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Abstract.  This paper presents a Level III damage evaluation methodology, which simultaneously, identifies 
the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements 
with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-
Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of 
the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal 
force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the 
external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local 
changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the 
approach presented in this paper. 
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1. Introduction 
 

Vibration-based nondestructive damage evaluation (NDE) relates changes in to the physical 

properties of a structural system to the system’s response characteristics. Vibration-based NDE 

offers global damage evaluation methodologies that are well suited for continuous health monitoring 

of structural systems. Rytter (1993) categorized NDE methodologies into four classes on the basis 

of the end information provided: (1) Level I: Detection of the damage; (2) Level II: Localization of 

the damage; (3) Level III: Assessment of the severity of the damage; and (4) Level IV: Performance 

evaluation of the structure after the Level III assessment. To date, most NDE methodologies are 

limited to damage detection and localization only (i.e., Level I and Level II). For example, Lifshitz 

and Rotem (1969) utilized the changes in peak frequencies to detect the presence of damage (i.e., a 

Level I method). Cawley and Adams (1979) presented a Level II damage evaluation methodology 

that utilized the ratio of the frequency changes to localize damage in two-dimensional structures. 

Several Level II methodologies followed the pioneering work of Cawley and Adams (Pandey et al. 

1991, Pandey and Biswas (1994), Zhang and Aktan (1995), Zimmerman and Kaouk (1994), Stubbs 

et al. 1992, Choi et al. 2005). Research performed by Hjelmstad and Shin (1996), Stubbs and Kim 

(1996, 2002, 2003), and Choi et al. 2005 may be listed amongst the significant Level III NDE 
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methodologies proposed to date. 

Upon reviewing the body of global NDE algorithms proposed so far, several shortcomings may 

be listed: (1) Most proposed NDE methodologies are ad-hoc and are not based on the fundamental 

principles of mechanics (e.g., equilibrium, stress-strain, compatibility, the principle of work and 

energy); (2) Most approaches are limited to damage detection (Level I) and localization (Level II) 

only; (3) Finally, most approaches are limited to detecting damage in slender beams (i.e., Euler-

Bernoulli) with relatively low aspect (depth-to-length) ratios. Consequently, there is a need to extend 

the Level II approaches to Level III and Level IV NDE methodologies for damage evaluation in 

more complex systems, such as deep beams and stubby beams, whose response are no longer based 

on the simplified Euler-Bernoulli theory. Although a significant amount of research has been 

conducted on the analysis and design of deep beams (Rogowsky and MacGregor 1986, Kong 1990, 

Ashraf 1997, Oh and Shin 2001, Park and Daniel 2007), a relatively limited research effort has been 

devoted for damage prediction beyond structures modeled as Euler-Bernoulli (i.e., slender) beams 

(Swamidas et al. 2004, Dansheng et al. 2007, Karve et al. 2011).  

This paper presents a Level III damage evaluation methodology, which simultaneously, identifies 

the location, the extent, and the severity of stiffness damage in deep beams. Kong et al. (1990) 

defined a deep beam as a beam having a depth comparable to the span length. Deep beams are 

commonly integrated into contemporary structures in the form of foundations, overhangs, and 

transfer girders, etc. Thus, damage evaluation of deep beams is an imperative activity for public 

safety officials, since these structural elements may form integral parts of critical structures such as 

tall buildings, offshore structures, and foundations. Note that no analytical studies on NDE of deep 

beams have been identified by the authors in literature.  

The methodology, to evaluate Level III damage in a structural system, is developed on the bases 

of the force-displacement relations of the Timoshenko beam theory and the concept of invariant 

stress resultants across the beam sections. The latter concept states that at any given cross section 

and under certain restrictive loading conditions, the resultant internal force distribution in a structural 

member is not affected by the inflicted damage. At that section, damage is modeled using local 

decreases in the bending and shear stiffnesses of the structural elements. These changes are in turn 

related to measurable deformational response quantities, such as deflections and rotations. It is 

shown here that the deformational and kinematic equations of the Timoshenko beam theory in 

conjunction with the principle of invariant stress resultants can be used to develop a Level III NDE 

methodology for the evaluation of damage in deep beams. 

Previous research efforts showed that despite its relatively simplistic displacement field and 

stress resultants (where transverse shear strain distribution is assumed to be constant through the 

beam thickness and therefore requires problem dependent shear correction factors), the Timoshenko 

beam theory accurately predicts the response of deep beams. For instance, based on the analysis 

performed on the simply supported thick isotropic beams (Sayyad et al. 2011), it was shown that the 

Timoshenko beam theory yields comparable maximum transverse displacement and fundamental 

natural frequency to higher order beam theories, where displacement component due to shear 

deformation is assumed to be parabolic, sinusoidal, hyperbolic or exponential in nature with respect 

to thickness coordinate. Furthermore, based on the natural frequencies and modes of a cantilever 

beam, Labuschagne et al. (2009) concluded that the Timoshenko theory is close to the two-

dimensional elasticity for modes of practical importance even for relatively short beams. 

It should be noted that the authors proposed a damage evaluation theory for Timoshenko beams 

in an earlier work (Dincal and Stubbs 2013). Although the principle of invariant stress resultants 

was also utilized to establish the theory in the relevant work, the basis for damage evaluation is 
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rather different in this study. Firstly, damage is detected via solving a system of underdetermined 

linear equations, which are developed based on nodal stiffness values attained prior to and after 

damage has accrued. Secondly, local decreases in both bending and shear stiffnesses are identified 

by utilizing vertical displacements and cross-sectional rotations at the centerline of the beam in this 

study. Lastly, dynamically measured (modal) flexibility matrix is utilized to estimate the 

deformational response quantities (i.e., pre- and post-damaged rotations and the vertical 

displacements), which may be more appealing to perform damage evaluation in field. These items 

are discussed in detail in the sections below. 

