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Abstract.   Vibration-based damage detection methods are popular for structural health monitoring. However, 
they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are 
applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate 
structures. The attractors built from the output responses are used for the minor damage detection. After the 
damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story 
building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The 
results show that the attractor distances increase monotonously with the increase of the damage degree. 
Therefore, damages, including minor damages, can be effectively detected using the proposed approach. 
With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. 
The proposed approach will be helpful for detecting and evaluating minor damages at the early stage. 
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1. Introduction 
 

Structural health monitoring of civil engineering structures is a fundamental issue for structural 
safety and integrity, due to the fact that they will deteriorate just after they were built and put into 
services. The failure of structures will not only result in severe economic lost but may threaten the 
lives of people. Hence maintaining safety and reliable civil engineering structures for daily use is 
an extremely important issue which has received considerable attention in literature in recent years. 
In this process, damage detection becomes the key issue. In practice, damage was defined as the 
changes introduced into a system which adversely affected its current or future performance 
(Farrar 2001). Therefore changes in structural parameters have been extensively applied as 
effective tools for damage detection. Many methods are developed for this purpose. Among which, 
the vibration-based damage identification (VBDI) methods draws extensive attention and are 
deeply developed. The basic concept of VBDI is that any degradation of structural properties will 
result in changes of its vibration parameters, such as natural frequencies, mode shapes, mode 
damping ratios, etc. Pandey et al. (1991) proposed mode shape curvature (MSC) method on the 
premise that, for a given moment applied to damaged and undamaged structures, a reduction of 
stiffness associated with damage will, in turn, lead to an increase in curvature. Stubbs et al. (1995) 
developed a methodology free from normalized criteria based on the comparison of modal strain 
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energy before and after damage to locate and estimate the size of damage in flexural structures for 
which few mode shapes are available. Pandey et al. (1994) presented flexibility matrix method to 
detect the presence and location of structural damage based on changes in the measured flexibility 
of the structure. Zhang and Aktan (1995) combined certain aspects of the MSC method and change 
in flexibility method to develop the change in flexibility curvature method by considering the 
flexibility matrix as the translational displacement under a unit load at jth DOF. The basic idea is 
that a localized loss of stiffness will produce a curvature increase at the same location. Extensive 
literature reviews and advances on VBDI have been reported by Doebling et al. (1996), Sohn et al. 
(2003), Carden and Fanning (2004), and Adewuyi and Wu (2009). 

 At present, modal parameter-based damage identification methods keep the dominant position 
and are widely applied in most engineering practice for structural health monitoring. However, 
some challenges still confront the practicality of these techniques. Since modal parameters are 
usually the “global” parameters which reflect the “global” behaviors, and therefore insensitive to 
the local damage. In many cases, even when the local damage becomes very severe, those global 
parameters still show little changes, due to the stress re-distribution within the structures, which 
makes the detection of the local and small damages extremely difficult. This fact can be trace back 
to 1993, when Pape (1993) tried to identify damaged parts using statistical methods and measured 
natural frequencies. Damages were detected by assessing resonant frequencies that fall outside the 
mean standard deviations, but the shortcoming of the approach was found for its inability to detect 
smaller defects. However, as we know, the deterioration of the civil engineering structures usually 
begins from the local and small damages. Small damages gradually develop and become large 
damages and at last cause failure of the structure. For the consideration of the structural safety and 
reliability, detecting small damages is essential and useful. Also, Adewuyi and Wu (2009) found 
that the popular modal parameter based methods could be easily degraded by noises. Their 
research proved that even when 2% of noise was added into the signals, the damage identification 
results became very poor. Therefore, in order to detect miner damages to ensure the safety and 
reliability of the structures, development of other approaches is necessary, in which chaos 
attractor-based analysis seems to be a promising way. However, in many times, detection alone 
may not be sufficient for the purpose of damage evaluation and structural maintenance. In this case, 
damage requires to be further quantified. In this paper, the damage after being detected will be 
further quantified using the Kalman Filter. Thus the damage can be detected and evaluated at the 
early stage and proper relevant measurement can be applied to ensure the safety of the structures. 

