997) and displacement constraints, must 

be properly considered and are especially relevant in seismic applications (e.g., Ohtori et al. 2004) 

where the control devices are likely called to exert large dissipative forces that may lead to 

damages of the control system, loss of control effectiveness and phenomena of dynamic instability 

(Lim 2007).  
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Force saturation also affects semi-active devices, which are widely recognized today as the 

great promise of structural control (Casciati et al. 2006, Nagarajaiah and Narasimhan 2007) 

combining the reliability of passive devices (e.g., Symans et al. 2008, Casciati and Faravelli 2008, 

Casciati and Marzi 2010, Ubertini 2010) with the adaptability of active (e.g., Kobori et al. 1993, 

Reinhorn et al. 1993, Breccolotti et al. 2007, Ubertini 2008) and hybrid systems (e.g., Faravelli et 

al. 2010). 

Magnetorheological (MR) dampers are perhaps the most widespread semi-active devices (e.g., 

Dyke et al. 1996, Renzi and Serino 2004), owing to their capability of exerting  large dissipative 

control forces with low power requirements (Yang et al. 2002, Jung et al. 2003). Their force 

limitation directly derives from the limitation on the applicable voltage and is usually handled by 

means of “clipped optimal” and “modified clipped optimal” control strategies (Yoshida and Dyke 

2004). 

A quite general and powerful tool for handling a broad class of control system nonlinearities, 

including force saturation, is represented by the so-called “State-dependent Riccati Equation” 

(SDRE), early proposed by Cloutier (1997) and Friedland (1998). The method essentially consists 

of solving online (i.e., in real-time) the classic linear quadratic regulator problem (Panariello et al. 

1997) with state-dependent weights and system matrices (Mracek and Cloutier 1998) in the spirit 

of adaptive control strategies (Narasimhan 2009, Nagarajaiah and Narasimhan 2010). Besides its 

conceptual simplicity, the main advantages of the SDRE with respect to well-known techniques 

are: (i) its applicability to different types of control devices; (ii) its ability to incorporate structural 

and control system non-linearities; (iii) its feasibility to handle a broad class of physical constraints, 

not limited to force saturation but also including, for instance, constraints on structural 

displacements. The last feature can be useful, for instance, in the case of limited strokes of inertial 

actuators and when performance limits are expressed in terms of maximum absolute displacements 

or maximum interstory drifts. Although it is true that the method is computationally demanding, its 

practical feasibility is somewhat guaranteed by the high performance computers available today in 

the market. 

The application of the SDRE is not new in structural control. However, studies on this topic 

were essentially limited to active control and mainly focused on methods for choosing control 

weights on the basis of input severity. Basu and Nagarajaiah (2008), for instance, proposed to use 

wavelets for estimating the instantaneous frequency content of the seismic input and to 

consequently adapt the control weights. Although theoretical proofs of asymptotic stability and 

optimality are still missing in general cases (Erdem 2001), the effectiveness of the SDRE method 

and its robustness against random variations of system parameters are largely documented by 

means of simulation-based results (Beeler 2004). 

The purpose of this paper is to present an alternative approach for designing saturation 

controllers for both active and semi-active systems using the SDRE. The work is a part of a 

research program recently started by the authors and concerning structural control strategies 

accounting for physical constraints. The first step of the research program was carried out in a 

recent paper (Materazzi and Ubertini 2012), where a non-linear SDRE-based controller was 

proposed for a structure equipped with one single active mass damper with force saturation and 

limited stroke. In the present paper the approach presented in (Materazzi and Ubertini 2012) is 

generalized to the use of multi-devices and to the presence of time delay, compensated by means 

of an appropriate technique. Moreover, a novel application of the SDRE in the context of 

semi-active control using MR dampers is proposed which results in a generalization of the 

well-established modified clipped optimal control strategy (Yoshida and Dyke 2004). The 
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effectiveness of the proposed approach is demonstrated by means of numerical simulations applied 

to a building case study which was already considered in the literature as a benchmark for 

comparing different seismic control solutions (Ohtori et al. 2004). In the numerical study, 

comparisons with existing saturation control techniques are carried out and the advantages of the 

proposed approach are discussed, as well.  

 

 

Fig. 1 Frame structure equipped with control devices 

 

 
2. The method of the state dependent riccati equation 

 

Let us consider a nonlinear dynamical system whose governing equation is expressed in 

pseudo-linear first-order form as follows 

    x A x x B x u                            (1) 

where x is the state vector,   A(x) and (x) B  are state-dependent system matrices, u  is the 

vector of control forces and a dot denotes derivative with respect to time t. 

In practice, control systems are designed to keep the structures in the linear range. Nonetheless, 

physical limitations of control devices make the equation of motion globally nonlinear. In order to 

apply the SDRE it is convenient to rewrite such equation in pseudo-linear form, as in Eq. (1), 

through direct parameterization. 

The nonlinear regulator problem for the given system can be written in standard form as the 

minimization of the following performance index J 

    
0

1
d

2

T T

t

J t



  x Q x x u r x u                     (2) 

subjected to the constraint given by the equation of motion, Eq. (1), t0 being a convenient initial 

time. In Eq. (2) the matrix Q is a positive semi-definite state weight matrix and r is a positive 

definite input weight matrix. 

The SDRE is a very convenient tool for obtaining suboptimal solutions for the above-stated 
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problem. Essentially, the method consists of calculating the feedback control forces as 

       1 T

u

   u K x x r x B x P x x     (3) 

where (x) (x)PB (x)r  (x) K
-1 T

u   is the state-dependent gain matrix and matrix P(x) solves the 

SDRE given by 

           1T T T   A x P PA x PB x r x B x P Q x 0     (4) 

where 0  is the zero matrix with appropriate dimensions. As it can be recognized from Eqs. (3) 

and (4), the SDRE-based regulator is formally similar to the classic linear quadratic regulator 

(LQR) that applies to linear systems, but, in this case, all coefficient matrices are state dependent. 

As it is well-known (Cloutier 1997), the SDRE-based regulator satisfies the necessary conditions 

for the local asymptotic stability of the controlled system and asymptotically satisfies the 

necessary conditions for optimality of the solution.  
 

 
3. Problem definition 
 

Let us consider a plane frame structure with N stories, Fig. 1, subjected to ground acceleration 

gx  and protected by means of a control system consisting of interstory control devices (active or 

semi-active ones) with limited force capabilities. The forces exerted by the control devices are 

regulated by the controller using horizontal floor accelerations recorded by monitoring sensors as 

feedback information. 

By applying a standard static condensation procedure the structure is modeled using three 

degrees of freedom for each story collected in the vecto  TNNN rvhrvhrvh            q        222111 ,  ih , 

iv  and ir  being the horizontal displacement, the vertical displacement and the in-plane rotation 

of the i-th story, respectively. 