 

 

2. Proposed damage detection theory 
 
2.1 Principle of invariant stress resultants 
 

It can be shown rigorously that the net internal force existing at any cross-section of the beam is 

not affected by the inflicted damage, provided that the external loadings in the undamaged and 

damaged beams are identical, and the topological configurations of the two systems are unaltered 

by the imposed damage. Under the latter scenario, the following conditions hold for the internal 

bending moment and internal shear force at an arbitrary section 𝑥 along the length of the beam 

before and after damage 

*)()( xMxM                            (1) 

*)()( xVxV                             (2) 

where the asterisks in Eqs. (1) and (2) represent bending moment and shear force distribution in the 

damaged beam. Here the bending moment and shear force are the invariant stress resultants. 

 
2.2 Summary of the Timoshenko Beam Theory 
 

According to the Timoshenko beam theory, the stress resultants may be expressed in terms of the 

material and sectional properties, as well as the rotation and the transverse deflection measured at 

the centerline of a beam (Reddy 1997) 

dx

d
EIxM


)(                            (3) 

            









dx

dw
GAKxV s )(                        (4) 

where the constants 𝐸 and 𝐺 denote the modulus of elasticity and shear modulus, respectively, 

and 𝐼 represents the moment of inertia of the cross-sectional area 𝐴. The term 𝐾𝑠 in Eq. (4) is the 

shear correction factor, which is commonly defined as the ratio of average shear strain to the shear 

strain at the centroid of the section. The transverse deflection and the rotation of the centroidal axis 

of the Timoshenko beam are denoted by 𝑤  and  , respectively, in the above equations. The 

Timoshenko beam theory relaxes the normality assumption of the Euler-Bernoulli beam theory by 

including a constant state of transverse shear strain throughout the beam thickness and planes that 
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are normal to the beam axis in the undeformed state, do not necessarily remain normal to the beam 

axis after deformation (Reddy 1997). 

 

2.3 Damage evaluation approach 
 

Assume that a local damaging event in a beam-type structure may be expressed in terms of a 

decrease in the bending and shear stiffnesses of its sub-element(s). The problem here is to identify 

the location of the damaged sub-elements within the beam and quantify the amount of stiffness 

degradation inflicted in each damaged region. For a beam that is comprised of 𝑁𝐸 sub-elements 

and 𝑁𝑁 nodes (as depicted in Figs. 1 and 2), the pristine and damaged flexural stiffnesses of the 

𝑗𝑡ℎ element may be represented by 𝐸𝐼𝑗 and 𝐸𝐼𝑗
∗, respectively. Similarly, the pristine and damaged 

shear stiffnesses of the 𝑗𝑡ℎ element may be represented by 𝐺𝐴𝑗 and 𝐺𝐴𝑗
∗, respectively. 

 

 

 

Fig. 1 Damage detection model utilized to predict the changes in flexural stiffness 

 

 

 

 

Fig. 2 Damage detection model utilized to predict the changes in shear stiffness 
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2.3.1 Damage evaluation methodology to predict the changes in flexural stiffness 

Using Eq. (1), following condition holds at the 𝑖𝑡ℎ node of the beam (at 𝑥 = 𝑙𝑖)  

)()( *

ii lMlM                               (5) 

Utilizing the fundamental relationship between the first derivative of rotation and bending 

moment, as given by the Timoshenko beam theory in Eq. (3), the above expression can be written 

as 

dx

d
EI

dx

d
EI i

i

i

i

*

* 
                          (6) 

where 𝐸𝐼𝑖 is the flexural stiffness and i  is the rotation of the centroidal axis at the 𝑖𝑡ℎ node of 

the beam. The asterisk represents the same parameters at the damaged beam.  

The flexural stiffness at a node can be expressed in terms of the stiffnesses of its neighboring 

elements by utilizing the Fourier series representation. From calculus, the Fourier series 

representation of any function converges to a value that is the average of the values immediately to 

the left and to right of the discontinuity (Kreyszig 1999). Therefore, at x = li, EIi converges to 

   jji EIEIEI  1
2

1
                        (7) 

Similarly, for the damaged beam 

 **

1

*

2

1
jji EIEIEI  

                      (8) 

Then, from Eq. (6)-(8), it follows that at the 𝑖𝑡ℎ node 

   
dx

d
EIEI

dx

d
EIEI i

jj

i

jj

*

**

11
2

1

2

1 
                (9) 

Assuming a constant flexural stiffness distribution for the undamaged beam (i.e., for 𝑗 =
1. . 𝑁𝐸, 𝐸𝐼𝑗 = 𝐸𝐼) and collecting element stiffnesses on the right hand side of Eq. (9) gives 

dx

d

EI

EIEI

dx

d ijji

***

1
2















 



                    (10) 

Simplifying Eq. (10) leads to the following result 

dx

d

EI

EI

EI

EI

dx

d ijji

***

1
2



















                   (11) 

Defining the damage ratio as 

EI

EI jEI

j

*

                          (12) 
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Eq. (11) can be expressed as 

 
dx

d

dx

d iEI

j

EI

j

i

*

12





                        (13) 

Using the recursive scheme established in Eq. (13), the relation between the damage indices for 

the 𝑗𝑡ℎ and the (𝑗 + 1)𝑡ℎ beam elements at the (𝑖 + 1)𝑡ℎ node becomes 

 
*

1

1

12
dx

d

dx

d iEI

j

EI

j

i 



 





                    (14) 

For a beam with 𝑁𝑁  nodes and 𝑁𝐸  sub-elements (where 𝑁𝐸 = 𝑁𝑁 −1), 𝑁𝑁 − 2 linear 

equations can be written using the pattern defined by Eqs. (13) and (14). This process results in a 

system of underdetermined linear equations. Moore-Penrose pseudo-inverse may then be used to 

obtain the generalized inverse of the matrix built by re-arranging the system of linear equations. This 

process yields the unknown element damage indices, each representing the ratio of the damaged 

flexural stiffness to the undamaged one. 

