
 

 

 

 

 

 

 

Structural Monitoring and Maintenance, Vol. 5, No. 2 (2018) 231-242 

DOI: https:// doi.org/10.12989/smm.2018.5.2.231                                                  231 

Copyright ©  2018 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=smm&subpage=7        ISSN: 2288-6605 (Print), 2288-6613 (Online) 
 
 

 

 
 
 
 

Damage detection of subway tunnel lining through statistical 
pattern recognition 

 

Hong Yua, Hong P. Zhub, Shun Weng

, Fei Gaoc, Hui Luod and De M. Aie 

 
School of Civil Engineering and Mechanics, Huazhong University of Science and Technology,  

Wuhan 430074, China 

 
(Received January 31, 2018, Revised March 26, 2018, Accepted March 28, 2018) 

 
Abstract.  Subway tunnel structure has been rapidly developed in many cities for its strong transport 
capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the 
complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper 
proposes a new data-based method for the damage detection of subway tunnel structure. The root mean 
square acceleration and cross correlation function are used to derive a statistical pattern recognition 
algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square 
deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the 
damage sensitive features before and after damage. The proposed algorithm is validated by the experiment 
of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts 
of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel 
lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage 
detection method is applicable to the online structural health monitoring system of subway tunnel lining. 
 

Keywords:  statistical pattern recognition; root mean square; cross correlation function; subway tunnel 
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1. Introduction 
 

As ground transportation is congested in many cities, subway system has become increasingly 

important to urban people‟s daily commuting. The subway tunnel structures suffer attacks from 

mechanical, physical, and even chemical actions (Richards 2002). As a result, the subway tunnel 

structures deteriorate gradually during their service life. Structural health monitoring is concerned 

with the implementation of a damage detection strategy, which provides information about 

structure‟s conditions that help us to have a better understanding of the structural status (Yi et al. 

2010, 2013, Farrar and Worden 2013, Chen and Xia 2017, Chen et al. 2017). Structural health 
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monitoring system is progressively seen as a cost effective way to minimize the risks of subway 

tunnel structures (Bennett et al. 2010). Feng et al. (2015) applied transmissibility function and 

cross correlation analysis to detect damages in subway tunnel structure. Zhou et al. (2012) 

developed a Timoshenko beam-Transfer Matrix Method to determine the relationship between the 

tunnel Young‟s modulus and the coupled resonance frequency. 

The damage detection algorithms can be classified into two categories: model based algorithms 

and non-model based algorithms. Model based algorithms are essentially a kind of model updating 

procedure in which the structural physical parameters (stiffness, mass, and damping) are calibrated 

and updated using measured data (Xiao et al. 2015, Li et al. 2015). The main difficulties of these 

algorithms are that the updated physical parameters may be discrepant from the actual damage 

cases and these algorithms are usually sensitive to measurement noise (Noman et al. 2013). 

Non-model based algorithms do not require a physical model of the structure, so they provide an 

attractive alternative to model based algorithms. The definition of damage implies a comparison 

between two different states of the structure. Therefore, statistical pattern recognition techniques, 

implemented by means of machine learning algorithms, are very suitable for developing 

non-model based damage detection. The structural health monitoring process that cast within the 

statistical pattern recognition framework can be deployed into three portions: data acquisition and 

cleansing, feature selection and data compression, and statistical model development (Farrar et al. 

2001). In particular, this paper will focus on feature selection and statistical model development 

portions. 

The structural health monitoring process that cast within statistical pattern recognition 

framework do not require a physical model of structure, which makes it unfeasible to assess the 

structural health condition using the response time histories directly. For this reason, damage 

sensitive features need to be extracted from the acquired response time histories. The basic 

requirements of damage sensitive feature are its sensitivity to damage and its insensitivity to 

measurement noise. In order to perform statistical analysis, enough damage sensitive feature 

samples are required, and the damage sensitive feature extraction process will thus be repeated 

many times. In addition, the computational cost of damage sensitive feature should be small. 

