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Abstract.    In this paper we apply Monte Carlo Filter to identifying dynamic parameters of structural 
systems and improve the efficiency of this algorithm. The algorithms using Monte Carlo Filter so far has not 
been practical to apply to structural identification for large scale structural systems because computation 
time increases exponentially as the degrees of freedom of the system increase. To overcome this problem, 
we developed a method being able to reduce number of particles which express possible structural response 
state vector. In MCF there are two steps which are the prediction and filtering processes. The idea is very 
simple. The prediction process remains intact but the filtering process is conducted at each node of structural 
system in the proposed method. We named this algorithm as relaxation Monte Carlo Filter (RMCF) and 
demonstrate its efficiency to identify large degree of freedom systems. Moreover to increase searching field 
and speed up convergence time of structural parameters we proposed an algorithm combining the Genetic 
Algorithm with RMCF and named GARMCF. Using shaking table test data of a model structure we also 
demonstrate the efficiency of proposed algorithm. 
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1. Introduction 
 

Recently many large scale structures have been constructed. Those are essential infrastructures 
to support urban functions of megacities. Because to secure their seismic reliability is 
indispensable for the safety of the whole society, it is important to detect even a minor damage to 
these structures as early as possible after an earthquake occurrence. One of the methods to detect 
damage to structures is the system identification technique to identify dynamic parameters of 
structural systems using observed responses, in which the Kalman Filter (Kalman1960) has been a 
well known technique. This is a recursive algorithm that estimates the first and second moments of 
the state vector for a linear system under the assumption of Gaussian uncertainty of observation 
and system noises. To overcome the limitations imposed by the linearity, a series of studies have 
been carried out by many researchers, including Yun and Shinozuka (1980), Hoshiya and Saito 
(1984), Loh and Chung (1993), Smyth et al. (1999), Sato and Kaji (1998), Sato and Takei (1998) 
and Takaba and Katayama (1996).
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One of the most well-known algorithms is the extended Kalman Filter (EKF) in which we use a 

linearization technique for the system and observation equations using the first order Taylor 

expansion at the mean value of system parameters. To overcome instability problems caused by 

linearization of nonlinear problems in this method the Unscented Kalman Filter is proposed 

(Simon et al. 1997) in which several points distributing near mean value are used to calculate a 

new mean value and variance to the next step. However, these methods still use the Gaussian 

assumption to calculate the likelihood of state vector from a given observation. The boot strap 

method (Gordon et al. 1993) known as a particle filter (Doucet et al. 2001), was proposed to 

estimate the state variables with nonlinear and non-Gaussian distribution characteristics. The basic 

concept of this method is that the probability density function of state variables conditioned with 

observation data is approximated by particles. At the almost same time the boot strap method 

developed, Kitagawa (1996) proposed independently the Monte Carlo Filter (MCF) with the same 

concept. In this paper we use a word of MCF instead of the particle filter. This method has great 

potential for nonlinear and non-Gaussian system identification and provides versatile filtering 

approaches to estimate the system parameters. Many system identification algorithms using the 

MCF have been developed and achieved good successes in structural identification fields by many 

researchers such as Sato and Kaji (2001), Yoshida and Sato (2002), Ching et al. (2006), 

Chowdhury et al. (2012), even a nonlinear system identification problem (Namdeo and Manohar 

2007), three dimensional grand water flow problem (Chang et al. 2012) and a machine fault 

detection problem (Samanta 2012). However, these methods have not been practical to apply to 

structural identification for large degree of freedom systems because of exponential incensement 

of computation time as the system becomes very large. This is because the classical MCF had a 

following problem. In the MCF the probability density function of the state vector is expressed by 

many realizations, called particles. The number of combinations of state values increases 

exponentially as the degrees of freedom increases. Therefore we have to generate exponential 

order of particles to assign enough variation to particles. This results in extreme increase of 

computation time. In this paper, to overcome this problem, we developed an efficient structural 

identification algorithm applicable to large degree of freedom systems by improving the filtering 

process of MCF algorithm. Moreover we improved convergence speed to the true value by 

combining Genetic Algorithm (GA) (Holland 1975) with the proposed method. 

