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Abstract.    Identifying structural modal parameters, especially those modes within high frequency range, 
from ambient data is still a challenging problem due to various kinds of uncertainty involved in vibration 
measurements. A procedure applying an ensemble empirical mode decomposition (EEMD) method is 
proposed for accurate and robust structural modal identification. In the proposed method, the EEMD process 
is first implemented to decompose the original ambient data to a set of intrinsic mode functions (IMFs), 
which are zero-mean time series with energy in narrow frequency bands. Subsequently, a Sub-PolyMAX 
method is performed in narrow frequency bands by using IMFs as primary data for structural modal 
identification. The merit of the proposed method is that it performs structural identification in narrow 
frequency bands (take IMFs as primary data), unlike the traditional method in the whole frequency space 
(take original measurements as primary data), thus it produces more accurate identification results. A 
numerical example and a multiple-span continuous steel bridge have been investigated to verify the 
effectiveness of the proposed method. 
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1. Introduction 
 

Structural modal identification utilizing vibration test and signal processing technologies has 
become a practical tool for bridge monitoring and safety evaluation. Vibration tests provide 
structural response measurements, and signals processing methods identify structural modal 
parameters (frequency, damping, and mode shapes) from measurements. These identified 
parameters characterize the investigated structure, thus providing basic information for structural 
safety evaluation. A number of engineering case studies have been reported in literature to utilize 
the modal identification technology for bridge safety evaluation (Peeters and Roeck 2001, Ko et al. 
2002, Brownjohn et al. 2003, Grimmelsman et al. 2007, Conte et al. 2008, Siringoringo and 
Fujino 2008, Pakzad and Fenves 2009, ASCE 2011). These practical implementations advance the 
state-of-the-art of the modal identification technology, and illustrate its significant potential in 
engineering applications. 
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However, various kinds of uncertainties involved in vibration test and signal processing still 
pose a major challenge for accurate and robust structural modal identification, and hinder 
infrastructure owners’ decision to adopt current modal identification technologies in structural 
maintenance and management (Moon and Aktan 2006, Reynders et al. 2008). The following 
uncertainties, far beyond ambient noise, exist in the modal identification process: (1) Prevailing 
excitations (wind and traffic) and environmental conditions (humidity, wind and most important, 
temperature) bring uncertainties into ambient vibration or controlled force experiments; (2) 
Measurement noises rising from experimental hardware (sensors, cabling and data acquisition 
system) and experiment design (array density and distribution, data acquisition parameters, on-site 
quality control, etc.) are unavoidable; (3) various data pre-processing methods with pre-determined 
parameters for data filtering, re-sampling, windowing and averaging produce different “cleaned” 
data, and various post-processing methods may produce different identified results, depending on 
their capabilities to capture signal characteristics in the noisy environment. 

A number of data processing methods have been developed aiming at mitigating the uncertainty 
involved in measurements for modal identification (the subspace system identification method, the 
complex modal indicator function method etc (Loh et al. 2011, Catbas et al. 2004)), among which 
the PolyMAX method is a promising one and it has been widely applied in engineering practices 
(Peeters et al. 2004). It uses multiple-input-multiple-output frequency response functions (FRFs) 
as primary data to solve denominator polynomial coefficients, and then extracts structural modal 
parameters. Because FRF peaks in different structural modes may have different levels of 
magnitudes, and the PolyMAX method uses the least squares method to solve denominator 
polynomial coefficients by minimizing the FRF estimate errors in the whole frequency range, the 
identified modal parameters from the PolyMAX method especially those in the modes with small 
FRF peaks may be inaccurate. Even the weighted least squares method may somehow overcome 
that deficiency, defining the frequency-dependent weights in the least squares method is still a 
challenging problem (Verboven 2002). To overcome this deficiency of the traditional PolyMAX 
method, a Sub-PolyMAX method has been developed to implement LS solvers in subspaces of the 
whole frequency range independently (Zhang et al. 2012). The identification results from a narrow 
frequency band in the Sub-PolyMAX method are not affected by FRF data in other frequency 
bands, thus it significantly improves the accuracy of modal identification results. However, the 
narrow frequency bands have to be manually determined from the whole frequency range in the 
developed Sub-PolyMAX method. A more efficient method is proposed in this article by 
employing a novel Ensemble Empirical Modal Decomposition (EEMD) concept (Huang and Wu 
2008, Wu and Huang 2008). The EEMD method is recently developed which is able to 
automatically separate the original data to a set of IMFs with energy in narrow frequency bands, 
thus the Sub-PolyMAX method can be performed in each narrow frequency band by taking the 
IMFs as primary data, unlike the traditional PolyMAX method in the whole frequency space by 
taking original measurements as primary data, for accurate and robust modal identification. 