The system of equations for damage evaluation can be written in the form 

1)2()1()()2( xNN

EI

NExNExNN BA                       (15) 

where the 𝑁𝐸𝑥1 (i.e., 𝑁𝐸 by 1) vector, 
EI , denotes the flexural damage index vector to be 

evaluated. 












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








...
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)1( EI

j

EI

jEI

NEx



                              (16) 

The (𝑁𝑁 − 2)𝑥(𝑁𝐸) matrix 𝐴 and (𝑁𝑁 − 2)𝑥1 matrix 𝐵 contain the derivatives of cross 

sectional rotations of the damaged and undamaged beams, respectively. 
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             (17) 
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The solution to Eq. (15) is given by 

      BAP

EI 1                            (19) 

where 
1

PA  is the pseudo-inverse of 𝐴. 

The predicted severity of the localized damage can be expressed in terms of the pristine and 

damaged flexural stiffnesses as 

11

**







 EI

j

jjjEI

j
EI

EI

EI

EIEI

EI

EI
                (20) 

 

2.3.2 Damage evaluation methodology to predict the changes in shear stiffness 
Similar expressions can be developed to the ones described above upon utilizing the internal 

shear force distribution. Using Eq. (2), following condition holds at the 𝑖𝑡ℎ node of the beam (at 

𝑥 = 𝑙𝑖)  

)()( *

ii lVlV                             (21) 

Utilizing the fundamental relationship given in Eq. (4), the internal shear force distribution can 

be related to the transverse deflection, the rotation of the centroidal axis, and the material as well as 

sectional properties of the beam. Then, Eq. (21) may be rewritten as 

        
























dx

dw
KGA

dx

dw
KGA i

isi

i

isi

*

**
                (22) 

where 
iGA   is the shear stiffness, i   is the rotation of the centroidal axis, and 

dx

dwi   is the 

derivative of the transverse deflection at the 
thi  node of the beam. The asterisk represents the same 

parameters at the damaged beam.  

As before, the shear stiffness at a node can be expressed in terms of the stiffnesses of its 

neighboring elements by utilizing the Fourier series representation. At 𝑥 = 𝑙𝑖, iGA  converges to 

     jji GAGAGA  1
2

1
                      (23) 

Similarly, for the damaged beam 

 **

1

*

2

1
jji GAGAGA  

                     (24) 

Then, from Eq. (22)-24), it follows that at the 
thi  node 
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






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11
2

1

2

1
       (25) 

Assuming a constant shear stiffness distribution for the undamaged beam (i.e., for 𝑗 =
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1. . 𝑁𝐸, 𝐺𝐴𝑗 = 𝐺𝐴), eliminating the shear correction factor sK , and collecting element stiffnesses 

on the right hand side of Eq. (25) leads to  


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

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
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

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2              (26) 

Simplifying Eq. (26) leads to the following result 
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Expressing the damage ratio as 

    
GA

GAjGA

j

*

                    (28) 

Eq. (27) can be written as 
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Using the recursive scheme established in Eq. (29), the relation between the damage indices for 

the 𝑗𝑡ℎ and the (𝑗 + 1)𝑡ℎ beam elements at the (𝑖 + 1)𝑡ℎ node becomes 
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As before, a beam with 𝑁𝑁  nodes and 𝑁𝐸  sub-elements (where 𝑁𝐸 = 𝑁𝑁 −1), 𝑁𝑁 − 2 

linear equations can be written using the pattern defined by Eqs. (29) and (30). Moore-Penrose 

pseudo-inverse may then be used to obtain the generalized inverse of the matrix built upon re-

arranging this system of linear equations. This process yields the unknown element damage indices, 

each representing the ratio of the damaged shear stiffness to the undamaged one. 

The system of equations can be written in the form 

1)2()1()()2( xNN

GA

NExNExNN DC                       (31) 

where the 𝑁𝐸𝑥1  (i.e., 𝑁𝐸  by 1) vector, 
GA , denotes the shear damage index vector to be 

evaluated. 
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The (𝑁𝑁 − 2)𝑥(𝑁𝐸) matrix 𝐶 and (𝑁𝑁 − 2)𝑥1 matrix 𝐷 contain the sum of the rotation 

of the centroidal axis and the first derivative of the transverse deflection of the damaged and 

undamaged beams, respectively. 
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The solution to Eq. (31) is given by 

DCP

GA 1                           (35) 

where 
1

PC  is the pseudo-inverse of 𝐶. 

The predicted severity of the localized damage can be expressed in terms of the pristine and 

damaged shear stiffnesses as 

11

**







 GA

j

jjjGA

j
GA

GA

GA

GAGA

GA

GA
               (36) 

 
 
3. Numerical verification of the proposed methodology 

 
A set of numerical experiments are utilized to validate the proposed methodology. These 

numerical experiments are intended to substitute the more costly experimental studies by using two-

dimensional finite element simulations of deep beams. 

 
3.1 Description of the test beam 
 

A length to depth ratio of two is considered here to model the deep beam. The identified test 

structure is a cantilever beam of rectangular cross-section, which is made of 2.5 in. (6.35 cm.) thick 

solid steel. The depth and the length of the test beam are 30 in. (76.2 cm.) and 60 in. (152.4 cm.), 

respectively. Fig. 3 depicts the elevation and cross-sectional views of the test beam. Table 1 lists the 

material and sectional properties of the beam. 
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Fig. 3 Schematic of the test beam 

 

 
Table 1 Material and section properties of the test beam 

Description Magnitude 

Span Length (cm) 152.4 

Beam Thickness (cm) 6.35 

Beam Depth (cm) 76.2 

Cross-sectional Area (cm2) 483.9 

Moment of Inertia (cm4) 234130.2 

Mass Density (kg/m3) 7850 

Modulus of Elasticity (N/m2) 20x1010 

Poisson’s ratio 0.30 

 

 

A comparison of the transverse deflections along the centerline of the beam obtained by the 