 

 

2. Brief explanation of classical Monte Carlo Filter 

 
The general state space model is described by the state transfer and observation equations as 

follows 

    (       )                              (1) 

    (     )                             (2) 

in which,   is the discrete time step,    is the state vector,    is the observation vector,    is 

the system noise vector and    is the observation noise vector which is assumed to be expressed 

by 

    
  (     )   (     )                       (3) 
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The MCF can be applied even if the state space model is non-linear and non-Gaussian. In the 

MCF, the probability density function of the state vector is expressed by many realizations, called 

particles and of which time marching behavior is calculated step by step. The MCF is therefore an 

algorithm to identify particles which express the conditional probability density function  (  |  ) 
instead of identifying the estate vector    directly. In which   =*            +. We called 

 (  |    ) as the prediction distribution and  (  |  )  as the filter distribution, and each 

probability density function is approximated by   realizations as follows 

  
( )
 ,  

( )
    

( )
      

( )
  -   (  |    )                 (4) 

  
( )
 ,  

( )
    

( )
      

( )
  -  (  |  )          (5) 

in which   
( )

 and   
( )

 are respectively the  th prediction and filter particles which approximate 

prediction and filter distributions. The MCF algorithm is summarized as follows 

1. Generate   initial particles   
( )

 (         ) using the given initial probability density 

function   (  ).   is the number of particles used in MCF. 

2. Repeat the following steps until the end of steps after setting    . 

(a) Generate   samples of system noise   
( )

 using the system noise probability distribution 

function  (  ). 
(b) Calculate the prediction particle by 

  
( )
  (    

( )
   

( )
)                            (6) 

(c) Calculate the likelihood of each particle by 

  
( )
  (  |  

( )
)   ( (     

( )
)) |

  

   
|                  (7) 

in which   is the probability density function of observation noise. 

(d) Generate   
( )

 by resampling   
( )

 based on   
( )

 as follows 

  
( )    

( )
 with the probability 

  
( )

∑   
( ) 

   

         (8) 

in which the total sum of   is restricted to be equal to  . 

(e) Set  =     and return to (a) until the end of time step. 

 

 
3. System and observation equations 

 

We formulate the state transfer and observation equations for a N degrees of freedom shear 

frame structure. The equation of motion for this system is given by 

  ( ̈   ̈ )     ̇       (     )(     ̇            )           (9) 

in which,    is the mass of node  ,    and    are respectively the damping coefficient and 
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stiffness of structural element  . Node and structural element number are assigned from the 

bottom.  ̈ ,  ̇  and    are the relative acceleration, velocity and displacement of node   to the 

ground.    is the relative displacement between neighboring nodes defined by           . 

 ̈  is the ground acceleration. For the case of     we assign         and  ̇     .     is 

the Kronecker’s delta. We define the state and observation vectors as follows 

 

   *         ̇            +
     (10) 

   *         ̇      +
                             (11) 

The state transfer equation is expressed by the following equation 

        ∫  (    )  
 

   
                     (12) 

in which   is expressed as follows 
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 }

  
 

  
 

  (13) 

When the relative displacement and velocity are observed, the observation equation is 

              (14) 

in which   is a (     ) matrix given by 

  [

 
 

 
 

]           *
    
    

+                 (15) 

We can apply the MCF to structural identification using Eqs. (12) and (14) as the state space 

model. 

 

 

4. Proposed algorithm 
 

In the past application of MCF the state vector is a vector with the dimension of 4  in the case 

of a   degrees of freedom system, so each particle is composed of   set of 4 state values; 

displacement and velocity of each node, as well as stiffness and damping coefficient of each layer. 

As the degree of freedom increases, the number of combinations of 4   state values increases 

exponentially. Therefore, to assign enough variation to particles to choose proper candidates of the 

state vector, we have to generate exponential order of particles. This results in extreme increase of 

computation time. Therefore the classical MCF is not practical to apply to structural identification 
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for large degree of freedom systems. 