The equation of motion of this structure subjected to seismic excitation and equipped with m 

control devices is written as follows 

 1 gxMq +Cq + Kq = -M + Fu             (5) 

where M, C and K  are the n n  mass, damping and stiffness matrices, respectively, with 

3n N , u  is the m-dimensional vector of control forces and  1  and F  are convenient 

collocation vectors, with 1n  and mn   dimensions, respectively. 

In seismic applications interstory drifts are perhaps more significant parameters than absolute 

floor displacements. Hence, a coordinate vector, ξ , containing interstory drifts as Lagrangian 

parameters is conveniently introduced and defined as ξ = [h1  v1  r1  h2 ‒ h1  v2  r2 …hN ‒hN-1  vN  

rN]
T
. Then, a change of coordinates from q  to ξ  by means of the following linear 

transformation is carried out 

   
   

   

q ξ
R

q ξ
              (6) 
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where R  is the transformation matrix.  

 
11

1 1 1

nn n n n n

gx
  

  

        
                    

-1 -1 -1
00 I ξ 0ξ

R R R u R
1M K M C ξ M Fξ

   (7) 

where n n0  and n nI  are the zero and identity matrices with dimensions n n , respectively.   

Eq. (7) is the first order equation of the system in transformed coordinates. By defining the 

state vector x as 
T

   x ξ ξ , the following synthetic form of Eq. (7) is obtained 

  
g

x Ax Bu Gx        (8) 

with obvious definitions of matrices A, B and G. 

 
 
4. Proposed saturation control algorithm 

 

4.1 Active bracing system 
 

First of all we consider the case where the m control devices, in Fig. 1, are generic actuators 

able to exert maximum forces equal to max,1u , max,2u , ..., max,mu . In order to account for their 

force saturation, the following equation is introduced 

 

 

 

 

max,1 1

max,2 2

max,

sat

m m

u z

u z

u z







 
 

  
 
 

  

u u z         (9) 

which links the vector of control forces u  to m additional variables 1z , 2z , ..., mz , collected in 

the vector  1 2

T

mz z zz , choosing an expression for the saturation function    

which does not violate the physical constraint. In this work the following expression is adopted for 

this purpose 

 

1

1 1

1

1

1            
2

sin     -
2 2

1          
2

if s k

s
s if k s k

k

if s k



 





  


 
    

 





     (10) 

whose plot is shown in Fig. 2(a). 
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Fig. 2 (a) Saturation function ε, (b) typical force-velocity responses of a MR damper and (c) saturation 

function εsa  

 

 

After introducing Eqs. (9) and (10) into Eq. (8), an additional equation is needed in order to 

make the system controllable. To this end, the following one is here adopted 


1

z u               (11) 

where 1u  is a m-dimensional vector of pseudo-control inputs to be regulated by the controller. 

Making use of Eqs. (9)-(11), the equation of motion, Eq. (8), is written in terms of augmented state 

as 

  2

12

n msat

g

m m mm n m m

x


  

         
          

        
1

0 Gx xA B U z
u

I 0z z0 0
   (12) 

where matrix satU  is defined as 

 

 

 

max,1 1

1

max,2 2

2

max,

0 0

0

0

0 0

sat

m m

m

u z

z

u z

z

u z

z







 
 
 
 
 

  
 
 
 
 
 

U
    (13) 

Eq. (12) possesses the same mathematical structure of Eq. (1). Therefore, the pseudo-control 

feedback 1
u  can be regulated using the SDRE, likewise in Eq. (3), as follows 

     1 1, 1,, , ,u u x u z

   
        

   
1

x x
u K x z K x z K x z

z z
    (14) 
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where 
1 1, 1,u u x u z

   K K K  is the state-dependent gain matrix calculated according to Eq. (4). 

 

4.2 Semi-active bracing system using MR dampers 
 
The method proposed in Section 4.1 can be readily extended to semi-active MR dampers with 

voltage constraints. To this end, it is necessary to introduce an appropriate mathematical model to 

describe the hysteretic behavior of the MR dampers. The classic Bouc-Wen model can be 

effectively employed for this purpose (Yung et al. 2003). Accordingly, the control force iu  

exerted by the i-th MR damper can be expressed as 

 *

0, 1i i i i i iu z c h h         (15) 

where 
*

iz  is an evolutionary variable obeying the Bouc-Wen equation (e.g., Yoshida and Dyke 

2004) 

   * * * 1 *

1 1 1

n
n

i i i i i i i i MR i iz h h z z h h z A h h 

             (16) 

The parameters i  and 
0,ic  appearing in Eq. (15) can be varied by regulating the applied 

voltage iv . In fact, the functional dependencies of i  and 
0,ic  on iv  can be modeled as 

0, 0 0

i a b i

i a b i

v

c c c v

   

 
       (17) 

In Eqs. (15)-(17), a , b , 0ac , 0bc ,  ,  , n  and MRA  are parameters which 

characterize the MR damper (Yoshida and Dyke 2004). As examples, the force-velocity responses 

of a typical 1000-kN MR damper are depicted in Fig. 2(b) where the parameters reported by Jung 

et al. (2003) have been used. 

Eqs. (15) and (16) are conveniently rewritten in matrix form as follows 

 

 

*

* * *

,

,





u

z

u f x z v

z f x z z
           (18) 

where  1 2

T

mv v vv  and 
* * * *

1 2

T

mz z z   z , while the definitions of 

 *,uf x z  and  *,zf x z  are implicit from Eqs. (15)-(17).  

It should be noticed that matrix  *,uf x z , in Eq. (18), contains the values of the semi-active 

control forces exerted by the MR dampers. Hence, a load cell for each semi-active device is 

necessary to measure such quantities. 

The voltages applied to the m MR dampers cannot exceed maximum values max,1V , max,2V ,…,

max,mV . To account for these constraints, a strategy similar to that proposed in Section 4.1 can be 
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applied. To this end, the following two equations are introduced 

 

 

 

 

max,1 1

max,2 2

max,

sa

sa

sat

m sa m

V z

V z

V z







 
 
  
 
 
  

v v z           (19) 

1z u              (20) 

where the voltages appear as slave controlled variables and where  sa  is defined as follows 

 
1

1

1

1            

1
sin 1     

2 2

sa

if s k

s s
if s k

k



 


 


   
      

  

            (21) 

whose plot is shown in Fig. 2(c). Noticeably, since voltages can only assume positive values, the 

chosen expression for the saturation function  sa  is always positive. After introducing Eqs. 

(18)-(21), the equation of motion becomes the following 

 *

2

1

12

, sat n m

g

m m mm n m m

x


  

        
          

         

u
A Bf x z V G 0x x

u
0 Iz z0 0

  (22) 

where the time evolution of the variables contained in vector 
*

z  is governed by the second 

expression in Eq. (18) and matrix satV  is defined as 

 

 

 

max,1 1

1

max,2 2

2

max,

0 0

0

0

0 0

sat

m m

m

V z

z

V z

z

V z

z







 
 
 
 
 

  
 
 
 
 
 

V
    (23) 

Eq. (22) is equivalent to Eq. (12). Therefore, the pseudo-control feedback 1
u  can be regulated 

using the SDRE, as in Eq. (14). 