Moreover, the damage sensitive feature extraction process should be as simple as possible to 

guarantee consistency of the damage detection results, irrespective of the user expertise level 

(Balsamo et al. 2014). In the field of statistical pattern recognition, time series analysis models 

have been widely utilized to extract damage sensitive features. Sohn et al. (2000) used 

auto-regressive model coefficients as damage sensitive features to discriminate the undamaged and 

damaged condition of a bridge column. The auto-regressive model coefficients are proved to be 

function of structural modal parameters (natural frequency, mode shape, and modal damping) by 

Pandit and Wu (1983). Sohn and Farrar (2001) used the standard deviation of the residual errors, 

which is derived from a combination of the auto-regressive and auto-regressive with exogenous 

inputs model, as damage sensitive features to locate damage. The premise of this approach is that 

the residual error increase when the structure experiences damage, especially when the modeling 

data is measured near the actual damage regions. Carden and Brownjohn (2008) used 

autoregressive moving average model coefficients to feed a statistical classifier, and the classifier 

is capable of forming new classes when the structure experiences damage. Mosavi et al. (2012) 

fitted the structural response time histories to the multivariate vector autoregressive models, and 

Mahalanobis distances of the coefficients are served as damage sensitive features. 

Root mean square acceleration is a good indicator of the overall structural condition, so it is 

widely used in gait analysis research (Sekine et al. 2013) and gearbox condition evaluation 
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(Rzeszucinski et al. 2012). The cross correlation function between two response time histories 

measured on a structure excited by ambient excitation was shown to have the similar form of the 

system‟s impulse response function. The cross correlation function was used to assess the resonant 

frequencies and modal damping of structures (Farrar and Iii 1997). Zhu et al. (2010) defined a 

damage indicator by comparing the peak amplitude of the cross correlation function of the 

damaged structure versus the undamaged structure to identify and locate damage in a portal frame 

structure. The root mean square deviation is frequently used to measure the differences between 

datasets, and is more robust compared with other damage indices, such as cross correlation, mean 

absolute percentage deviation and relative deviation (Zhu et al. 2016). 

In this study, the root mean square values of acceleration responses measured at two different 

points are used for cross correlation analysis, and cross correlation functions of the root mean 

square values are derived. Then, the root mean square deviation of normalized cross correlation 

functions before and after damage are chosen as damage sensitive features. Finally, statistical 

process control charts are utilized to monitor the variation of root mean square deviation before 

and after damage. Effectiveness of the algorithm is validated by the experimental study of a 

full-scale two-rings subway tunnel lining. 

 

 

2. Root mean square acceleration for damage identification 
 

Structural acceleration responses are widely used in structural damage detection as they contain 

information about structure‟s inherent dynamic properties. The acceleration time histories 

measured under the undamaged condition are divided into two datasets. One of those time 

histories is taken as the reference dataset, and the others are taken as the healthy dataset. The 

reference dataset is used as a reference condition of the tested structure and the healthy dataset is 

used for later damage sensitive feature extraction for healthy condition of the tested structure. 

Similarly, the acceleration time histories measured under each damaged condition are used to form 

the corresponding damage dataset. The damage dataset of each damaged condition is used to 

extract damage sensitive features for corresponding damage condition of the tested structure. 

Suppose x(t) is the acceleration time histories measured from the tested structure, a time 

window is adopted to divide x(t) into N smaller data blocks, and each data block includes L data 

points (i.e., the length of x(t) is N×L). The root mean square value of each data block is calculated 

as (Vecer et al. 2005) 

2

1

1 L
rms

i ij

j

x x
L 

                              (1) 

where xij is the j-th (j = 1,2,…,L) member of i-th (i = 1,2,…,N) data block, and x
rms 

i  is the root 

mean square value of i-th data block. The root mean square acceleration of x(t) can be gained by 

gathering the root mean square values of all data blocks    

1 2[ , , , , , ]rms rms rms rms rms

i NX x x x x L L                     (2) 

From the definition of root mean square acceleration, it is obvious that it is irrelevant to the 

isolated peaks in the signal and is a significant descriptor of the overall condition of the tested 

structure. 
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3. Cross correlation function between two time serie 

 

Suppose xp(t) and xq(t) are respectively the acceleration response time histories of measured 

points p and q, X
rms 

p  and X
rms 

q  are the root mean square acceleration of xp(t) and xq(t), respectively. 