In this paper, we developed a method to overcome this problem. In the proposed algorithm we 

modified the calculation of likelihood and resampling of particles in the MCF algorithm. Not 

resampling particles based on the likelihood of prediction particles of whole system we conduct 

resampling at each node or layer based on the likelihood of particles composed of system variable 

at a node or layer. We name this algorithm as the relaxation MCF (RMCF) algorithm. The RMCF 

algorithm consists of the following steps: 

1. Generate   initial particles   
( )

 (         ) using the given initial probability density 

function   (  ). 
2. Repeat the following steps until the end of time steps after setting    . 

(a) Generate   samples of system noise   
( )

 using the system noise probability distribution 

function  (  ). 
(b) Calculate the prediction particle by 

  
( )
  (    

( )
   

( )
)                           (16) 

(c) Subdivide the predicted particles   
( )

 into   components composed of the state variables at 

each node and layer     
( )
 (         ) in which   

( )
 and     

( )
 are defined by 

  
( )
 ,    

( )
       

( )
       

( )
-
 
                   (17) 

    
( )
 *    ̇       + 

( )
   (         )        (18) 

And repeat the following steps for node index from     to     

i. Calculate the likelihood of     
( )

 by 

    
( )
  ( (         

( )
)) |

  

     
|                     (19) 

in which      *    ̇ + (        ) 

ii. Generate     
( )

 by resampling     
( )

 based on     
( )

 as follows 

    
( )      

( )
 with the probability 

    
( )

∑     
( ) 

   

                (20) 

iii. Return to i. 

(d) Recompose   
( )

 as expressed by   
( )
 ,    

( )
       

( )
       

( )
-
 
 for each index   (we call 

this is the assembling process) in which we consider two cases. Case 1 is just to recompose   
( )

 

by assembling     
( )
 (         ) for an arbitrary assigned order of  , Case 2 is to recompose 

  
( )

 by assembling     
( )
 (         ) for   which is arrayed in order of lage likelihood of               
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each particle. 

(e) Set       and return to (a) until the end of time step 

In this method each prediction particle at a node and layer  , i.e.,     
( )
 (         ), is a 4 

dimensional vector and only composed of 4 state variables as defined by Eq. (18). This means that 

the necessary number of particles in the filtering process defined by Eq. (20) is equal to the 

number of particles which can filter the particles for a single degree of freedom system. If the total 

number of particles for identifying a single degree of freedom system is   the total number of 

particles applying RMCF to a   degree of freedom structural system becomes enough with   

multiply  . If we use the original MCF for identifying the   degree of freedom structural system 

we need to generate    combination of particles. Based on this proposed algorithm we can 

reduce dramatically the computation time. However the deficit is that a recomposed filtered 

particle of the structural system   
( )

 dose not satisfy exactly the equation of motion at the time 

step   and has a small residual error. This deficiency is not so essential because we can assume 

that this error is a part of the system noise to obtain prediction particles in the next time step 

    using Eq. (16). 

 

4.1 Numerical example 1 
 

Through the following numerical example, we demonstrate the efficiency of the RMCF 

algorithm. The structural model used is a 10 degrees of freedom system. The all nodes have the 

same mass, damping coefficient and stiffness which are respectively 123.02 (kg), 68 .606 

(N sec/m), 24008.69 (N/m). The input motion is the El Centro (NS1940) accelerogram whose 

maximum acceleration is modified to 25(gal). First, we simulate the structural responses and we 

use these structural responses of all nodes as observation data adding a time history of white noises 

with 3% noise of signal ratio to root mean square of the structural responses. The initial values of 

the unknown parameters    and    are defined as one half of the true values. The number of 

particles used is 1000 for each node. We compare effect of two assembling process to recompose 

the filtered particles of the whole system,   
( )

, on the numerical convergence speed. 

Fig. 1 shows the distribution of likelihood of particles at a node and layer, as example     
( )

 

(paticle at 7 node and layer), at 15 seconds. 