 
 

2. Attractor based damage detection using chaotic excitation 
 

Recently, some new damage detection techniques have been proposed by using chaotic 
excitation and attractor analysis. In the field of nonlinear dynamics, systems are often described 
via their state space. Given infinite time, an ensemble of trajectories evolving in the state space can 
trace out a dynamical attractor which may be thought of as a geometrical object in the space to 
which all trajectories belong. The attractor of the space actually contains useful information due to 
the fact that it reflects the invariant properties of the system, and therefore draws much attention to 
the application of system classification. 

Basically, attractor-based approach requires the acknowledgement of each state variable, which 
will make it very inconvenient in practice. In steady, attractor reconstruction is often applied, with 
its advantages to allow only a small number of variables be observed in real applications. Attractor 
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reconstruction is a technique to recreate a topologically equivalent picture to the original multi-
dimensional system behavior. Considering a low-dimensional deterministic original system 
composed of d variables, attractor of the original system is obtained by plotting time series of d 
variables in d dimensional space. However, as mentioned, it is always the case that limited number 
of variables can only be observed. This limitation can be solved using the Taken’s theorem 
(Takens et al. 1981). For a time series 1x , 2x ,…, Nx of a single variable x, the embedding vector 

can be defined by 

T
miiii xxx ),,,( )1(   X    ( mNi ,2,1 )                                       (1) 

where m is embedding dimension,  is delay time and )1(  mNNm . By plotting 

(embedding) iX in m dimensional space from index i of 1 to mN , an attractor which is not the 

same with the original attractor itself but is topologically equivalent to it can be reconstructed by 
only a single variable. 

Even though white noise is often used for VBDI analysis, it cannot be used for attractor-based 
analysis, because it is not deterministic and cannot yield deterministic responses. For applying the 
attractor-based analysis, the chaotic signal as the input is usually applied to be the excitation. 
Chaotic signals possess broad band frequency domain like noise, so that they can excite desirable 
number of modes. However, unlike the noise which is a random signal, chaotic signal is a low 
dimensional deterministic signal, so that it can provide deterministic and low dimensional 
responses. Also, with the deterministic chaotic excitations, noises can be significantly reduced, 
simply by stacking and averaging. 

In the structural health monitoring field, attractors, as a special feature, were also used for the 
damage detection. Nichols et al. (2003) detected the damage by comparing the defined “features” 
based on attractors reconstructed from healthy and damaged structural responses using chaotic 
excitation. Sato et al. (2010) also proposed an attractor based damage detection method using 
chaotic excitation and recurrence analysis. Since damages, even small ones, can change the state of 
a system which can be amplified in the attractor space, damages can be detected by studying the 
amplified change of the attractor trajectories. In this paper, distances of attractors between a health 
system and a damaged one are used to describe the system change, and hence to detect damages. 
Distance of two attractors between a health system and a damaged one can be expressed as 

 
i

i
A

i
ADis DH     ( ni ,2,1 )                                       (2) 

Where i
AH  and i

AD  are two discrete points in attractor space for a healthy structure system and 

a damaged structure system respectively. Superscript i is the serial number, means the ith point, n 

is the point number, while subscript A stands for the attractor space. i
AH  and i

AD  can be further be 

expressed as ),,,( 21
i
m

iii
A hhh H  and ),,,( 21

i
m

iii
A ddd D , where m is the dimension of the 

attractor space. 
Comparing the attractors of both healthy system and damaged system and calculating their 

distance, damage detection can be realized. The attractor-based damage detection process is as 
follows: 

 
• Test the intact structure subjected to a chaotic excitation and collect its dynamic responses 
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as the baseline; 
• Observe and collect the dynamic response of the same structure but may have damage (test 

structure with unknown health status), also subjected to the same chaotic excitation; 
• Build the attractors in a higher dimensional attractor space using the attractor reconstruction 

method for the signals of both intact structure response and test structure response 
respectively; 

• Calculate the distances of the two attractors; 
• Evaluate the attractor gap between the intact and a test structures as well as evaluate its 

health condition. 
 