The paper is structured as follows. The theoretical framework of the proposed method is first 
presented. It includes the EEMD method to decompose the original measurement to a set of 
signals (IMFs), and the Sub-PolyMAX approach to identify modal parameters by taking 
the IMFs as primary data. A numerical example is investigated to demonstrate how the 
proposed method works for modal identification. Subsequently, modal identification of a 
multiple-span continuous steel bridge is performed to further verify the effectiveness of the 
proposed method. Finally, some conclusions are drawn. 
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2. Theoretical framework 
 

In the traditional PolyMAX method, all FRF data in the whole frequency range is used in the 
Jacobean least squares (LS) implementation to estimate structural modal parameters. Because the 
LS errors at frequency lines near FRF peaks have crucial influences on the LS solution, while FRF 
peak values at different structural modes generally are at different magnitude levels, modal 
identification results especially those in the modes with small FRF peaks identified from the 
PolyMAX method may be inaccurate. To illustrate such a phenomenon, a two degree of freedoms 
(DOFs) lumped mass structure is studied here. The mass of the structure lumped to each floor is 2 
kg, and the first and second floor stiffness are 1000 kN/m and 2000 kN/m, respectively, which 
makes the structure has the frequencies of 2.36 Hz and 7.60 Hz in the first and second modes, 
respectively. The Rayleigh damping with coefficients α = 0.2 and β = 0.0005 is adopted making 
the structure have damping ratios ξ1 = 1.05% and ξ2 = 1.40%. One end of the structure is fixed and 
the other is free. Vibration responses of the structure under ambient excitations are simulated by 
the Newmark method. 10% white noise without frequency band limitation is added as observation 
noise, where 10% means the standard deviation of noise is 10% of that of the simulated data. The 
frequency response function, H11, of this structure is plotted in Fig. 1. It is seen that the FRF peak 
value at the second mode is much lower than that in the first mode. Therefore, when minimizing 
the least square errors of the FRF estimates in the whole frequency range using the traditional 
PolyMAX method, the accuracy of the estimated structural modal parameters in the second mode 
will be affected. The weighted LS method is able to improve the accuracy by adopting 
frequency-dependent weighted factors, however how to define appropriate weight factors is still a 
problem even much work have been performed on this topic in the literature. It is known that the 
total FRF can be written as a sum of the FRF values at all modes as shown in Fig. 1. Therefore, if 
the original data can be decomposed to a set of signals with energy centered in different frequency 
bands, the PolyMAX will be able to perform modal identification in a subspace of the whole 
frequency range, thus producing more accurate and robust results. This is the concept of the 
Sub-PolyMAX method. 

 
2.1 Ensemble empirical mode decomposition 
 

Fig. 1 Typical frequency response function 
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Empirical Mode Decomposition (EMD) has been developed recently as an adaptive 
time-frequency data analysis method (Huang and Wu 2008, Lin et al. 2005, Xu et al. 2003, Yang 
et al. 2004, Yu and Ren 2005, Briwbe et al. 2008, Yan and Miyamoto 2006, Nagarajaian and Basu 
2009, Zhang et al. 2010). It is comparable to other analysis methods like Fourier Transforms and 
wavelet decomposition. The EMD process decomposes complicated data set into a finite and often 
small number of signals, known as intrinsic mode functions (IMFs), which are zero-mean 
amplitude frequency modulation components in the time-domain (Huang et al. 1998) 

∑ =
+=

m

i mi trtc tx
1

)()()(                            (1) 

where, x(t) is the original signal, m is the number of the IMFs, ci(t) is the ith IMF which has the 
same length as the original signal, and rm(t) is the residual. A set of IMFs are generated through the 
EMD process by iteratively averaging the minimum and maximum envelopes of the original signal 
and subtract the average values from the original data until the defined stoppage criteria are 
satisfied (Huang et al. 1998). From this process, each IMF constructed is a zero-mean time series, 
and the number of its zero-crossings is a rough indication of the mean frequency of each mode. 
Namely, the EMD in fact acts as a dyadic filter in stochastic situations involving broadband noise 
(Flandrin and Gonçalvés 2004). 