Euler-Bernoulli beam theory, the Timoshenko beam theory and two-dimensional elasticity solution 

is provided here to demonstrate how accurately the Timoshenko beam theory predicts the response 

of the specified deep beam. Fig. 4 depicts the ratio of vertical displacement to the span length of the 

beam when the free end is subjected to a static load of 133.5 kN (30 kips). As can be seen, the exact 

solution obtained via the theory of elasticity is fairly close to the one obtained via the Timoshenko 

beam theory, whereas the Euler-Bernoulli beam fails to represent the deformational characteristics 

of the test beam. For comparison purposes, the vertical displacement to span length ratios at the free 

end of the beam are 2.745x10-4, 2.637x10-4, and 2.207x10-4 for the two-dimensional elasticity, the 

Timoshenko beam theory, and the Euler-Bernoulli beam theory, respectively. The error between the 

elasticity and Timoshenko beam solutions is only 3.9% whereas; the Euler-Bernoulli beam theory 

yields a 19.6% error. 

y

x

cm4.152

cm2.76

6.35
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Fig. 4 Vertical displacement of the deep beam normalized by span length 

 

 

Fig. 5 Convergence of the FEM compared with the solution from the Theory of Elasticity and the 

Timoshenko Beam Theory 

 

 

Numerical experiments are based on the finite element (FE) model of the beam, which is 

constructed using bilinear quadrilateral plane elements. Therefore, convergence tests are performed 

to choose an appropriate finite element mesh that can provide an accurate prediction of the 

deformation of the beam. To accomplish the latter end, the vertical displacement at the tip of the  
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Fig. 6 Finite element mesh of the deep beam 

 

 

cantilever beam is compared to the solutions given by the theory of elasticity and the Timoshenko 

beam theory. As before, the free end is subjected to a static load of 133.5 kN (30 kips). Utilizing 

eight different mesh sizes of progressively decreasing coarseness (see Fig. 5), it is concluded that 

the predictions of the FE model converge to the numerical solutions given by the Timoshenko Beam 

Theory (Reddy 1997) and the Theory of Elasticity (Ugural and Fenster 2003) when the mesh is 

designated by 8x25. In this model, the difference between the numerical solution and the solution 

obtained from the Theory of Elasticity is 0.0236 mm, which corresponds to an error of 5.6%. 

Likewise, the difference between the numerical solution and the solution obtained from the 

Timoshenko Beam Theory is 0.0072 mm, which corresponds to an error of 1.8%.  

The chosen finite element mesh of the test beam contains 200 plane elements. A typical 

quadrilateral element is 2.4 in. (6.1 cm.) wide, 3.75 in. (9.53 cm.) deep, and 2.5 in. (6.35 cm.) thick 

in the perpendicular z direction. Fig. 6 depicts the selected finite element mesh of the beam. The 

plane stress assumption is adopted in the FE solution. 

 

3.2 Proposed damage scenarios 
 

Three different parameters are varied to generate different damage cases: the damage location, 

the damage extent, and the damage severity. The damage location corresponds to the center of the 

inflicted damage. The extent of damage is represented by the area of the damaged region. Finally, 

the damage severity is defined as the percent reduction in the material properties of individual plane 

elements within an area defined by the damage extent. Young’s modulus and/or Poisson’s ratio are 

reduced to simulate damage in this study. Note that, reducing the elastic modulus solely has been 

the common practice so far in numerical studies available in literature. Since any alteration in the 

material properties of a structure in real life may also involve a change Poisson’s ratio, here, it is 

deemed appropriate to simulate damage by adjusting the Poisson’s ratio in addition to elastic 

modulus in the FEM of the test structure as well. The proposed damage scenarios are summarized 

below. 
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Fig. 7 Schematic representation of Damage Scenario 1 

 
 

 
3.2.1 Damage scenario 1 
This damage scenario is intended to simulate stiffness degradation at a single location that is 

centered at 27.4 cm. from the clamped end and at 19.1 cm. from the bottom of the beam. The extent 

of damage is 6.1 cm. wide and 38.1 cm. deep, which corresponds to 2.0% of the beam’s total surface 

area. Elastic moduli of plane elements 5, 30, 55, and 80 are decreased by 10% to simulate the 

prescribed damage scenario. The darkened region in Fig. 7 depicts the first damage scenario on the 

simulated beam. Table 2 summarizes the geometric and elastic details of the damage. 

 

3.2.2 Damage scenario 2 
This damage scenario represents a case containing multiple damage locations. Damage is 

simulated by reducing the elastic modulus and Poisson’s ratio of the plane elements located at the 

damaged region. Fig. 8 shows the schematic of the second damage scenario on the simulated beam. 

Table 3 summarizes the geometric and elastic details of the damage. 

 

 

 
Table 2 Geometric and elastic details of Damage Scenario 1 

Damage Location Damage Size Damage Damaged 

x (cm.) y (cm.) Δx (cm.)  Δy (cm.) ΔA (cm2) Severity Elements 

27.4 19.1 6.1 38.1 232.4 -10% of E 5, 30, 55, 80 
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Fig. 8 Schematic representation of Damage Scenario 2 

 

 
Table 3 Geometric and elastic details of Damage Scenario 2 

Damage Location Damage Size Damage Damaged 

x (cm.) y (cm.) Δx (cm.)  Δy (cm.) ΔA (cm2) Severity Elements 

27.4 28.6 6.1 57.2 348.9 -10% of E 
5, 30, 55, 80, 105, 

130 

27.4 28.6 6.1 57.2 348.9 -8% of ν 
5, 30, 55, 80, 105, 

130 

94.5 19.1 6.1 38.1 232.4 -5% of E 16, 41, 66, 91 

94.5 19.1 6.1 38.1 232.4 -7% of ν 16, 41, 66, 91 

 

 

3.3 Proposed experimental arrangement 
 

The proposed NDE methodology utilizes the rotations and the vertical displacements of the 

pristine and damaged beams. Although an infinite number of data points are available in theory, only 

a limited number of sensors can be used to collect data in practice. In order to simulate this more 

realistic case, sensor layout given in Fig. 9 is proposed. Response data are collected from the 

numerical experiments at these given sensor locations. 