This process can be described in the flow chart as shown in Fig. 1. 
 
 
3. Popular attractor and corresponding chaotic signals 
 

3.1 Lorenz attractor 
 
As for the attractors, Lorenz attractor may be the most popular one. In 1963, Lorenz found the 

first chaotic attractor in a three dimensional autonomous system (Lü 2002) 

bzxyz

yxzcxy

xyax










 )(

                                                         (3) 

which is chaotic when a = 10, b = 8/3, c = 28. 
The three dimensional Lorenz chaotic signals can be seen in Fig. 2, and corresponding 

constructed attractor can be found in Fig. 3. 
As mentioned in chapter 2, attractors can be reconstructed by the signal in one direction, Fig. 4 

shows a reconstructed Lorenz attractor by only using x direction signal, with the delay 10 . 
 
 

 
Fig. 1 Flow chart of the attractor-based structural health monitoring 
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Fig. 2 Three dimensional Lorenz signals 
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Fig. 3 Constructed Lorenz attractor 
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Fig. 4 Reconstructed Lorenz attractor by only using x direction signal, 10  
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Fig. 5 Three dimensional Chen chaotic signal 
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Fig. 6 Constructed Chen attractor 
 
 
3.2 Chen attractor 
 
Chen and Ueta (1999), however, found another chaotic attractor, which is also in a simple three 

dimensional autonomous system. Its chaotic system can be mathematically described as 

bzxyz

cyxzxacy

xyax












)(

)(

                                                       (3) 

where a = 35, b = 3, c = 28. 
The three dimensional Chen chaotic signals can be seen in Fig. 5, and the corresponding Chen 

attractor can be found in Fig. 6. 
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3.3  Rössler attractor 
 
In 1976, Otto Rössler designed the Rössler attractor (Rössler 1976), which has some 

similarities to the Lorenz attractor, but is simpler and has only one manifold. The defining 
equations of Rössler system are 

)( cxzbz

ayxy

zyx











                                                                 

(4) 

where a = 0.2, b = 0.2, c = 5.7 
The three dimensional Rössler chaotic signals can be seen in Fig. 7, and the corresponding 

Rössler attractor can be found in Fig. 8. 
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Fig. 7 Three dimensional Rössler chaotic signal 
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3.4 Lü attractor 
 
Vanecek and Celikovsky (1996) classified a generalized Lorenz system family and a Chen 

system by a condition on its linear part ][ ijaA  : 02112 aa for generalized Lorenz system family 

and 02112 aa  for Chen’s system. Lü (2002), however, proposed anther chaotic system which will 

satisfy the condition 02112 aa . The Lü system Equations are 

bzxyz

cyxzy

xyax









 )(

                                                                 (5) 

where a = 36, b = 3 while c can vary. When 0.177.12  c , the attractor generated by this system 
is similar to the Lorenz attractor, while similar to Chen attractor when 5.280.23  c , but has a 
transitory shape when 0.220.18  c . 

 
 

4. Minor damage quantification using Kalman Filter 
 
Kalman filtering is a powerful tool in the state estimating problem. It provides an efficient 

computational method to estimate the state of a process. After it was first proposed by R.E. 
Kalman in 1960, it was extensively studied and applied in many areas. In civil engineering filed, it 
is often used for the damage identification for structural health monitoring. 

For a system, it has a state transfer function as 

1 1t t t t tx x w                                                                (6) 

where tx is the state vector, t is the state transfer matrix, t is the noise effect matrix and tw is 

the system noise vector. 
For Structural monitoring, we will have the observation equation as 

z t t t tx v H                                                                (7) 

where z t is the observed vector, tH is the observation matrix, and tv the observation noise vector. 