 
4.3 Controller design 
 

Looking at the previous derivations, the equation of motion of the active and semi-active 

saturation systems assume the same mathematical structure, which is the following one 
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  gx    

 1

x Ax B Θ z z G

z u
      (24) 

where Θ  is equal to 

      
(z)V )z(x,f

(z)U
  (z) Θ

u








sat

sat
 

case active-semi

case active
    (25) 

In both cases the control forces can be written as 

 u Θ z z         (26) 

In order to apply the SDRE it is necessary to choose the control weights that define the 

performance index, J, in Eq. (2). In this work, J is chosen as follows 

 
0

2 2 2

1 1

1
d

2

n m

i i n i i i i

i it

J Q q Q q ru t





 

             (27) 

where the penalizations iQ  and ir  are applied to the structural degrees of freedom iq  and to 

their first derivatives iq , as well as to the control forces iu . However, the SDRE requires such 

penalizations to be applied to the state variables ix  (structural degrees of freedom expressed in 

transformed coordinates and their time derivatives), to the internal variables iz  and to the 

pseudo-control input 1u . Therefore, it is necessary to derive an expression of J which is 

equivalent to Eq. (27), but written in the appropriate form. This can be done by substituting Eqs. (6) 

and (26) into Eq. (27). After straightforward computations, the following synthetic form of the J 

index is obtained 

 
0

1 1 1

1
, d

2

T

T

t

J t

     
          


x x
Q x z u r u

z z
    (28) 

with 

 

1

2

2

2

2

1 11

2

2 22

2

2

0 0

0

0

0 0
,

0 0

0

0

0 0

T

n m

n

m n

m mm

Q

Q

Q

r

r

r





  
  
  
  
  

  
  

  
    
  
     

R R 0

Q x z

0

   (29) 

where ii  is the i-th term contained along the main diagonal of matrix Θ , Eq. (25), and 1r  is a 
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diagonal matrix that contains small penalties 
1,ir , 1,2, ,i m , applied to the components of the 

pseudo control input 1u  and necessary to avoid a singular problem. 

It should be noticed that the proposed approach could be generalized by introducing additional 

state dependent terms in Eq. (29). Although this would go beyond the purposes of the present 

study, it is worth mentioning that a similar approach might be useful to penalize the interstory 

drifts when approaching their performance limits. This task is indeed facilitated by the use of 

interstory drifts as state variables. 

 

4.4 Time delay compensation and state reconstruction 
 
In both active and semi-active cases the vector of control forces depends upon the additional 

state variables contained in the vector z . Because these quantities are internal variables the 

physical actuation is delayed of a quantity  . Moreover, since the solution of the SDRE requires 

time-consuming operations, it cannot be continuously computed. On the contrary, the SDRE can 

be practically solved and the gain matrix can be updated every discrete time interval of length 

τSDRE. 

In this paper, a time delay compensation is considered for mitigating the effects of time delay 

 . On the contrary, τSDRE is accounted for, but not compensated. 

Time delay compensation is here performed by applying the procedure described by Soong 

(1990) which is based on the introduction of  2 t  z z  and  3 t  z z  as additional 

state variables. After straightforward computations, not reported here for the sake of brevity, the 

following equation of motion is obtained in terms of augmented state 
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     (30) 

where the dependence of the control forces on the delayed quantities  SDREt z  and  

 t z  should be noticed. The state dependent feedback pseudo-control input 1u  can now be 

calculated using the SDRE by considering the augmented system matrices in Eq. (30). By doing so, 

the following equation is obtained: 

 1 2 3 1, 1, 1, 2 1, 3

2 2

3 3

, , ,u u x u z u z u z
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   
   
            
   
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1

x x

z z
u K x z z z K K K K

z z

z z

      (31) 

In practical implementations of the proposed procedure it should be also considered that the 

actual value of the state vector in Eq. (31) is unknown, and should be estimated using the 

measured variables. In this work absolute horizontal floor accelerations are used for this purpose 
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(Fig. 1) and conveniently collected in a vector y  that is defined as  ga x 1 qC  y , aC  being 

the selection matrix. After straightforward computations, vector y  can be expressed as a function 

of the state variables of the system in the following form 

1 1 1

a a

        y C M K M C Rx C M Fu Cx Du     (32) 

with obvious definitions of matrices C  and D . Then, an estimate x̂  of the state is obtained by 

means of a standard Kalman’s observer. The equations governing the physical system and the state 

observer can thus be written in the following synthetic form 
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L being Kalman’s filter gain matrix. In this way, a saturation controller for both active and 

semi-active systems using acceleration feedback with time delay compensation and state 

reconstruction has been obtained. 

 

 

5. Numerical example 

 

5.1 Characteristics of the structure  
 
The case study chosen in this work is represented by a 9-stories steel building already adopted 

in the literature (Ohtori et al. 2004) as a benchmark for evaluating the effectiveness of different 

control strategies. The building is square in plan, with 45.7 x 45.7 m dimensions, and 37.2 m in 

elevation. The seismic resisting system is comprised of steel perimeter moment frames (MFs) with 

5 bays. The interior frames are built using simple beam-column connections. The beams act 

compositely with the floor slabs and each MF resists one half of the total seismic load in each 

direction. The total seismic mass is equal to 9000 tons. The first ten natural frequencies of the 

structure are: 0.468, 1.235, 2.136, 3.211, 4.404, 5.339, 5.787, 7.107, 8.380 and 10.153 Hz. 

Additional details can be found in (Ohtori et al. 2004). 

 

5.2 Analysis procedure 
 

El Centro, Kobe and Northridge seismic records, scaled at different values of the peak ground 

acceleration (PGA), are considered in the numerical simulations. In particular, in order to test the 

effectiveness of the proposed approach in presence of extreme seismic events, a maximum PGA of 

0.60 g is considered in the analysis. 

Because the equation of motion is expressed in pseudo-linear form, it is solved by means of a 

numerical procedure that considers a series of linear systems whose matrices are updated every 
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time step of length SDRE , where SDRE , as already mentioned, is the time step chosen for solving 

the SDRE. Within the generic time interval  SDREt t   the system, governed by Eq. (33), is 

locally linear and its solution is calculated using the instantaneous value of the transfer function 

and the results at time t as initial conditions. In the analysis, SDRE  is assumed to be equal to 0.02 

sec, while τ is assumed to be equal to 0.005 s. 