Note that, two-dimensional plane elements were utilized to build the finite element models of the 

test beam. These plane elements contain horizontal and vertical degree of freedoms only. Thus, while 

the vertical displacements are readily available at the given sensor locations, the cross-sectional 

rotations must be approximated by using the horizontal DOFs of the plane quadrilaterals. Consider 

the schematic given in Fig. 10, which represents a fraction of a deflected shape of the beam. 
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Fig. 9 Sensor layout for the test beam 

 

 

 

Fig. 10 Fraction of a deflected shape of the beam 

 

 

The rotation at the centerline of the beam may be approximated by 

h

uu
bottom

x

top

x 
                         (37) 

where ux
top

and ux
bottom represent the outermost top and bottom horizontal nodal displacements on 

the finite element mesh of the beam. The vertical distance between ux
top

and ux
bottom is denoted by 

h which corresponds to the depth of the beam. Eq. (37) replicates the outputs of the rotary sensors 

depicted in Fig. 9. Note that, Fig. 10 is not intended to represent an actual schematic of the deflected 

shape; it is only provided for visualization purposes. Also, note that Eq. (37) is solely proposed to 

estimate the cross-sectional rotations required by the NDE methodology, which are unavailable in 

the finite element model due to the use of plane quadrilateral elements.  
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Fig. 11 Comparison of beam rotational profiles obtained via Eq. (37) and the Timoshenko Beam Theory 

 

 

To provide a comparison on the accuracy of the approximation scheme given in Eq. (37), 

rotational profile computed using the Timoshenko Beam Theory is compared to the one obtained 

from the finite element model at the centerline of the beam via Eq. (37) (see Fig. (11)). As before, 

the free end of the beam is subjected to a static load of 133.5 kN (30 kips). The error is as low as 

3.2% at the free end, which indicates that Eq. (37) adequately represents the rotational profile at the 

centerline of the beam. 

 

3.4 Basic measurements required by theory 
 

As stated previously, the fundamental assumption behind the theory presented in this paper is 

that the internal stress resultants at a given section of the beam (i.e., bending moments and shear 

forces in this case) are not affected by the inflicted damage. This may be achieved in two ways: (1) 

Application of identical static loads prior and subsequent to damage, and; (2) Utilizing dynamically 

measured (modal) flexibility matrix to estimate the pre- and post-damage rotations and the vertical 

displacements.  

The flexibility matrix is the inverse of the stiffness matrix and relates the applied static loads to 

the resulting structural deformations. Each row of the flexibility matrix may be interpreted as the 

deformed shape of a structure due to a unit load applied at the corresponding DOF. It has been shown 

that the dynamically measured or modal flexibility matrix can be accurately created using few of the 

lower vibration modes Berman and Flannely (1971). This observation makes the modal flexibility 

particularly attractive since modal data are mostly limited to the first few mode shapes and 

eigenfrequencies in practical applications. Considering the applicability of the proposed 

methodology to real time health monitoring, it may be more practical to use dynamic data in lieu of 

static deformations. It should be noted that the constant external load required for invariant stress 

resultants are automatically satisfied when using this approach.  
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If all modes are measured, the flexibility matrix may be written as (Kim 2002) 






 
pr

i

T

ii

iim
FK

1

1 1



               (38) 

where the pxp  matrix represents the full size flexibility matrix and im , i ,  and i  denote 

the i𝑡ℎ modal mass, mode shape, and eigenvalue, respectively.  

Upon expressing the j𝑡ℎ component of the i𝑡ℎ modal vector by 
ji , the deflection profile due 

to a unit load applied at the j𝑡ℎ DOF (denoted here by the vector 
ju ) may be written as (Kim 2002) 





r

i

i

ii

ji

j
m

u
1





                         (39) 

It should be noted that Eq. (39) represents an approximate deflection profile if only 𝑟 modes 

(where pr   ) are measured. However, few lower modes should be sufficient to provide an 

accurate representation of the system response due to the significant contributions of the lower 

modes (as the i𝑡ℎ eigenvalue increases substantially for higher modes) to the flexibility matrix.   

A more generalized form of the above equation may be formulated by including rotational DOFs 

to the modal flexibility matrix. In this case, vector 
ju  may also represent the rotation of a structure 

if rotational degrees of freedom are utilized in computing Eq. (39). A certain drawback of the 

dynamically measured flexibility is the uncertainty in modal mass. Either mass-normalized mode 

shapes or the modal mass itself is necessary to accurately construct the modal flexibility matrix. 

Therefore, an extension to the numerical scheme proposed by Kim (2002) is used here to 

approximate the modal mass, as it may not be available in real-time health monitoring.  

If the density, cross-sectional area and moment of inertia of a beam-like structure are known, and 

translational and rotational modal amplitudes are measured, then the i𝑡ℎ modal mass, im ,  may 

be approximated by  

 

L

ii

L

iii dxxxIdxxuxAum
00

)()()()(                (40) 

where  , A , I  and L  are the density, the cross-sectional area, the moment of inertia and the 

span length of the beam, respectively. The functions )(xui
 and )(xi denote the translational and 

rotational profiles of the i𝑡ℎ bending mode. Note that, the above algebraic process summarized in 

Eqs. (38)-(40) is not a part of the damage evaluation methodology proposed in this study. They are 

merely provided to show the method’s applicability in field conditions where static deformations 

under similar loading conditions prior to and subsequent to damage may be difficult to achieve. 

Numerical studies given in this manuscript utilizes modal data in lieu of static deformations to detect 

and quantify damage.       

The following procedure may be employed to perform a Level III damage evaluation with the 

proposed methodology. 

1. Define the damage detection model (DDM). The DDM is a simplified mechanical model of a 

structure, which is used to determine the approximate location and severity of damage in the true 
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structure. 

2. Obtain the pre-damage and post-damage modal parameters. These parameters include natural 

frequencies and translational as well as rotational modal amplitudes at available sensor locations. 