Damage-induced changes in the physical properties will cause the inherent dynamic property 

changes of the structure. The relationship between X
rms 

p  and X
rms 

q  are determined by the inherent 

dynamic properties of the structure. Therefore, damage can be detected by comparing the 

relationship between X
rms 

p  and X
rms 

q  before and after damage.  

The basic problem of cross correlation function is the description and modeling of the 

relationship between two time series. So, damage can be detected by comparing the cross 

correlation function between X
rms 

p  and X
rms 

q  before and after damage. In the relationship between 

two time series X
rms 

p  and X
rms 

q , the series X
rms 

p  may be related to past lags of the series X
rms 

q . The 

time-discretized cross correlation function between X
rms 

p  and X
rms 

q  is defined as (Feng et al. 2015) 

1

0

1
( ) ( ), 0 1

( )
1 0

( ),

N k
rms rms

p q

hpq

qp

X h k X h k N
N kR k

N k
R k

 




   

 
    


              (3) 

where k is the time lags between X
rms 

p  and X
rms 

q . The deterministic cross correlation function can be 

normalized by 

( )
( ) , 1 1

(0) (0)

pq

pq

pp qq

R k
R k N k N

R R
                    (4) 

Cross correlation function is helpful for identifying lags of X
rms 

p  that might be useful predictors 

of X
rms 

q . A positive value for k is a correlation between X
rms 

p  at a time after t and X
rms 

q  at time t, and a 

negative value for k is a correlation between X
rms 

p  at a time before t and X
rms 

q  at time t. For instance, 

considering k = +2, the cross correlation function value gives the correlation between X
rms 

p (t+2) and 

X
rms 

q ; considering k = −2, the cross correlation function value gives the correlation between X
rms 

p (t-2) 

and X
rms 

q . 

 

 

4. Root mean square deviation of cross correlation function 
 

In this work, the root mean square deviation (RMSD) is utilized to estimate the amount of 

variations between the cross correlation functions before and after damage. It is denoted as the 

cross-correlation damage indicator RMSD
pq 

              (5) 

where ( )R

pqR k  represents the normalized cross correlation function that derived from the 
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reference dataset; and ( )D

pqR k  represents the normalized cross correlation function that derived 

from the healthy dataset or the damage dataset. The superscripts R in ( )R

pqR k  represent 

„reference‟, and the superscripts D in ( )D

pqR k  represent „damage‟. 

 

 

5. Statistical modeling 

 

X-bar control chart is the most commonly used statistical modeling technique and is very 

suitable for online structural health monitoring. In the field of quality control, X-bar control chart 

is widely used to monitor the changes of the selected features and to identify samples that are 

inconsistent with the past data sets (Sohn et al. 2000). Here X-bar control chart is utilized to detect 

the occurrence of damage. The RMSD
pq

 values extracted from the healthy dataset are used to 

construct the control limits. Suppose there are n sets of time histories in the healthy dataset, thus n 

corresponding RMSD
pq

 samples will be extracted. X-bar control chart is constructed by drawing a 

centerline (CL) at the sample mean and two additional horizontal lines corresponding to the upper 

and lower control limits (UCL and LCL) versus sample numbers. The centerline and two control 

limits are defined as
 

/2, ; (RMSD )pq

i

S
UCL LCL CL Z CL mean

n
                (6) 

where the calculation of mean is with respect to all RMSD
pq

 samples extracted from the healthy 

dataset (i = 1, . . . , n); Zα/2 is the percentage point of the normal distribution with zero mean and 

unit variance such that P[Z ≥ Zα/2] = α/2 (the probability of Z ≥ Zα/2 is α/2); S is the standard 

deviation of all the RMSD
pq

 samples that extracted from the healthy dataset. 

The monitoring of damage occurrence is performed by plotting the RMSD
pq

 
samples that 

extracted from the damage dataset along with the previously constructed control limits. If the 

system experienced damage, this would be likely to be indicated by an unusual number of samples 

outside the control limits. In this paper, a charted value outside the control limits is referred to as 

an outlier. 

 

 

6. Experimental validation 

 

The subject of the experiment is the full-scale two-rings subway tunnel lining shown in Fig. 