In order to perform a quantitative evaluation of the control performances, eight evaluation 

criteria, 821 J,...,J,J , are considered and summarized in Table 1. In such a table the superscript 0 

indicates the uncontrolled solution, iH  is the i-th interstory height, bV  and 0
bV  are the base 

shear with and without control, respectively, the norm *  represents the root mean square 

operator and maxu  is the reference maximum force capacity of the control devices equal to 1000 

kN. It is worthwhile to note that 8J , defined in Table 1, measures the peak power required by the 

control system normalized to the value, maxW , required by the ideal LQR strategy at a PGA of 

0.60 g.  

 

 
Table 1 Performance indices of control effectiveness 

Peak interstory drift Peak floor acceleration Peak base shear RMS interstory drift 
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5.3 Active control strategy with force saturation 
 

The effectiveness of the SDRE-based active saturation control strategy for different values of 

the PGA is investigated at first. The structure is controlled using nine actuators, one for each 

interstory, with maximum force capacities maxu of 1000 kN each. Servo-controlled hydraulic 

actuators which such a capacity can be readily raised in the market. 

Parameter k1, appearing in Eq. (10), was chosen in the analysis as 10
3
. This value is strictly 

related to the rate of force saturation and was chosen to be sufficiently large that significant 
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impulsive excitation components did not arise when force saturation occurred, thus not limiting 

control effectiveness in mitigating floor accelerations. Unitary state weight parameters 

1 2 2, , , nQ Q Q  were adopted in Eq. (29), while weights on control forces 1 2, , , mr r r  were 

assumed equal to 2∙10
-14

. The quantities 
1,ir  in Eq. (28) were chosen equal to 10

-17
 and online 

increased to 10
-10

 during the motion after the occurrence of the first force saturation. 

 

 

 

Fig. 3 Active control under El Centro ground motion: performance of ideal LQR system, saturation 

system with umax=1000 kN, saturation system with umax=2500 kN, saturation system with 

umax=5000 kN 
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Fig. 3 shows the variations of the eight evaluation criteria for a PGA up to 0.60 g in the case of 

the El Centro ground motion. The results concerning Kobe and Northridge earthquakes are 

presented in Table 2. For providing reference values, the performances of the SDRE-based control 

system with 1000 kN actuators are compared with those of the ideal LQR case without actuators’ 

saturation nor time delay, as well as with those of the saturation cases with 2500 kN and 5000 kN 

actuators. The ideal LQR controller was constructed using the same weights nQ,...,Q,Q 221  and 

1 2, , , mr r r  adopted for the SDRE-based approach. 

 

 
Table 2 Active control under Kobe and Northridge ground motions: performance of ideal LQR system, and 

saturation systems with umax=1000 kN, umax=2500 kN and umax=5000 kN 

  Kobe Northridge 

 PGA (g) 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 

J1 

LQR 0.47 0.47 0.47 0.47 0.47 0.47 0.43 0.43 0.43 0.43 0.43 0.43 

umax=1000 kN 0.53 0.59 0.75 0.79 0.80 0.83 0.55 0.58 0.64 0.66 0.67 0.68 

umax=2500 kN 0.48 0.48 0.49 0.53 0.57 0.66 0.45 0.45 0.50 0.52 0.57 0.60 

umax=5000 kN 0.48 0.48 0.48 0.48 0.48 0.49 0.45 0.45 0.45 0.45 0.48 0.49 

J2 

LQR 0.45 0.45 0.45 0.45 0.45 0.45 0.37 0.37 0.37 0.37 0.37 0.37 

umax=1000 kN 0.53 0.65 0.92 0.97 0.98 0.97 0.37 0.41 0.56 0.68 0.73 0.77 

umax=2500 kN 0.46 0.51 0.71 0.74 0.67 0.81 0.37 0.37 0.37 0.37 0.43 0.48 

umax=5000 kN 0.46 0.46 0.46 0.53 0.71 0.81 0.37 0.37 0.37 0.37 0.37 0.37 

J3 

LQR 0.47 0.47 0.47 0.47 0.47 0.47 0.31 0.31 0.31 0.31 0.31 0.31 

umax=1000 kN 0.54 0.60 0.68 0.73 0.78 0.81 0.39 0.43 0.42 0.45 0.54 0.61 

umax=2500 kN 0.48 0.48 0.49 0.54 0.58 0.61 0.33 0.33 0.37 0.40 0.42 0.42 

umax=5000 kN 0.48 0.48 0.48 0.48 0.48 0.47 0.33 0.33 0.33 0.33 0.34 0.37 

J4 

LQR 0.27 0.27 0.27 0.27 0.27 0.27 0.22 0.22 0.22 0.22 0.22 0.22 

umax=1000 kN 0.32 0.36 0.41 0.44 0.48 0.51 0.26 0.29 0.33 0.37 0.41 0.45 

umax=2500 kN 0.28 0.29 0.30 0.32 0.35 0.37 0.23 0.23 0.24 0.25 0.27 0.29 

umax=5000 kN 0.28 0.28 0.28 0.29 0.29 0.29 0.23 0.23 0.23 0.23 0.23 0.23 

J5 

LQR 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.30 0.30 

umax=1000 kN 0.33 0.35 0.44 0.48 0.52 0.56 0.30 0.30 0.33 0.38 0.43 0.47 

umax=2500 kN 0.33 0.34 0.34 0.33 0.35 0.38 0.31 0.31 0.31 0.31 0.31 0.30 

umax=5000 kN 0.33 0.33 0.33 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31 0.31 

J6 

LQR 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30 

umax=1000 kN 0.36 0.39 0.41 0.42 0.44 0.47 0.34 0.37 0.39 0.40 0.43 0.45 

umax=2500 kN 0.32 0.34 0.35 0.36 0.38 0.38 0.31 0.31 0.33 0.35 0.36 0.37 

umax=5000 kN 0.32 0.32 0.32 0.33 0.34 0.34 0.31 0.31 0.31 0.31 0.32 0.32 

J7 

LQR 1.51 3.01 4.52 6.03 7.53 9.04 1.22 2.44 3.66 4.88 6.10 7.32 

umax=1000 kN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

umax=2500 kN 1.45 2.50 2.50 2.50 2.50 2.50 1.15 2.26 2.50 2.50 2.50 2.50 

umax=5000 kN 1.45 2.90 4.32 5.00 5.00 5.00 1.16 2.31 3.43 4.53 5.00 5.00 

J8 

LQR 0.03 0.11 0.25 0.44 0.69 1.00 0.03 0.11 0.25 0.44 0.69 1.00 

umax=1000 kN 0.03 0.09 0.14 0.19 0.23 0.28 0.03 0.07 0.14 0.21 0.29 0.37 

umax=2500 kN 0.03 0.10 0.20 0.34 0.56 0.71 0.03 0.11 0.20 0.32 0.43 0.58 

umax=5000 kN 0.03 0.11 0.25 0.42 0.61 0.77 0.03 0.11 0.24 0.42 0.64 0.83 
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Because the ideal LQR system is linear, the corresponding controlled response is proportional 

to the PGA likewise the uncontrolled one. Therefore, in Fig. 3 and in Table 2 the performance 

indices 621 J,...,J,J of the ideal LQR system are constant with the PGA. On the contrary, the 

performance index 7J  linearly increases with the PGA because is the ratio between the peak 

control force and the maximum actuators’ capacity ) 1000( kNumax  . Finally, 8J , is a quadratic 

function of the PGA because it represents the normalized peak control power which is given by a 

product between velocities and control forces. 