Note that as stated above, for the numerical experiments performed in this study, nodal rotations at 

given sensor locations were approximated by using the outermost top and bottom horizontal nodal 

displacements on the finite element mesh of the beam (see Eq. (37)). In practice, translational and 

angular accelerometers may be used to measure the motions dictated by the NDE theory. 

3. Use the numerical scheme given in Eq. (40) to approximate the modal mass using the modal 

parameters obtained in the previous step. It is recommended to use cubic spline interpolation with 

uniform intervals to generate a finer sensor layout along the length of the beam. This step is 

necessary to achieve good displacement and rotation profiles from coarse and/or uneven 

measurement spacing. 

4. Compute the pre-damage and post-damage modal flexibilities and define the common loading 

condition (e.g., the same column or row of the flexibility matrix in pre- and post-damage state). 

These quantities represent vertical displacements and cross-sectional rotations at the centerline of 

the beam.   

5. Employ central difference approximation to calculate the first derivative of the cross-sectional 

rotation and vertical displacement. As before, use cubic spline interpolation with uniform intervals 

to generate a finer sensor layout along the length of the beam prior to applying central difference 

approximation. Create the systems of linear equations given in Eqs. (15) and (31) and solve for the 

unknown damage ratios, which provide the change in bending and shear stiffnesses due to damage, 

respectively. 

 

3.5 Damage prediction results for the case studies 
 

The number of degrees of freedom for the modal flexibility is 26 (13 translations and 13 rotations). 

The vertical displacements and cross-sectional rotations are estimated by the 25th and 26th modal 

flexibilities, respectively. These represent deformations measured at the centerline of the cantilever 

test beam due to a unit load (1 kip or 4448.2 N) applied at the free end. Fig. 12 depicts the vertical 

displacements and rotations of the undamaged beam approximated in this manner using the first two 

bending modes only. Also provided in Fig. 12 for comparison purposes is the deflected shape of the 

beam due the static unit load applied at the free end. Note the accuracy of the approximation although 

modal data are only limited to the first two mode shapes and eigenfrequencies. Cubic spline 

interpolation with 0.3 in. (0.762 cm.) uniform intervals is used to generate a finer sensor layout along 

the length the beam. Interpolation leads to 201 nodal points including the node that corresponds to 

the clamped support. It should be noted that the given interpolation interval (and therefore 201 total 

pseudo nodal points) is by no means a “required” or “pre-determined” number compulsory for 

successful damage evaluation. 

For convenience, damage localization results are reported using the reciprocal of the proposed 

damage indicators, EI

j  and GA

j . Then, the following relationships hold 

EI

j

EI

j



1

                   (41)                                                                                                           

GA

j

GA

j



1

                   (42) 
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(a) (b) 

Fig. 12 Comparison of static vertical displacements (a) and rotations (b) to the ones approximated by 

modal flexibility 

 

 

The updated indices, represented by EI

j  and GA

j , are greater than unity in regions where 

stiffness degradation has occurred. 

 
3.5.1 Damage scenario 1 

The damage detection result using the damage location indicator EI

j  (Eq. (41)) is depicted in 

Fig. 13. Table 4 summarizes the method’s damage localization accuracy. Note that 
PL   and 

TL  

denote the axial length (Δx) of the predicted and true damage extents along the x-coordinate, 

respectively. The term 
PT LL   shows whether the predicted damage extent (

PL ) contains the true 

damage extent (
TL  ). For instance, %100 PT LL   indicates that the predicted region covers 

100% of the simulated (true) damage region. The damage severity and the damage extent are 

estimated after enhancing the sensor resolution along the predicted damage location at the damaged 

structure only, since a more detailed analysis of the damage requires a finer measurement grid along 

the location of the flaw. Here, the enhanced sensor resolution corresponds to the nodes of the finite 

element mesh at the centerline of the beam. The predicted damage severity is computed using Eq. 

(20). Fig. 14 depicts the estimated damage severity and damage extent. Table 5 displays the 

assessment of damage extent and damage severity accuracy. Fig. 15 and Fig. 16 show the damage 

prediction results for Damage Scenario 1 using the damage indicator GA

j . Damage is localized 

using Eq. (42) and quantified using Eq. (36) after improving the sensor resolution at the predicted 

damage location. Tables 6 and 7 summarize the performance of the NDE methodology, which 

utilizes GA

j  for evaluating damage. 

 

Table 4 Assessment of the damage localization accuracy for Damage Scenario 1 using EI

j  

Damage Central Location (cm.) 
Error (%) 

PT LL 
 True Predicted 

27.4 24.9 1.6 100% 
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Fig. 13 Damage localization result for Damage Scenario 1 using EI

j  

 

 

 

Fig. 14 Damage extent and severity estimate for Damage Scenario 1 using EI

j  
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Table 5 Assessment of the damage extent and severity accuracy for Damage Scenario 1 EI

j  

Damage Extent (cm.) 
Error (%) 

Damage Severity (%) 
Error (%) 

True Predicted True Predicted                         

6.1 11.4 -3.5 -5.0 -5.5 0.5 

 

 

 

Table 6 Assessment of the damage localization accuracy for Damage Scenario 1 using GA

j  

Damage Central Location (cm.) 
Error (%) 

PT LL 
 True Predicted 

N/A FP 100.0 0% 

27.4 23.4 2.6 100% 

 

 

 

 
Fig. 15 Damage localization result for Damage Scenario 1 using GA

j  
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Table 7 Assessment of the damage extent and severity accuracy for Damage Scenario 1 using GA

j  

Damage Extent (cm.) 
Error (%) 

Damage Severity (%) 
Error (%) 

True Predicted True Predicted                         

N/A FP 100.0 N/A FP 100.0 

6.1 10.7 -3.0 -5.0 -7.8 2.8 

 

 

3.5.2 Damage scenario 2 
Figs. 17 and 18 depict the damage prediction results for Damage Scenario 2 using the damage 

indicator EI

j . Tables 8 and 9 summarize the performance of the damage evaluation methodology 

for the damage scenario. 