1(a). It is located in the Hubei Key Laboratory of Control Structures at Huazhong University of 

Science & Technology. As shown in Fig. 1(b), the outside diameter of the tunnel lining is 4000 mm, 

the inside diameter is 3500 mm, and the width of each ring is 1200 mm. One full ring consists of 6 

segments, including a top segment (F segment), two contiguous segments (L1 and L2 segments), 

and three standard segments (B1, B2 and B3 segments). The corresponding central angle of 

segment F is 29.0°, with L1, L2 53.0° and B1, B2, B3 75.0°. Twelve high strength bolts are used to 

connect the segments in radial direction and fourteen high strength bolts are used to connect the 

two rings in longitudinal direction. The tunnel lining is placed on the ground, and there is no 

constraint between the tunnel lining and ground. 
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      (a) Test site photo              (b) Cross section of the Ring 1 (unit: mm) 

Fig. 1 Full-scale tunnel lining 

 

 
Table 1 Description of test cases 

Case Condition Configuration 

1 Undamaged(U) Bolt 23 was not loosened 

2 Damaged(D1) Bolt 23 was loosened 180° 

3 Damaged(D2) Bolt 23 was loosened 270° 

4 Damaged(D3) Bolt 23 was removed 

 

 

A series of tests were conducted on the tunnel lining with various damage conditions. In the 

tests, damage is simulated by loosening Bolt 23 (see Fig. 1(b)) that connect B2 segment and B3 

segment. The four test cases are described in Table 1. Note that Cases 2 through 4 are considered 

as damage conditions when Case 1 is viewed as the undamaged condition. 

Vibration testing was carried out on the tunnel lining in all the undamaged and damaged 

conditions. The tunnel lining was excited by a hammer with a hammerhead weighted about 1.5 kg. 

The hammer impact location was on the outside surface of the Ring 1, as denoted in Fig. 1(b). The 

hammer impact was in the direction that perpendicular to the surface of the lining. 

Two DH187E accelerometers with the sensitivity of 50 mV/g were placed at measurement 

points 1 and 2, respectively (see Fig. 1(a)). The acceleration responses of B2 segment and B3 

segment that perpendicular to the surface of the lining were measured. A 16-channel DH5922 

acquisition system was used to record the structural responses. Antialiasing filters were used in the 

tests, and the data was sampled at 1000 Hz. Typical hit acceleration time histories of measurement 

points 1 and 2 are shown in Fig. 2. The measured structural responses attenuated to a neglectable 

value within a very short time. The frequency responses of measurement points 1 and 2 under four 
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conditions are plotted in Fig. 3. Compared with the undamaged condition U, the maximum 

resonance peaks of damaged condition D1, D2 and D3 in the frequency responses shift to lower 

frequencies. Maybe it is because the loosening of Bolt 23 reduces the global stiffness of the tunnel 

lining, thus bring the reduction of natural frequencies. 

The tunnel lining was impacted 21 times in the undamaged condition and 20 times in each 

damaged condition to eliminate measurement error. Thus there were 21 sets of acceleration 

response time histories recorded in the undamaged condition and 20 sets of acceleration response 

time histories recorded in each damaged condition. One set of those time histories recorded in the 

undamaged condition is taken as the reference dataset, and the other 20 sets of time histories 

recorded in the undamaged condition are taken as the healthy dataset (i.e., n = 20 in Eq. (6)). The 

20 sets of time histories recorded in each damaged condition are taken as the corresponding 

damage dataset. 

 

 

  
(a) Overview (b) Detailed plot 

Fig. 2 Typical hit acceleration time histories of measurement points 1 and 2 

 

 

  
(a) Measurement point 1 (b) Measurement point 2 

Fig. 3 Frequency responses under four conditions 
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The results of the bolt loosening detection are investigated to assess the feasibility of the 

statistical pattern recognition algorithm. As shown in Fig. 2(b), the hit acceleration time histories 

may be attenuated to a neglectable value within 0.2 s. Consequently, the first 0.2 s time histories of 

the measured structural response are used for damage detection. As the sampled frequency is 1000 

Hz, the first 200-point measured time histories are used for the damage detection procedure. Each 

acceleration time history is divide into N = 50 individual data blocks, i.e., each data block includes 

L = 4 data points. The length of the root mean square acceleration would be 50, and the typical 

trend of the root mean square acceleration values for the hammer impact acceleration time history 

is depicted in Fig. 4. The normalized cross correlation function between root mean square 

acceleration of measurement points 1 and 2 is calculated by Eq. (4), and the typical normalized 

cross correlation function between root mean square acceleration of measurement points 1 and 2 is 

depicted in Fig. 5. 