One of the major drawbacks of the original EMD method is that sometimes mode mixing exists. 
Namely a single IMF either consisting of signals of widely disparate scales, or a signal of a similar 
scale residing in different IMF components. To overcome this scale separation problem, the 
Ensemble Empirical Mode Decomposition (EEMD) has been developed to provide physically 
unique decompositions (Wu and Huang 2008). The EEMD defines the true IMF components as 
the mean of an ensemble of trials, each consisting of the signal plus a white noise of finite 
amplitude. Therefore, it is a noise-assisted data analysis method. The EEMD process is as follows: 

 
(1) Adding white noise into the original data which will populate the whole time-frequency 

space uniformly. When signal is added to this uniformly distributed white background, the 
bits of signal of different scales are automatically projected onto proper scales of reference 
established by the white noise in the background. 

(2) Decomposing the noise-added data into a series of IMFs in each trial. 
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with the symbol j denoting the jth trial. Each individual trial may produce very noisy results, 
for each of the noise-added decompositions consists of the signal and the added white noise. 

(3) Averaging a number of trials to remove the noise effect. Since the noise in each trial is 
different in separate trials, it is canceled out in the ensemble mean of enough trials (Wu and 
Huang 2008). 
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Numerous examples in the literature have illustrated that the EEMD process has powerful  
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Fig. 2 EEMD of the first floor acceleration; (a) accelerations; (b) the first IMF; (c) the second IMF 

 
Fig. 3 FFT plots of the IMFs of the first floor accelerations 

 
Fig. 4 EEMD of the second floor acceleration; (a) accelerations; (b) the first IMF; (c) the second IMF 
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property to decompose natural signals to unique IMFs. 
Fig. 2(a) plots the acceleration time history of the first floor of the 2-DOF structure described 

above. An EEMD Matlab toolbox is utilized to decompose it to a set of IMFs, two of which are 
plotted in Figs. 2(b) and (c). Fast Fourier Transforms of the original data and the IMFs are 
performed as shown in Fig. 3, which clearly illustrate that each IMF has similar scale 
corresponding to structural frequency. Similarly, Figs. 4 and 5 show the IMFs of the second floor 
accelerations and their spectral. It is seen that the structural accelerations have been successfully 
decomposed to a set of IMFs with energy in narrow frequency bands. 
 

2.2 The Sub-PolyMAX method 
 
As described above, the traditional PolyMAX method identifies modal parameters by 

minimizing the FRF estimate errors in the whole frequency range, which leads to inaccurate 
identification results especially for those in the modes with much smaller FRF peaks. It is seen in 
last section that the EEMD process automatically decomposed structural accelerations to a set of 
IMFs which are frequency modulation components, thus it is potential to use the IMFs as primary 
data to perform the Sub-PolyMAX method in narrow frequency bands, which is faster and is able 
to produce more accurate identification results than the traditional PolyMAX method. 

By using the IMFs instead of accelerations as primary data, structural modal parameters are 
identified from the Sub-PolyMAX method. The details of the method are referred to Zhang et al. 
(2012). The stabilization diagram is used to separate real and spurious modes. Its basic idea is that 
several runs of the complete pole identification process are made, by using models of increasing 
order. The pole values of the true eigenmodes always appear at a nearly identical frequency, while 
false poles tend to scatter around the frequency range. Figs. 6(a) and (b) show the stabilization 
diagrams from the Sub-PolyMAX method by taking the IMFs in the first and second modes at 
primary data, respectively. The blue curves in Fig. 6 are FFT plots of the first floor acceleration to 
provide structural modal information as a reference. It is seen that each Sub-PolyMAX running 
produces a stable solution in a mode, unlike the traditional PolyMAX method which identifies 
structural parameters in all modes once. The identified frequencies for the first and second modes 
are 2.35 Hz and 7.57 Hz, compared to the real frequencies of 2.36 Hz and 7.60 Hz, respectively. 
The MAC values for the identified mode shapes are 0.99 and 0.95, respectively. After modal 

 
 

 
Fig. 5 FFT plots of the IMFs of the second floor accelerations 

128



 
 
 
 
 
 

Structural modal identification through ensemble empirical modal decomposition 

 
Fig. 6 Stabilization diagrams, (a) the first mode and (b) the second mode (the cycles denotes stable 

poles, the point denotes unstable poles) 
 

 
Fig. 7 Synthesized and estimated FRF comparison; (a) the first mode and (b) the second mode 

 