 

 

Table 8 Assessment of the damage localization accuracy for Damage Scenario 2 using EI

j  

Damage Central Location (cm.) 
Error (%) 

PT LL 
 True Predicted 

27.4 24.9 1.6 100% 

94.5 98.0 -2.3 100% 

 

 

 
Fig. 16 Damage extent and severity estimate for Damage Scenario 1 using GA

j  
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Fig. 17 Damage localization result for Damage Scenario 2 using EI

j  

 

 

 
Fig. 18 Damage extent and severity estimate for Damage Scenario 2 using EI

j  
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Table 9 Assessment of the damage extent and severity accuracy for Damage Scenario 2 using EI

j  

Damage Extent (cm.) 
Error (%) 

Damage Severity (%) 
Error (%) 

True Predicted True Predicted                         

6.1 11.4 -3.5 -5.6 -6.0 0.4 

6.1 11.4 -3.5 -2.5 -3.1 0.6 

 

 
Figs. 19 and 20 depict the damage prediction results for Damage Scenario 2 using the damage 

indicator GA

j .Tables 10 and 11 summarize the performance of the damage evaluation methodology 

for the damage scenario.  
 

Table 10 Assessment of the damage localization accuracy for Damage Scenario 2 using GA

j  

Damage Central Location (cm.) 
Error (%) 

PT LL 
 True Predicted 

N/A FP 100.0 0% 

27.4 23.4 2.6 100% 

94.5 96.5 -1.3 100% 

 

 

 
Fig. 19 Damage localization result for Damage Scenario 2 using GA

j  
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Fig. 20 Damage extent and severity estimate for Damage Scenario 2 using GA

j  

 

 

Table 11 Assessment of the damage localization accuracy for Damage Scenario 2 using GA

j  

Damage Extent (cm.) 
Error (%) 

Damage Severity (%) 
Error (%) 

True Predicted True Predicted                         

N/A FP 100.0 N/A FP 100.0 

6.1 9.9 -2.5 -6.2 -12.0 5.8 

6.1 10.7 -3.0 -1.7 -3.1 1.4 

 

 

3.6 Discussion of results 
 

The performance of the proposed damage detection methodology was based on accurately 

identifying three damage-related parameters: the location of damage, the extent of damage, and the 

severity of damage. The proposed methodology is limited to one-dimensional Timoshenko Beam 

Theory. Therefore, possible damage locations were only identified along the longitudinal axis of the 

beam; here, the distribution of damage along the beam depth is not addressed. 

Damage localization accuracy was quantified in terms of a dimensionless position error, which 

can be obtained by dividing the distance between the true and predicted damage locations to the total 

length of the beam. This error was expressed in terms of percentage as 
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100



L

xx
e PT

L
                     (43) 

where 
Tx   and 

Px  correspond to the true and predicted damage locations and L  is the total 

length of the beam. The predicted damage location, 
Px , in Eq. (43) corresponds to the peak value 

of the damage indicator, EI

j  (Eq. (41)) or GA

j  (Eq. (42)), within the vicinity of the dominating 

peaks in damage localization charts. On reviewing the damage prediction results obtained using the 

damage location indicator EI

j , the largest error between the central location of the true and the 

predicted damage, 
Le , was 2.3% in Damage Scenario 2. Excluding the false negative prediction 

(i.e., the true damage location is not predicted) in the vicinity of the clamped support in Damage 

Scenarios 1 and 2, the largest damage localization error using GA

j  was 2.6%. These false 

predictions may be due to the boundary conditions utilized in finite element model of the beam. 

Note that, the support conditions of model do not precisely match the ones utilized in the 

theoretical solution. 

Damage extent accuracy was initially quantified using the subset notation. For instance, if the 

predicted damage extent contained the true damage extent, then   0.1 PT LL . Here, 
PL denotes 

the axial length of the predicted damage region where the damage indicator EI

j  or GA

j , is greater 

than one. The true damage extent, 
TL , corresponds to the total length of the damage region along 

the x-coordinate (Δx). Damage extent was subsequently quantified by enhancing the sensor 

resolution in region of the predicted damage location. In this study, the enhanced sensor resolution 

corresponds to the nodes of the finite element mesh at the centerline of the beam. It should be noted 

that the damage locations are unambiguous in almost all damage scenarios even without refining the 

sensor layout. Mounting additional sensors on the damaged structure will improve the damage 

severity and extent estimates; however are not mandatory for successful damage localization. 

The damage extent can be expressed as the footprint of damage severity. Therefore, the extent of 

damage corresponded to the axial length of the region where the predicted damage severity (i.e., 
EI

j  or GA

j ) was less than zero. Once a numerical estimate for the damage extent was available, 

damage extent accuracy was quantified by dividing the difference between the length of the true and 

predicted damaged regions to the total length of the beam. This error may be expressed in terms of 

a percentage as 

100



L

LL
e PT

E
                 (44) 

where 
TL  refers to the true length of the inflicted damage (Δx) and 

PL  represents the length of 

the predicted damaged region. L  is a metric, which denotes the total length of the beam. The largest 

error between the true and the predicted damage extent, Ee , was 3.5% using the damage severity 

indicator EI

j  and 3.0% using GA

j  (excluding the false predictions).  

The error in damage severity estimation was quantified by utilizing the fractional error in stiffness 

prediction. Utilizing the true and predicted flexural stiffnesses of the thj  element ( jTk  and jPk , 

respectively), and the undamaged flexural beam stiffness ( k ), the error in stiffness prediction can 

be expressed in terms of a percentage as 
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100



k

kk
e

jPjT

K

                       
   (45) 

Utilizing the true and predicted damage severities, Eq. (45) can be rewritten as 

100
)1()1(





k

kk
e

jPjT

K


                    (46) 

where 
jT   and 

jP   correspond to the true and predicted damage severities of the thj   beam 

element, respectively. The above expression finally simplifies to Eq. (47), which was utilized to 

compute the error in damage severity estimation. 