In Case 1 there is no relationship between the array number of particle   and the likelihood of 

the particle, whereas we can see a strong correlation between them if we use the process to 

rearrange particle array with respect to the order of their likelihood as shown in Case 2. These 

distribution characteristic are also seen in the relationship between the particle number and 

likelihood at all other nodes. Fig. 2 shows the distribution of likelihood of   
( )

 (a recomposed 

particle expressing filtered state vector) at 15 seconds. The width of likelihood variation is large 

and there are few particles with large likelihood in Case 1, whereas there are more particles with 

larger likelihood in Case 2 than those in Case 1. From this figure we can see that RMCF can 

intentionally generate particles with large likelihood by rearranging the array of filtered particle of 

each node and layer     
( )

 before assembling to recompose   
( )

. Fig. 3 shows the time history of 

mean of the identified particles for stiffness in the layer with odd numbers. Fig. 4 shows the time 

history of probability density function of stiffness in the first layer. Convergence time of Case 2 to 

the true value is faster than that of Case 1. Execution time of the developed program depends on a 

computer used but with CPU speed of 1.2 GHz it needs 5 minutes 36 seconds in Case 1 and 5 
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minutes 56 seconds in Case 2. Computation time in Case 2 is a little bit longer than Case 1 because 

of rearranging the array of     
( )

 before recomposing   
( )

. But considering improvement of 

convergence speed, this increase of computation time is not disadvantage. 

Although we conducted structural parameter identification for the same structure model using 

the classical MCF, we could not identify even if we used 40000 particles with a computation time 

of 2 hours and 30 minutes. This shows that the proposed method can identify a large degrees of 

freedom system very efficiently. 

 

 

(a) Case 1 
 

(b) Case 2 

Fig. 1 Distribution of likelihood of     
( )

 (7 node and layer) at 15seconds 

Case 1: No ordering of particles     
( )

 at each node and layer (random distribution) 

Case 2: With ordering of particles     
( )

 at each node and layer with respect to their likelihood values 

 

 
 

 
(a) Case 1 

 
(b) Case 2 

Fig. 2 Distribution of likelihood of recomposed particles   
( )

 from each node and layer particles     
( )

 

(i=1,2,   ) 

Case 1: No ordering of particles     
( )

at each node and layer (random distribution) 

Case 2: With ordering of particles     
( )

at each node and layer with respect to their likelihood values 
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(a) Case 1 

 
(b) Case 2 

Fig. 3 Time histories of mean of identified stiffness at odd number nodes (10 degree of freedom system) 

Case 1: No ordering of particles     
( )

at each node and layer (random distribution) 

Case 2: With ordering of particles    
( )

 at each node and layer with respect to their likelihood values 

 
 

 (a) Case 1 
 

(b) Case 2 

Fig. 4 Time history of probability density function of particles at node and layer 1 

Case 1: No ordering of particles     
( )

at each node and layer (random distribution) 

Case 2: With ordering of particles     
( )

at each node and layer with respect to their likelihood values 

 

 
5. Combining genetic algorithm with the proposed algorithm 
 

A study to investigate the similarity between Genetic Algorithm (GA) and Monte Caro Filter 

was firstly done by Higuchi (1996). Both MCF and GA are algorithms to reconstruct a set of 

realization expressing the state values from a random set of initial values. We improved 

convergence speed to the true value by combining GA with the proposed RMCF (abbreviate as 

GARMCF). In this method we introduce the mutation and crossover operations into RMCF to 

widen the searching area of structural parameters in RMCF. Mutation generates particles beyond 

the limit of particle distribution in the proposed RMCF. Crossover gives more variation to 

particles by exchanging components between two state values. Based on these GA operations the 

GARMCF generate particles which cannot be generate by RMCF and can improve convergence 

speed of proposed algorithm. In this study we apply mutation operation for both stiffness and 
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damping coefficient and crossover operation only for damping coefficient. The proposed method 

is consisted of the following steps assuming that the Case 2 process in RMCF is effective: 

 

1. Generate the initial particle distribution   
( )

 base on the initial probability distribution 

function   (  ) and set     

2. Repeat the following steps until the end of time steps. 

 

(a) Generate the system noise   
( )

 based on the probability density function  (  ) 

(b) Calculate the prediction particle by 

  
( )
  (    

( )
   

( )
)        (21) 

(c) Chose   particles with large likelihood from the mother set of     
( )

 and assemble a set of 

filter particles   ,    
( )
       

( )
-. Remaining     particles are intact and just go through 

the RMCF process. A set of prediction particles obtained by substituting   into Eq. (21) is 

defined as   *  
      

 +. 