In Fig. 3 and in Table 2 the ideal LQR system reaches the maximum actuators’ capacity 

kNumax  1000  )1( 7 J  for values of the PGA that are around 0.10 g in all cases. At larger 

values of the PGA the LQR system would require larger actuators to work properly. On the 

contrary, the SDRE-based controller limits the maximum required control forces and the system 

works properly for any value of the PGA. 

The SDRE-based control system is essentially linear up to the value of the PGA which 

corresponds to the first force saturation and, in this linear range, provides similar performances to 

the ideal LQR system (small differences between the two are due to time delay and to the 

circumstance that m,...,,i,r i, 21 01  , in Eq. (29)). The SDRE-based control system becomes 

non-linear after the actuators have reached their saturation limit. In this case, a progressive 

(non-linear) loss of control effectiveness takes place as the PGA is increased.  

In the case of El Centro, the loss of control effectiveness caused by force saturation is seen to 

be relatively small, while in the cases of Northridge and Kobe is more significant. Also in these 

cases, however, the control performances are remarkable in reducing RMS response quantities 

despite force saturations. Clearly, the higher is the saturation limit the better are the control 

performances of the saturation control strategy in the non-linear range, as it is apparent looking at 

the results corresponding to 2500 kN and 5000 kN actuators in Fig. 3 and in Table 2. 

 

 

 

Fig. 4 Comparison between the response with ideal LQR control (dashed line) and with active saturation 

control (continuous line) under El Centro ground motion (PGA 0.50 g) 
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The reduction of the peak control power that is required by the SDRE-based saturation 

approach with respect to the ideal LQR system is also worth noting in Fig. 3 and in Table 2.  

A sample response of the saturation system for a PGA of 0.50 g, compared with the 

uncontrolled and ideal LQR cases, is shown in Fig. 4 considering the seismic record of El Centro. 

 

5.4 Semi-active control using MR dampers and comparison with active control 
 

In the semi-active control strategy, nine MR dampers with the same characteristics of those 

adopted by Jung et al. (2003) are employed. The parameters of these MR dampers to be introduced 

in Eqs. (15) and (16) were experimentally determined in (Jung et al. 2003) and are also 

summarized in Table 3 for completeness sake. Considering their voltage limitation (10 V), the 

maximum capacity maxu of such MR dampers is about equal to 1000 kN so being similar to that of 

the hydraulic actuators considered in the active system. The maximum instantaneous power of 

each semi-active device at 10 V is assumed to be equal to 50 Watt (Yoshida and Dyke 2004). For 

smaller values of the voltage this instantaneous power is simply scaled. 

In the SDRE-based semi-active approach, parameter k1, appearing in Eq. (21), was chosen as 

10
3
 as it was done in the active case. Also in this case k1 resulted from a calibration aimed at 

keeping the voltage saturation rate as small as possible not to produce undesired peaks of 

accelerations. Unitary state weight parameters nQ,...,Q,Q 221 in Eq. (29) were adopted, while 

weights on control forces 1 2, , , mr r r  were assumed equal to 2∙10
-14

. The quantities 
1,ir  in Eq. 

(28) were chosen equal to 10
-16

 and online increased to 10
-10

 during the motion after the occurrence 

of the first force saturation. 

The performances of the SDRE-based semi-active control strategy are compared with those of 

the SDRE-based active solution with similar maximum control force ( kNumax  1000 ). The results 

are presented in Fig. 5 and in Table 4 in the cases of the El Centro, Kobe and Northridge ground 

motions for a PGA varying up to 0.60 g.  

First of all, it should be noticed that the semi-active control system is non-linear both for small 

and large values of the PGA. Indeed, the nonlinearity is, in this case, not only due to voltage 

saturation but also to the hysteretic behavior of the MR dampers. Therefore, a nonlinear variation 

of the performance indices with the PGA is observed in all the considered range of the PGA.  

The results presented in Fig. 5 and in Table 4 show that the performances of the semi-active 

system are very close to those of the active one even if the MR dampers can only provide 

dissipative forces and require a control power that is extremely low.  

It should be also mentioned that the differences between the performances of semi-active and 

active systems tend to be reduced as the PGA is increased. Indeed, the SDRE-based semi-active 

system exhibits slightly poorer control performances at very small values of the PGA because 

small structural responses do not activate significant hysteretic cycles in the MR dampers. On the 

contrary, the control performances of the semi-active system tend to improve, at first, as the PGA 

is increased, and, then, their worsening with the increase in the PGA due to voltage saturation 

appears to be much slower than in the active system. In some cases, the semi-active system 

performs even better than the active one because the peaks of control force can be higher than 

1000 kN at a voltage of 10 V. 

A sample semi-actively controlled response, compared with the ideal LQR controlled one, is 

shown in Fig. 6 considering the seismic record of El Centro with a PGA of 0.50 g.  
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Table 3 MR dampers parameters adopted in the analysis (Jung et al. 2003) 

Semi-active control system characteristic Value 

αa (kN/m) 26.0 

αb (kN∙V/m) 29.1 

c0a (kN∙s/m) 105.4 

c0b (kN∙s∙V/m) 131.6 

γ (m
-2

) 141.0 

β (m
-2

) 141.0 

n  2 

η (s
-1

) 100 

 

 

 

Fig. 5 Performances of semi-active and active saturation control systems with umax=1000 kN under El 

Centro ground motion 
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Fig. 6 Comparison between the response with ideal LQR control (dashed line) and with semi-active 

saturation control (continuous line) under El Centro ground motion (PGA 0.50 g) 

 