 

 

Fig. 4 Typical trend of the root mean square acceleration for the hammer impact acceleration time history 

 

 

Fig. 5 Typical normalized cross correlation function between root mean square acceleration of 

measurement points 1 and 2 
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Fig. 6 The mean RMSD12 value of each test condition 

 

 

Then the normalized cross correlation functions that derived from the healthy dataset are used 

for the calculation of RMSD
12

, i.e., ( )D

pqR k  in Eq. (5) represents the normalized cross correlation 

function that derived from the healthy dataset. As there are 20 sets of time histories in the healthy 

dataset, 20 RMSD
12

 samples can be extracted from the healthy dataset. Thereinafter, the 

normalized cross correlation functions that derived from each damage dataset are used for the 

calculation of RMSD
12

, i.e., ( )D

pqR k  in Eq. (5) represents the normalized cross correlation 

function that derived from the damage dataset. 20 RMSD
12

 samples can be extracted from each 

damage dataset. 

The mean of the 20 RMSD
12

 samples that extracted from the healthy dataset, and the mean of 

the 20 RMSD
12

 samples that extracted from each damage dataset are calculated, with their results 

shown in Fig. 6. It is obvious that the mean RMSD
12

 value grows regularly as the bolt loosening 

level increase. This demonstrates that the proposed feature RMSD is sensitive to bolt loosening 

that occurs in the tunnel lining, which validates the feasibility of RMSD in bolt loosening 

detection. 

Finally, X-bar control chart is constructed by the 20 RMSD
12

 samples that extracted from the 

healthy dataset. The control limits corresponding to a 99% confidence interval are constructed by 

setting α = 0.01
 
in Eq. (6). After the construction of control limits, the RMSD

12

 
samples obtained 

from each damage dataset are plotted along with the control limits, as shown in Fig. 7. The number 

of outliers are also summarized in Table 2, the percentages in the table represent the proportion of 

outliers in the total 20 RMSD
12

 samples. For test condition U, there is no outlier, maybe because 

the bolt is not loosened. For test condition D1, there is also no outlier, maybe because the 

loosening of Bolt 23 under D1 does not have significant influence on the structure. For test 

condition D2, there are 50% samples outside the control limits. For test condition D3, all samples 

are outside the control limits. The percentage of outliers has an increasing tendency as the bolt 

loosening level increase. 
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(a) U (b) D1 

  
(c) D2 (d) D3 

Fig. 7 X-bar control charts of the four test cases 

 

 

 
Table 2 Outlier numbers of X-Bar control chart 

 
Condition 

U D1 D2 D3 

Number of outliers 0 0 10 20 

Percentages (%) 0 0 50 100 

 

 

 

It is noted that the RMSD
12

 values extracted from the healthy dataset are standardized prior to 

the construction of the X-bar control chart: the mean is subtracted from the features and the 

features is normalized by the standard deviation. Therefore, centerline for all figures in this paper 

corresponds to zero. The RMSD
12

 values extracted from the damage dataset are also standardized 

in the same fashion as before. It is noted that the mean and standard deviation estimated from the 

healthy dataset are used to normalize the RMSD
12

 values extracted from all the damage datasets. 
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7. Conclusions 

 

This study proposes a root mean square acceleration and cross correlation function based 

method for the damage detection of subway tunnel lining. Root mean square deviations of the 

cross correlation functions before and after damage are chosen as damage sensitive features. 

Statistical process control charts are proposed to detect the variation of features before and after 

damage. A full-scale two-rings subway tunnel lining is constructed to validated the proposed 

algorithm, and damages are simulated by loosening the bolt that connecting adjacent segments. 

Results demonstrate that root mean square deviation is sensitive to bolt loosening, and the root 

mean square deviation value grows regularly as the bolt loosening level increase. In addition, the 

number of outliers in X-bar control chart increases with the increment of damage severity. The 

proposed data-based damage identification method is applicable to the online structural health 

monitoring system of subway tunnel lining, since the calculation of root mean square deviation 

and cross correlation function require low computational cost. 
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