  100 jPjTKe 
                 (47) 

The predicted damage severity in Eq. (47) corresponds to the peak value of damage severity 

computed directly using Eq. (20) for EI

j  or Eq. (36) for GA

j . Note that, the damage severities 

were quantified after improving the sensor resolution in region of the predicted damage locations.  

The damaged regions previously identified with the proposed sensor layout in Fig. 9 were 

instrumented subsequently to predict the severity of damage. Also, note that the true damage severity, 

denoted by 
jT  in Eq. (47), may not correspond to the actual reduction imposed on the modulus 

of elasticity of the beam elements. For example, in Damage Scenario 1 where the elastic moduli of 

the four of the eight plane elements centered at 27.4 cm. from the clamped end and centered at 19.1 

cm. from the bottom of the beam were reduced by 10%, does not manifest a 10% stiffness reduction 

in the one-dimensional beam. For this reason, equivalent one-dimensional flexural and shear 

stiffnesses for the damaged and the undamaged beam were estimated from the two-dimensional 

damage scenarios as described below. Stiffnesses of the individual plane elements located along the 

depth of the beam were utilized in order to achieve this end. 

Suppose that a system of linear springs connected in parallel (as given in Fig. 22) models the 

plane elements located at an arbitrary distance 0x  from the clamped end (see Fig. 21). 

The equivalent bending stiffness of the linear springs model, for the 
thj  location, given in Fig. 

22 can then be written as 

       2222
... NANiAiiBiNBNequ

EI

j hkhkhkhkk              (48) 

 

 

 
Fig. 21 Plane elements centered at the distance 𝑥𝑜 
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Fig. 22 The deformed shape of the linear springs model subjected to bending 

 

 

where ih  represents the height of the 
thi  spring measured from the neutral axis. The subscripts A 

and B represent the springs located above and below the neutral axis, respectively. The stiffness of 

each spring that appears in Eq. (48) can be estimated from the following equation 

i

ii
i

l

AE
k                            (49) 

where the terms E  , A   and l   denote the elastic modulus, the area, and the length of the 

individual plane elements, respectively.  

An equivalent bending stiffness expression similar to the one given in Eq. (48) can be written for 

the damaged structure (denoted by, 
*

equ

EI

jk , where the moduli of elasticity of one or more plane 

elements are reduced) as well. Then, the true equivalent one-dimensional flexural stiffness damage 

severity, 
EI

jT , can be computed as 

                            1

*



equ

EI

j

equ

EI

jEI

jT
k

k
                            (50) 

Similarly, the system of linear springs depicted in Fig. 23 may be used to derive an equivalent 

shear stiffness from the shear stiffnesses of the individual plane elements located at an arbitrary 

distance 0x  from the clamped end (see Fig. 21).  

The equivalent shear stiffness of the linear springs model given in Fig. 23 can be written as 

 

ANAiBiBNequ

GA

j kkkkk  ...                 (51) 

A1k

Aik

ANk

BNk

Bik

B1k



BN

M M
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Fig. 23 The deformed shape of the linear springs model under the applied shear force 

 

 

The stiffness of each spring that appears in the above equation can be estimated from the 

following 

i

ii
i

l

AG
k                          (52) 

where G , A  and l  denote the shear modulus, the area, and the length of the individual plane 

elements, respectively. As before, similar expressions can be written to obtain the equivalent shear 

stiffness for the damaged structure. Note that, the fundamental relationship between the modulus of 

elasticity ( E ) and Poisson’s ratio ( ) is utilized to compute the shear modulus of each plane element, 

which are represented by a linear spring in Eq. (52). Therefore, changes imposed on the Poisson’s 

ratio due to damage reveal themselves as changes in the shear modulus as shown in Eq. (53) 

)1(2 *

*
*




E
G                              (53) 

where the asterisks represent the damaged material properties.  

Finally, using Eq. (51)-(53) the true equivalent one-dimensional shear stiffness damage severity, 
GA

jT , can be computed as 

                               1

*



equ

GA

j

equ

GA

jGA

jT
k

k
                     (54) 

On reviewing the damage prediction results obtained using the damage severity indicator EI

j , 

the largest error between the true flexural stiffness damage severity and the predicted flexural 

stiffness damage severity was 0.6% in Damage Scenario 2. Excluding the false negative prediction 

in the vicinity of the clamped end, using the damage indicator GA

j , the largest error between the 

true shear stiffness damage severity and the predicted shear stiffness damage severity was 5.8% in 

Damage Scenario 2.  
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4. Conclusions 
 
A Level III damage evaluation methodology, which simultaneously, identifies the location, the 

extent, and the severity of damage in deep beams was proposed in this paper. The proposed 

methodology was developed on the bases of the force-displacement relations of the Timoshenko 

beam theory and the concept of invariant stress resultants before and after damage. It is concluded 

that structural damage in deep beams can accurately be localized and quantified with the given 

procedure. The performance of the proposed damage evaluation technique was evaluated using the 

response data collected from a set of numerical experiments, which were based on a finite element 

model of a deep cantilever beam. Pre-damage and post-damage modal flexibilities were used to 

obtain vertical displacements and rotations required by the theory. Damage was simulated by 

modifying Young’s modulus and/or Poisson’s ratio of individual plane elements located within the 

domain of the damage extent. Changes in the flexural and shear stiffnesses due to damage were 

investigated with the proposed methodology. The damage indicator EI   gives the ratio of the 

flexural stiffnesses before and after damage. Damage was successfully localized and quantified 

using EI  . The damage indicator GA   gives the ratio of the shear stiffnesses before and after 

damage. Excluding the false positive predictions at the vicinity of the clamped support, GA  gave 

satisfactory damage localization results and damage extent estimates. The predicted damage 

severities were less satisfactory compared to the ones obtained using EI . Damage evaluation in 

more complex structures, such as deep beams and stubby beams, whose response are no longer based 

on the simplified Euler-Bernoulli theory is achievable with the proposed methodology. 
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