 
Table 4 Performances of semi-active and active saturation control systems with umax=1000 kN under Kobe 

and Northridge ground motions 

  Kobe Northridge 

 PGA (g) 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 

J1 
Active 0.47 0.47 0.47 0.47 0.47 0.47 0.43 0.43 0.43 0.43 0.43 0.43 

Semi-Active 0.74 0.78 0.78 0.79 0.80 0.82 0.70 0.65 0.67 0.69 0.72 0.75 

J2 
Active 0.45 0.45 0.45 0.45 0.45 0.45 0.37 0.37 0.37 0.37 0.37 0.37 

Semi-Active 0.76 0.77 0.76 0.72 0.77 0.78 0.50 0.47 0.43 0.39 0.38 0.42 

J3 
Active 0.47 0.47 0.47 0.47 0.47 0.47 0.31 0.31 0.31 0.31 0.31 0.31 

Semi-Active 0.74 0.79 0.79 0.79 0.80 0.81 0.54 0.49 0.51 0.51 0.52 0.54 

J4 
Active 0.27 0.27 0.27 0.27 0.27 0.27 0.22 0.22 0.22 0.22 0.22 0.22 

Semi-Active 0.51 0.43 0.43 0.44 0.45 0.47 0.48 0.41 0.36 0.35 0.36 0.38 

J5 
Active 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.30 0.30 

Semi-Active 0.61 0.50 0.46 0.46 0.47 0.48 0.54 0.46 0.40 0.38 0.37 0.38 

J6 
Active 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30 

Semi-Active 0.53 0.49 0.48 0.49 0.51 0.53 0.49 0.46 0.44 0.44 0.45 0.47 

J7 
Active 1.51 3.01 4.52 6.03 7.53 9.04 1.22 2.44 3.66 4.88 6.10 7.32 

Semi-Active 0.90 1.10 1.18 1.26 1.41 1.53 0.75 1.01 1.09 1.16 1.24 1.34 

J8 
Active 0.03 0.11 0.25 0.44 0.69 1.00 0.03 0.11 0.25 0.44 0.69 1.00 

Semi-Active 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

5.5 Comparison with existing saturation control techniques 
 

A relatively standard approach to test the effectiveness of saturation controllers is to perform a 

comparison with an LQR approach calibrated to yield a maximum control force equal to the force 

saturation constraint. Lim et al. (2006) presented a similar analysis for a three story frame structure 
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equipped with one actuator, showing that saturation control techniques such as modified 

bang-bang control, saturated sliding mode control and the robust controller proposed by Lim et al. 

(2006) all provide similar performances and substantially improve the performance of calibrated 

LQR in reducing peak interstory drifts, while slightly improving such a performance in controlling 

peak accelerations. In particular, in the example presented by Lim et al. (2006) J1 varied from 0.66 

to about 0.38 while J2 varied from 0.58 to about 0.54. Other performance indexes were not 

considered by the authors in that comparative study. 

The proposed SDRE-based active saturation control with umax=1000 kN is here compared to the 

LQR control calibrated to have the maximum value of the control force equal to 1000 kN at a PGA 

of 0.60g for the El Centro ground record. The calibration was performed using the same values of 

the state weights nQ,...,Q,Q 221 adopted in the SDRE-based approach while calibrating 

1 2, , , mr r r  until the desired value of 1000 kN of the maximum control force was achieved. As a 

result, 13
21 1057  .r...rrr m was chosen. 

 
 

Table 5 Performances of proposed active and LQR control strategy under El Centro ground motion 

 PGA (g) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.50 

J1 
LQR 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 

Proposed 0.38 0.38 0.44 0.44 0.45 0.46 0.48 0.49 0.49 0.49 0.50 0.53 

J2 
LQR 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

Proposed 0.47 0.46 0.53 0.55 0.53 0.55 0.56 0.59 0.62 0.65 0.66 0.66 

J3 
LQR 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Proposed 0.33 0.33 0.39 0.40 0.41 0.43 0.44 0.45 0.46 0.48 0.50 0.53 

J4 
LQR 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

Proposed 0.24 0.24 0.27 0.27 0.27 0.28 0.29 0.30 0.31 0.33 0.34 0.36 

J5 
LQR 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

Proposed 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.33 0.36 0.38 

J6 
LQR 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

Proposed 0.26 0.26 0.30 0.30 0.30 0.31 0.32 0.32 0.33 0.33 0.35 0.36 

J7 
LQR 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.00 

Proposed 0.43 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

J8 
LQR 0.00 0.01 0.03 0.06 0.09 0.12 0.17 0.22 0.28 0.34 0.42 0.50 

Proposed 0.01 0.02 0.05 0.07 0.11 0.16 0.22 0.28 0.34 0.41 0.47 0.52 

 

 

The results are presented in Table 5 and show that the proposed method allows to improve the 

performance of the LQR especially in reducing RMS interstory drifts and RMS accelerations. 

Fixing the attention to the results achieved considering a PGA of 0.6g, J4 is reduced from 0.61 to 

0.36 and J5 from 0.62 to 0.38. The reduction of peak interstory drifts is also remarkable (J1 from 

0.78 to 0.53) and close to that achieved by other saturation techniques in (Lim et al. 2006), while 

the improvement in reducing peak accelerations is marginal which, however, is also the case when 

considering other techniques (Lim et al. 2006). 

In the semi-active case the proposed SDRE-based approach can be regarded as a generalization 

of the modified clipped optimal control (MCOC) where, as better commented in the following 

subsection, the generalization consists of the possibility of incorporating in the problem a broader 
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class of non-linearities and control constraints. Table 5 presents a comparison between the 

performances of the proposed semi-active control strategy and the MCOC considering the El 

Centro ground motion scaled at different values of the PGA. For a fair comparison between the 

two methods, full state knowledge and no time delay are assumed in this analysis. The 

performances of the proposed approach are sometimes slightly better and sometimes slightly 

worse than those yielded by MCOC. In general they are quite similar, hence allowing to conclude 

that the performances of the two methods are essentially equivalent when only force saturation is 

considered as control constraint. 

Although it is not in the intentions of this work to present a systematic comparison of the 

proposed method with other existing saturation techniques, the presented results show that in 

presence of force saturation constraints the proposed approach provides control performances that 

are similar to those of other existing methods, both in active and semi-active cases. As discussed in 

next subsection, however, the proposed approach offers considerable advantages over existing 

techniques that could make it more attractive.  

 

 
Table 6. Performances of proposed semi-active and modified clipped optimal control (MCOC) strategy 

under El Centro ground motion 

 PGA (g) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.50 

J1 
Proposed 0.59 0.46 0.44 0.45 0.48 0.52 0.52 0.54 0.56 0.58 0.61 0.63 

MCOC 0.51 0.46 0.44 0.46 0.48 0.51 0.54 0.56 0.58 0.60 0.62 0.64 

J2 
Proposed 1.11 1.14 1.00 0.84 0.73 0.63 0.57 0.52 0.48 0.49 0.49 0.49 

MCOC 1.15 1.13 1.03 0.82 0.72 0.60 0.52 0.50 0.49 0.50 0.49 0.48 

J3 
Proposed 0.47 0.40 0.38 0.41 0.43 0.44 0.44 0.46 0.47 0.49 0.51 0.53 

MCOC 0.46 0.37 0.37 0.42 0.44 0.45 0.46 0.48 0.49 0.50 0.52 0.54 

J4 
Proposed 0.38 0.30 0.27 0.27 0.27 0.28 0.28 0.30 0.31 0.32 0.34 0.35 

MCOC 0.35 0.29 0.27 0.27 0.27 0.28 0.29 0.30 0.31 0.33 0.34 0.35 

J5 
Proposed 0.64 0.53 0.48 0.43 0.40 0.38 0.37 0.35 0.35 0.35 0.35 0.36 

MCOC 0.58 0.47 0.41 0.37 0.36 0.35 0.34 0.34 0.34 0.34 0.34 0.35 

J6 
Proposed 0.38 0.33 0.31 0.31 0.31 0.32 0.32 0.34 0.35 0.36 0.37 0.39 

MCOC 0.38 0.32 0.30 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.39 

J7 
Proposed 0.44 0.81 0.93 0.96 1.00 1.03 1.07 1.09 1.13 1.16 1.19 1.22 

MCOC 0.39 0.82 0.92 0.96 0.99 1.03 1.06 1.09 1.13 1.16 1.19 1.22 

J8 
Proposed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MCOC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