In the application to a system identification problem, state transfer matrix can be the unit matrix, 
i.e., =t  , while tx  is still the unknown parameter vector. If we further assume that the system 

noise is also zero, which means we only consider the noise in the observation vector, then the 
simplified Kalman filter can be obtained as 

1ˆt tx x                                                                     (8) 

1t tG P                                                                   (9) 

ˆ ( )t t t t t tx x z x  B H                                                      (10) 

t t t t t P G K H G                                                        (11) 
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1= ( )T T
t t t t t t t

B G H H G H R                                              (12) 

where tP  is the state vector covariance matrix, while tR is the covariance matrix of the 

observation noise vector. 

ˆ ˆE[( )( ) ]T
t t t t tx x x x  P                                                    (13) 

E[( )( ) ]T
t t t t tx x x x  G                                                    (14) 

E[ ]T
t t tv vR                                                             (15) 

For a structure, its motion equation is 

y y y F  M C K                                                     (16) 

Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and F is the 
out excitation force vector. 

Then we can have corresponding equation for the baseline structure 

1 1 1
ik k ik k ik k

n n n
s s s s s s

i
k k k

m y c y k y f
  

                                               (17) 

and the one for the damaged structure 

1 1 1
ik k ik k ik k

n n n
d d d d d d

i
k k k

m y c y k y f
  

                                                 (18) 

Subtracting Eq. (18) from Eq. (17) yields 

1 1 1

( ) ( ) ( ) 0
ik k ik k ik k ik k ik k ik k

n n n
s s d d s s d d s s d d

k k k

m y m y c y c y k y k y
  

                             (19) 

Let 

s d
ik ik ikm m m                                                          (20) 

s d
ik ik ikc c c                                                            (21) 

s d
ik ik ikk k k                                                           (22) 

Substituting Eqs. (20)-(22) into Eq. (19) gives 

1 1 1 1 1 1

( ) ( ) ( )
ik k ik k ik k ik k k ik k k ik k k

n n n n n n
d d d d d d s s d s s d s s d

k k k k k k

m y c y k y m y y c y y k y y
     

                       (23) 

Because s
ikm , s

ikc , s
ikk  are known and 

k

sy , 
k

sy , 
k

sy  as well as 
k

dy , 
k

dy , 
k

dy  are all observed 

values, therefore Eq. (23) can be used as the observation equation in time marching integration 
scheme. 

Eq. (23) can be rewritten to 
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1 1 1
ik k ik k ik k

n n n
d d d d d d

i
k k k

b m y c y k y
  

                                             (24) 

where 

              
1 1 1

( ) ( ) ( )
ik k k ik k k ik k k

n n n
s s d s s d s s d

i
k k k

b m y y c y y k y y
  

                                    (25) 

Eq. (24) can then be expressed as 

[ ]{ } [ ]{ } [ ]{ }d d d
i ik ik ikb m y c y k y                                       (26) 

For simplicity, we assume the damage only has the stiffness decrease, but no change for the 
mass and damping, then Eq. (26) can be simplified into 

[ ]{ }d
i ikb k y                                                            (27) 

Since [ ]{ }d
ikk y can be transformed into [ ( )]{ }dy k  , where [ ( )]dy  is a matrix 

composed from the components of displacement vector of the damaged structure while { }k  is 
the vector indicating the stiffness change of the structure, Eq. (27) can be rewritten as 

[ ( )]{ }d
ib y k                                                        (28) 

Eq. (28) is the observation equation, using the Kalman Filter Eqs. (8)-(12), the structural 
stiffness change { }k  can be obtained, thus the damage can be evaluated. 