(d) Generate a new set of filter particles by applying GA operation to   and calculate a new 

set of prediction particles  ́  { ́ 
     ́ 

 } by using Eq. (21) 

(e) Subdivide the prediction particles   
( )

 and  ́ 
( )

 into each node state variables                  

,    
( )
       

( )
       

( )
- and , ́   

( )
    ́   

( )
    ́   

( )
-. And repeat the following steps for node       

index   from 1 to  : 

i. Calculate the likelihood     
( )

 and  ́   
( )

 of     
( )

 and  ́   
( )

 by 

        
( )
  ( (         

( )
)) |

  

     
|                       (22) 

     ́   
( )
  ( (      ́   

( )
)) |

  

     
|                       (23) 

ii. Compare     
( )

 and  ́   
( )

. When  ́   
( )

 is larger than     
( )

 then replace     
( )

 with  ́   
( )

. 

iii. Generate     
( )

 by resampling     
( )

 based on     
( )

 as follows 

    
( )      

( )
 with the probability 

    
( )

∑     
( ) 

   

                  (24) 

(f) Rearranging array of     
( )

 as the order of large likelihood (original numbering of   is 

arranged as the order of large likelihood) and recompose   
( )

 by assembling each node 

particles as ,    
( )
       

( )
       

( )
-. 

(g) Return to (a) by setting      . 

 
5.1 Numerical example 2 
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Through the following numerical example we demonstrate the efficiency of the GARMCF. The 

structural model used is 20 degrees of freedom system. Conditions for identifying structural 

parameters are the same as given in the first numerical example (10 DOF). Two cases are 

considered. Case 1 is an application of RMCF and the other is the case of using GARMCH (Case 

2). The number of particles used is 1000 at each node and layer. The number of particles to adapt 

the GA operation is 100 and crossover rate is 30% at each node and layer. Fig. 5 shows the time 

history of mean of the identified particles for stiffness. Fig. 6 is the time history of probability 

density function of the stiffness at the first layer. From both of figures we can see that convergence 

times to the true value in Case 2 are earlier than Case 1. Execution times of programs using the 

same computer in the first numerical example are 19 minutes and 49 seconds in Case 1 and 21 

minutes and 38 seconds in Case 2. Computation time in Case 2 is longer than Case 1 because of 

the GA operation and comparison of likelihood in the GARMCF but considering improvement of 

convergence speed this increase of computation time is not disadvantage of GARMCF algorithm. 

These results show us that just simple implement of GA algorithm into RMCF algorithm improves 

dramatically computation efficiency. 

 

  
  

(a) Results only applying RMCF               (b) Result applying GARMCF 

 

Fig. 5 Time histories of mean of identified stiffness at every five nodes (20 degrees of freedom system) 

 
5.2 Application to experimental result 

 
5.2.1 Brief introduction of the experiment 
Here we apply the proposed GARMCF algorithm to identify model structural parameters using 

shaking table test data. A shaking table test was conducted for a model structure as shown in Fig. 

7(a). This model is a five layered frame structure, and placed a base isolator as a column of model 

structure at four corners of each layer. As shown in Fig. 7(b) accelerometers and laser 

displacement meters are placed at symmetry points of model front and back sides in each layer. 

Sampling speed was 500Hz. In the experiment two types of base isolator were selected. One is a 

simple rubber bearing to obtain linear response behavior of structure and the other is a lead 

plugged rubber isolator to extract nonlinear behavior. In this paper we only use the experimental 

data of linear case. Input motion is an observed earthquake record at East Kobe Bridge during 

1995 Kobe earthquake of which amplitude modified to 60 gal. 
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(a) Result only applying RMCF 

 
 

(b) Result applying GARMCF 

Fig.6 Time history of probability density function of particles at node and layer 1 

 
5.2.2 Structural parameter identification of experimental model structure 
We used only absolute acceleration data of all layers and base of which frequency components 

were modified by using a band pass filter with  .5      band. Acceleration relative to base was 

obtained by extracting the base acceleration from the absolute acceleration of each layer. The 

relative velocity and displacement of each layer were calculated from relative accelerations by 

integrating using Newmark 𝛽 method. 