5.6 Advantages of the proposed control strategy 
 

The advantage of the proposed control technique when compared to existing saturation 

approaches, either active or semi-active ones, is twofold: 

- it allows to include non-linearities in the formulation of the control problem; 

- it allows to incorporate constraints on state variables, such as absolute displacements, 

interstory drifts, absolute velocities of actuators and more; 

Another minor advantage of the proposed method compared to existing techniques is that it is 

relatively simple to be implemented because the procedure for solving the Riccati Equation is 

available in the library of most computational platforms. 
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Seismic response control of buildings with force saturation constraints 

Including non-linearities in the formulation of the control problem is possible by expressing the 

equation of motion in pseudo-linear form as in Eq. (1). This task requires to formulate a 

state-dependent system matrix (x) A which incorporates system non-linearities. Direct 

parametrization of the equations of motion is often not a practical way to calculate (x) A  because 

most types of non-linearities that are encountered in practice are difficult to be expressed through 

non-linear state dependent terms. Nevertheless, an approximation of (x) A  is generally 

achievable through online step-by-step numerical computations and such an approximation of 

(x) A  is often sufficient because the SDRE is structurally stable. Among non-linearities that can 

be considered in this way are: geometric non-linearities, plasticization of frames, nonlinear 

constitutive behaviors of passive seismic devices, and more.  

The most straightforward way to incorporate in the problem physical constraints on state 

variables, such as stroke limits of actuators, is to model such physical constraints using highly 

non-linear springs that produce negligible effects when the state variable is within the bounds, 

while producing large restoring forces when the physical limit is reached (see Friedland 1998). In 

order to avoid that such physical limits are attained during the motion, it is also convenient to 

introduce in Eq. (29) additional non-linear state dependent weights that strongly penalize the state 

variables when are approaching their physical limits. In this way it is possible, for instance, to 

achieve an effective control of maximum interstory drifts or maximum absolute displacements to 

prevent dangerous p-delta effects. 

 

 

6. Conclusions 
 

We have proposed an approach, based on the state dependent Riccati equation, for designing 

seismic response control strategies accounting for force saturation of control devices, system 

non-linearities and other control constraints. The method is an improvement of the one recently 

proposed by the authors for regulating an active mass damper with limited force and limited stroke. 

In particular, in this paper the method is applied to both active and semi-active control using MR 

dampers, also considering acceleration feedback, time delay compensation and state reconstruction. 

In the active case the proposed technique constitutes a generalization of the classic linear quadratic 

regulator while, in the semi-active case, it represents a novel generalization of the well-established 

modified clipped-optimal control strategy.  

Although in this paper particular emphasis has been devoted to force saturation which is the 

main physical limitation that has to be considered in seismic control, the presented formulation is 

directly suitable to also consider constraints on structural displacements and to incorporate 

non-linearities, as well. This larger freedom with respect to existing techniques is achieved at the 

expense of an increase in computational complexity. Nevertheless, considering the ever growing 

computational speed of controllers available today in the market, it is believed that this aspect does 

not represent a significant drawback of the method.   

The proposed approach has been mathematically illustrated with reference to a general 

multi-story frame structure equipped with an active bracing system or with its semi-active 

counterpart using magnetorheological dampers. Numerical simulations have been presented 

considering the ASCE benchmark 9-stories steel building subjected to different earthquake records 

scaled at increasing values of the PGA. The results have shown that the proposed methodology 

allows to achieve control performances that are remarkable in both active and semi-active cases, 
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even with significant force saturations at large values of the PGA. Such control performances are 

seen to be essentially equivalent to those provided by existing saturation control strategies. It is 

concluded therefore that the proposed technique is potentially more attractive than any other 

existing method because, along with a similar effectiveness, it also permits to account for various 

types of non-linearities and physical constraints.  

 

 
Acknowledgements 
 

This research was supported by a grant from the “Cassa di Risparmio di Perugia” Foundation 

(project number 2010.011.0490). 

 

 

References 
 

Basu, B. and Nagarajaiah, S., (2008), “A wavelet-based time-varying adaptive LQR algorithm for structural 

control”, Eng. Struct., 30, 2470-2477. 

Beeler, S.C. (2004), State-dependent Riccati equation regulation of systems with state and control 

nonlinearities, NASA Tehcnical Report. 

Breccolotti, M., Gusella, V. and Materazzi, A.L. (2007), “Active displacement control of a wind-exposed 

mast”, Struct. Health Monit., 14(4), 556-575. 

Cao, Y.Y., Lin, Z. and Ward, D.G. (2004), “Anti-windup design of output tracking systems subject to 

actuator saturation and constant disturbances”, Automatica, 40, 1221-1228. 

Casciati, F., Magonette, G. and Marazzi, F. (2006), Technology of semiactive devices and applications in 

vibrations mitigation, Wiley, New York. 

Casciati, S. and Faravelli, L. (2008), “Structural components in shape memory alloy for localized energy 

dissipation”, Comput. Struct., 86, 330-339. 

Casciati, S. and Marzi, A. (2010), “Experimental studies on the fatigue life of shape memory alloy bars”, 

Smart. Struct. Syst., 6(1), 73-85. 

Cloutier, J.R. (1997), “State dependent Riccati equation techniques: an overview”, Proceedings of the 

American Control Conference, Albuquerque, NM, 4-6 June. 

Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), “Modeling and control of 

magnetorheological dampers for seismic response reduction”, Smart Mater. Struct., 5, 565-575 

Erdem, E.B. (2001), Analysis and real-time implementation of state-dependent Riccati equation controlled 

systems, Ph.D. Dissertation, University of Illinois at Urbana-Champaign. 

Faravelli, L., Fuggini, F. and Ubertini, F. (2010), “Toward a hybrid control solution for cable dynamics: 

theoretical prediction and experimental validation”, Struct. Health Monit., 17(4), 386-403. 

Forrai, A., Hashimoto, S., Funato, H. and Kamiyama, K. (2003), “Robust active vibration suppression 

control with constraint on the control signal: application to flexible structures”, Earthq. Eng. Struct. D., 32, 

1655-1676. 