 
 

5. Simulations 
 
In order to verify the feasibility of the attractor-based damage detection method using chaotic 

excitations, simulations are conducted. A model of a five-story structure is used for the numerical 
simuolations. The mass of each floor is assumed to be concentrated to a mass point as shown in 
Fig. 9, and defined to be 100 kg respectively, while the stiffness of each floor is defined to be 

6101 KN/m. An exciter is placed on the top of the structure to produce chaotic signals, as 
depicted in Fig. 9. 

 
5.1 Damage detection 
 
In the simulation, the sampling frequency is selected as 200 Hz, a chaotic signal in the x 

direction is generated by the Lorenz system. Fig. 10 shows the generated Lorenz signal in x 
direction. In order to avoid the initial transitional part of the signal, a part of the signal (10 s long) 
is segmented as the input external force, which can be seen in Fig. 11. 

In the dynamic analysis of this structure, mode superposition method is applied. The modal 
damping ratio of each mode is adopted as 0.03. The dynamic responses of both acceleration and 
displacement at the 5th floor can be found in Figs. 12 and 13 respectively. 

The output signals can be used for reconstruction of the attractors. In this case, the delay is 
adopted as 10 . The reconstructed attractor using the 5th floor acceleration of the intact 
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structure can be seen in Fig. 14, while the reconstructed attractor using the 5th floor acceleration of 
the damaged structure (5% stiffness reduction at 1st floor) can be seen in Fig. 15. It can be found 
that due to the damage of the structure, the reconstructed attractors changed a little from the intact 
one. 

 
 

Fig. 9 A five-story model under a external force at the top 
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Fig. 10 Lorenz signal in x direction 
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Fig. 11 Input external force 
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Fig. 12 Acceleration at the 5th floor of intact structure 
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Fig. 13 Displacement at the 5th floor of intact structure 
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Fig. 14 Reconstructed attractor of 5th floor 
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Fig. 15 Reconstructed attractor of 5th floor 
acceleration for damaged structure 

 
 
Since the damage of the structure will cause the change of the attractor, the deviation of the 

attractors can be evaluated by calculating its distance. Fig. 16 shows the attractor distance between 
a damaged and the intact structure. In Fig. 16, the 5th floor is assumed to be damaged. It can be 
found that with the increase of the damage, the attractor distance increases monotonously at the 
same time for each floor. 

It should be noted that above analysis is based on the assumption that the input signal is not 
polluted by the noise. However, in real application, noise is always inevitable. Hence the case with 
noise should be considered. In this paper, in order to study the noise effect, Gaussian distributed 
noise with the mean 0 and standard deviation 3 is added into the chaotic input signal. The input 
force signals with and without noise can be seen in Fig. 17. The noise to signal ratio is about 15%. 

For damaged structure, mode superstition method is also applied. Even though the noise will 
affect the structural response greatly, its effect can be alleviated significantly by stacking structural 
responses for many times, and therefore the noise effect can be eliminated. This is because that the 
input chaotic signal is a deterministic signal and the noise is a random time process with zero mean. 
Fig.18 shows the structural acceleration responses at the 5th floor with and without noise. In the 
figure, the noisy responses are stacked by 1000 times and then averaged. It can be found that the 
response signals with and without noise are totally overlapped. As the result, the calculated 
attractors should also be the same. In this case, even with the noise considered, the attractor based 
damage detection algorithm still works. 
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Fig. 16 Attractor distance with respect to the damage percentage when the 5th floor is damaged 
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Fig. 17 The input force signals with and without noise 
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Fig. 18 Structural acceleration responses at the 5th floor with and without noise 

 
 
5.2 Damage quantification 
 
With the proposed attractor-based damage detection method using chaotic excitation, damages, 

especially the minor damages, can be detected. After the damage is detected, it can be further 
identified using the Kalman Filters, so that the damage can be evaluated correctly at the early stage, 
and give the guidance for the maintenance of the structure. 
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In this simulation, for the structure shown in Fig. 9, [ ( )]{ }dy k  in the observation equation 
is 

11 2

22 1 2 3

33 2 3 4

44 3 4 5

55 4 5
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0 0 0
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0 0 0
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                     (29) 