 
Fig. 8 The investigated continuous steel bridge 

 
 
parameters are identified, the FRF values are synthesized and compared with the estimated FRF as 
a way to evaluate the accuracy of the modal identification results. Figs. 7(a) and (b) illustrate that 
the synthesized FRF curves from the Sub-PolyMAX method have very good agreements with the 
estimated FRF curves at both modes. 
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3. Modal ientification of a continuous seel bridge 
 

 Modal identification of a real bridge is further investigated to verify the effectiveness of the 
proposed method. This bridge is a 6-span continuous bridge (Fig. 8) with a length of 944 m. 
Construction of this bridge is just finished and it has not been open. It has steel box girders with 
varying sections and reinforced concrete piers. The central pier is connected to the span with 
earthquake resistant support, while other piers are partially connected to the span allowing sliding 
in the longitudinal direction. The deck has a width of 33 m with six lanes in two directions, and the 
allowed maximum vehicle velocity is 100 km/h. The bridge has long approach structures however 

 
 

 

 
Fig. 9 The instrument plan 

 

 
Fig. 10 EEMD of a measured acceleration time history 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 2 3 4 5 6 7
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
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they are not studied in this study. Ambient vibration test of the bridge has been performed with the 
instrument plan as shown in Fig. 9. The vibration signals were recorded with a sampling rate of 50 
Hz during the testing, and the analog signals were subject to a 10 Hz anti-aliasing filter before they 
were digitized. 

The observed accelerations at 8 locations are processed by the proposed method for modal 
identification. The EEMD code is first run in the Matlab environment to decompose each 
acceleration time history to a set of IMFs in the time domain. For instance, Fig. 10(a) shows the 
acceleration measured at point A in Fig 8. Typical IMFs of this acceleration produced from the 
EEMD process are plotted in Figs. 10(b), (c), and (d) respectively. It should be noted that only 
some of the IMFs are plotted here where others are neglected. It is seen from Fig. 10 that each 
IMF has its special frequency character. The FFT plots of these IMFs further illustrate this feature 
as shown in Fig. 11, in which the IMFs centered their energy at different frequency bands. It 
means that the EEMD process has successfully decomposed the original measurement to a series 
of IMFs with frequency modulation components. 
 
 

 
Fig. 11 FFT plots of the IMFs 

Fig. 12 Stabilization diagram Fig. 13 Synthesized and identified FRF comparison
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Fig. 14 Modal identification results of the continuous bridge 
 
 

After the ensemble empirical modal decomposition of the measured accelerations, the 
Sub-PolyMAX method is performed by taking the IMFs as primary data to identify structural 
modal parameters from one narrow frequency band to another until parameters in all modes are 
identified. For instance, Fig. 12 shows the stabilization diagram when using the IMF 2 as primary 
data in the Sub-PolyMAX method. It is seen that the calculated polynomial poles near the 1.23 Hz 
are stable, thus structural modal parameters in this mode are identified. The synthesized and 
estimated FRF for this mode also agreed very well as shown in Fig. 13. Figs. 12 and 13 illustrate 
the Sub-PolyMAX method has successfully been performed in a narrow frequency band by 
integrating the EEMD concept to decompose the original measurements. Similarly, by performing 
the proposed method on other IMFs as primary data, structural parameters of the multiple-span 
continuous bridge in the first five modes are identified. Each IMF produces structural parameters 
in one mode, except that the IMF 3 produces structural parameters in both the second and the third 
modes. The identified structural frequencies, damping ratios and mode shapes are shown in Fig. 14. 
It should be noted that even the measured accelerations are very weak because the bridge is still 
not open during the ambient test, structural modal parameters has been successfully identified 
from the proposed method. 
 
 
4. Conclusions 
 

A procedure integrating the EEMD method with the Sub-PolyMAX method has been proposed 
for accurate structural modal identification. The following conclusions are drawn: 
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(a) The EEMD process decomposes the original measurement to a set of IMFs with special 
frequency characters, which enable the Sub-PolyMAX method to identify structural 
parameters in narrow frequency bands by taking the IMFs as primary data, unlike the 
traditional PolyMAX method which solves structural parameters by minimizing the FRF 
estimate errors in the whole frequency space. 

(b) A multiple-span continuous bridge example has been investigated, whose results 
demonstrates that the proposed method successfully identify structural modal parameters 
even though the ambient test data are very weak. 

(c) Some details need further investigation in the future work. For instance, the EEMD 
procedure needs much computation time because a number of trials are required to cancel 
out noise. The work to improve the EEMD efficiency needs further exploration. In addition, 
the parameters including the noise level and the trial number needed in the EEMD running 
may affect the decomposition results. How to select those parameters needs further 
investigation. 
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