Friedland, B. (1998), “On controlling systems with state-variable constraints”, Proceedings of the American 

Control Conference, Philadelphia, PA, U.S.A., 24-26 June. 

Gusella, V. and Materazzi, A.L. (1998), Non-Gaussian response of MDOF wind-exposed structures: 

analysis by bicorrelation function and bispectrum, Meccanica, 33(3), 299-307. 

Hong, A.L., Ubertini, F. and Betti, R. (2011), “Wind analysis of a suspension bridge: identification and 

finite-element model simulation”, J. Struct. Eng.-ASCE, 137(1), 133-142. 

Indrawan, B., Kobori, T., Sakamoto, M., Koshika, N. and Ohrui, S., (1996), “Experimental verification of 

bounded-force control method”, Earthq. Eng. Struct. D., 25(2), 79-193. 

Jung, H.J., Spencer Jr., B.F. and Lee, I.W. (2003), “Control of seismically excited cable-stayed bridge 

178

http://www.scopus.com/record/display.url?eid=2-s2.0-0032093082&origin=resultslist&sort=plf-f&src=s&st1=materazzi&st2=&nlo=1&nlr=20&nls=count-f&sid=eMBzX7JG8DkF3Bd6-pa5Huc%3a343&sot=anl&sdt=aut&sl=45&s=AU-ID%28%22Materazzi%2c+Annibale+Luigi%22+6602673673%29&relpos=18&relpos=18&searchTerm=AU-ID%28%5C%22Materazzi,%20Annibale%20Luigi%5C%22%206602673673%29
http://www.scopus.com/record/display.url?eid=2-s2.0-0032093082&origin=resultslist&sort=plf-f&src=s&st1=materazzi&st2=&nlo=1&nlr=20&nls=count-f&sid=eMBzX7JG8DkF3Bd6-pa5Huc%3a343&sot=anl&sdt=aut&sl=45&s=AU-ID%28%22Materazzi%2c+Annibale+Luigi%22+6602673673%29&relpos=18&relpos=18&searchTerm=AU-ID%28%5C%22Materazzi,%20Annibale%20Luigi%5C%22%206602673673%29


 

 

 

 

 

 

Seismic response control of buildings with force saturation constraints 

employing magnetorheological fluid dampers”, J. Struct. Eng.-ASCE, 129(7), 873-883.  

Kobori, T., Takahashi, M., Nasu, T., Niwa, N. and Ogasawara, K. (1993), “Seismic response controlled 

structure with active variable stiffness system”, Earthq. Eng. Struct. D., 22(11), 925-941. 

Lim, C.W., Park, Y.J. and Moon, S.J., (2006), “Robust saturation controller for linear time-invariant system 

with structured real parameter uncertainties”, J. Sound Vib., 294(1-2), 1-14. 

Lim, C.W. (2007), “Remarks on robust stability of saturation controllers”, J. Sound Vib., 299(1–2), 363-372. 

Lim, C.W. (2008), “Active vibration control of the linear structure with an active mass damper applying 

robust saturation controller”, Mechatronics, 18, 391-399. 

Materazzi, A.L. and Ubertini, F. (2012), “Robust structural control with system constraints”, Struct. Health 

Monit., 19, 472-490. 

Mongkol, J., Bhartia, B.K. and Fujino, Y. (1996), “On linear saturation (LS) control of buildings”, Earthq. 

Eng. Struct. D., 25,1353-1371. 

Mracek, C.P. and Cloutier, J.R. (1998), “Control designs for the nonlinear benchmark problem via the 

state-dependent riccati equation method”, Int. J. Robust Nonlin., 401-433. 

Nagarajaiah, S. and Narasimhan, S. (2007), “Seismic control of smart base isolated buildings with new 

semiactive variable damper”, Earthq. Eng. Struct. D., 36, 729-749. 

Narasimhan, S. (2009), “Robust direct adaptive controller for the nonlinear highway bridge benchmark”, 

Struct. Health Monit., 16(6), 599-612 

Ohtori, Y., Christenson, R.E., Spencer Jr., B.F. and Dyke, S.J. (2004), “Benchmark control problems for 

seismically excited nonlinear buildings”, J. Eng. Mech-ASCE, 130(4), 366-385. 

Panariello, G.F., Betti, R. and Longman, R.W. (1997). “Optimal structural control via training on ensemble 

of earthquakes”, J. Eng. Mech-ASCE, 123(11), 1170-1179. 

Reinhorn, A.M., Soong, T.T., Riley, M.A., Lin, R.C., Aizawa, S. and Higashino, M. (1993), “Full-scale 

implementation of active control. II: installation and performance”, J. Struct. Eng.-ASCE, 119(6), 

1935-1960. 

Renzi, E. and Serino, G. (2004), “Testing and modelling a semi-actively controlled steel frame structure 

equipped with MR dampers”, Struct. Health Monit., 11, 189-221. 

Soong, T.T. (1990), Active structural control: theory and practice, Longman Scientific & Technical, Essex, 

England. 

Suresh, S., Narasimhan, S., Nagarajaiah, S. and Sundararajan, N. (2010), “Fault-tolerant adaptive control of 

nonlinear base-isolated buildings using EMRAN”, Eng. Struct., 32, 2477-2487. 

Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and 

McNamara, R.J. (2008), “Energy dissipation systems for seismic applications: current practice and recent 

developments”, J. Struct. Eng.-ASCE, 134(1), 3-21. 

Ubertini, F. (2008), “Active feedback control for cable vibrations”, Smart Struct. Syst., 4(4), 407-428. 

Ubertini, F. (2010), “Prevention of suspension bridge flutter using multiple tuned mass dampers”, Wind 

Struct., 13(3), 235-256. 

Varadarajan, N. and Nagarajaiah, S. (2004), “Wind response control of building with variable stiffness tuned 

mass damper using EMD/HT”, J. Eng. Mech-ASCE, 130(4), 451-458. 

Wu, Z. and Soong, T.T. (1996). “Modified bang-bang control law for structural control implementation”, J. 

Eng. Mech.-ASCE, 122(8), 771-777. 

Yan, N., Wang, C.M. and Balendra, T. (1999), “Optimal damper characteristics of ATMD for buildings 

under wind loads”, J. Struct. Eng.-ASCE, 125(12), 1376-1383. 

Yang, G., Spencer Jr., B.F., Carlson, J.D. and Sain, M.K. (2002), “Large-scale MR fluid dampers: modeling 

and dynamic performance considerations”, Eng. Struct., 24, 309-323. 

Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2007), “A bounded stochastic optimal semi-active control”, J. Sound 

Vib., 304(3-5), 948-956. 

Yoshida, O. and Dyke, S.J. (2004), “Seismic control of a nonlinear benchmark building using smart 

dampers”, J. Eng. Mech-ASCE, 130(4), 386-392. 

 

CC 

179