For using Kalman Filter, time step integration was applied. The duration of the time step is 
0.005 s, the damping ratio is still 0.03, and the damping matrix is calculated as MKC 2 . 
Structural damages are identified using Kalman Filter subjected to the chaotic excitation at the top. 
The results are as follows 

Table 1 shows the structural stiffness identification using the Kalman Filter for three different 
conditions. From which, it can be found that the Stiffness and its reduction, i.e., the damage can be 
identified correctly and precisely, even the damage rate is only 5%. As an example, Table 2 shows 
the stiffness identification for the 3rd column with respect to different damage rate. In these two 
tables, “Error” indicates the difference between the real damage rate and the identified damage rate 
(error = identified damage rate(%)-real damage rate(%)). It can be seen that minor damages can be 
identified effetely. 

 
 

Table 1 Stiffness identification using Kalman Filter 

Condition story 
Original 
stiffness 

(KN/mm) 

Present 
stiffness 

(KN/mm) 

Damage rate 
(%) 

Identified 
stiffness 

(KN/mm) 

Identified 
damage rate 

(%) 
Error 

Intact 
structure 

5 1000 1000 0 999.5494 0.04506 0.04506 

4 1000 1000 0 999.3727 0.06273 0.06273 

3 1000 1000 0 999.4318 0.05682 0.05682 

2 1000 1000 0 999.3081 0.06919 0.06919 

1 1000 1000 0 999.4541 0.05459 0.05459 

Damage 
at the top 
column 

5 1000 950 5 949.6068 5.03932 0.03932 

4 1000 1000 0 999.3704 0.06296 0.06296 

3 1000 1000 0 999.4264 0.05736 0.05736 

2 1000 1000 0 999.2875 0.07125 0.07125 

1 1000 1000 0 999.4439 0.05561 0.05561 

Damage 
at the 3rd 
column 

5 1000 1000 0 999.5652 0.04348 0.04348 

4 1000 1000 0 999.3921 0.06079 0.06079 

3 1000 950 5 949.4987 5.05013 0.05013 

2 1000 1000 0 999.3124 0.06876 0.06876 

1 1000 1000 0 999.4464 0.05536 0.05536 
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Table 2 Stiffness identification for the 3rd column at different damage rate 

Condition story 
Original 
stiffness 

(KN/mm) 

Present 
stiffness 

(KN/mm) 

Damage rate 
(%) 

Identified 
stiffness 

(KN/mm) 

Identified 
damage rate 

(%) 
Error 

Damage 
at the 3rd 
column 

3 1000 990 1 989.4459 1.05541 0.05541 

3 1000 980 2 979.4596 2.05404 0.05404 

3 1000 970 3 969.473 3.0527 0.0527 

3 1000 960 4 959.486 4.0514 0.0514 

3 1000 950 5 949.4987 5.05013 0.05013 

3 1000 920 8 919.5348 8.04652 0.04652 

3 1000 900 10 899.5573 10.04427 0.04427 

3 1000 850 15 849.6079 15.03921 0.03921 

3 1000 800 20 799.6512 20.03488 0.03488 

 
 
6. Conclusions 
 
     In this paper, a damage identification approach is proposed. Chaotic signals are applied as the 
input, i.e., the external excitation forces. The reconstructed attractors are built to describe the 
dynamic characteristics. The distance between the attractor of a testing structure and the one of a 
baseline intact structure is used to detect the damage. After its detection, it can be further 
quantified with the Kalman filter for evaluation. Simulations to a five story building model 
subjected to a chaotic signal are conducted. Results show that the proposed approach can 
effectively detect not only the certain level of damages but even a very minor damage. After that, 
damages of about 5% or lower can be quantified successfully. It shows that the proposed damage 
identification method can do the work very well. It can help to identify minor damages at the early 
stage. Thus the structure can be repaired and maintained in time and its safety and reliability can 
be ensured. 
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