The mass of fifth layer is 2.6224 t, and the other layer mass has same value of 2.0968 t. We use 

calculated relative velocity and displacement as the observed values to identify the structural 

parameters. We assume uniform initial distributions of structural parameters, 𝑈( .  5. ) for 

damping coefficients and 𝑈( .      . ) for stiffness. The number of particles at each node is 

1000. The number of particles applying GA operation is 100 and crossover rate is 20%. 

Fig. 8 shows the time histories of mean value of filtered particles for stiffness and damping 

coefficient of each layer. Fig. 9 is the time history of probability density function of both values at 

the first layer. For damping coefficients time history is rather fluctuate but for stiffness it becomes 

stable during the time range from 15 to 25 seconds. 

We also conduct analyses to check the efficiency of identified results by simulating model 

responses to the given input earthquake motion. The model structural parameters used for analyses 

are mean value of stiffness and damping coefficient between 15 and 25 seconds. Fig. 10 show the 

comparison between observed and calculated time history of relative acceleration at node 1 and 5 

as well as hysteresis curve of layer 1 and 5. 
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Fig. 7(a) A five layered structural model on a shaking 

table. Each mass of layer is supported by four base 

isolators at the four corners of each layer 

 
Fig. 7(b) Schematic positioning of accelerometers and 

displacement meters 

 

 
(a) Stiffness at each floor 

 
(b) Damping coefficient at each floor 

Fig. 8 Time histories of mean values calculated from filtered particles using GARMCF 

 

 

(a) Stiffness 

 

(b) Damping coefficient 

Fig. 9 Time histories of probability density function of stiffness and damping coefficient at the first floor 
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(a) Acceleration response time history at node 5 

 

(b) Hysteresis loop of fifth floor 

 

(c) Acceleration response time history at node 1 

 

(d) Hysteresis loop of first floor 

Fig. 10 Comparison of time histories of acceleration response and hysteresis loops between observed and 

calculated results (Calculated results are obtained using mean value of identified time history of 

stiffness and damping coefficient during 15-25sec) 

 

 

Because identification of damping coefficients is unstable we can see a little bit difference on 

the amplitude but because of good stability of identified stiffness overall response tendencies in 

phase and gradient of hysteresis loops are well agreed with experimental data. In the structural 

parameter identification process using RMFC damping coefficients go into sometimes negative 

region and those time history fluctuate strongly, even divergence phenomenon can be seen. 

Therefore we showed here only the results using GARMCF algorithm. One reason of occurring 

unstable identification process is that we modeled the complicated structural system by a simple 

shear vibration system. But searching process of solution by MCF has not been clearly 

investigated including convergence to local minimum solution we have to study more to apply 

MCF for practical problems. 

 

 

6. Conclusions 
 
By modifying algorithm applying the classical Monte Carlo Filter to structural identification 
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problems we developed a new algorithm applicable to large structural systems identification. The 

idea is to calculate likelihood of prediction particles for resampling of filtered particle by splitting 

prediction particle components into each set of structural node and layer. We named it as 

Relaxation Monte Carlo Filter (RMCF) and demonstrate its efficiency comparing its convergence 

characteristics with that of the classical MCF. Moreover we improved convergence speed of 

RMCF by combining the Genetic Algorithm. The efficiency of proposed methods is also 

confirmed by not only applying it to the identification of large scale structural model but also 

identifying model structure parameters using shaking table test data. MCF covers very wide area 

of system filtering problems. It can be applicable to solve not only nonlinear but also 

non-Gaussian problems. However it is necessary a proper modeling of constitutive relationship 

expressing system response to apply proposed methods for identifying nonlinear characteristics, 

this subject is a future topic of GAMCF algorithm. 
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