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Abstract.    Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway 
bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) 
research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise 
guidelines for identifying their modal parameters. This paper presents the experience acquired from such 
identification. The modal analysis of four representative bridges of this group is reported, which include B5, 
B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: 
drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters 
from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods 
were used. Finite-element models were constructed to facilitate the dynamic measurements. The results 
show good agreement between the measured and computed natural frequencies and mode shapes. The 
findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis 
including the use of projected channel and harmonic detection, helping researchers and maintenance teams 
obtain good dynamic characteristics from measurement data. 
 

Keywords:    railway bridges; operational modal analysis; stochastic subspace identification; frequency 
domain decomposition 

 
 
1. Introduction 
 

Railway bridges are large and complex structures subjected to dynamic loads and thus need a 
thorough evaluation to ensure satisfactory use, especially after many years of operation under 
heavy traffic conditions. Structural health monitoring based on dynamic measurements is a very 
active field, especially in bridge engineering (Shih et al. 2011, Moradipour et al. 2015). However, 
the experimental evaluation of dynamic parameters can be very challenging, particularly in the 
case of large and heavy structures such as bridges. It may be very difficult and/or inconvenient to 
excite a structure with a known input force because this procedure usually causes traffic 
interruption. Thus, a number of papers have been published on output-only modal analysis 
techniques. In the case of railway bridges, when freight train passages are used to excite the 
structure, it is clear that the train exerts a great influence on the system modal parameters due to 
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strong bridge-vehicle interaction effects (Lee et al. 2006).  
In this paper, modal analysis of reinforced concrete bridges of a heavy haul single track railway 

is under investigation. An experimental program was implemented and acceleration data was 
obtained under operational conditions. Some aspects on the operational modal analysis (OMA) are 
discussed. 

Those reinforced concrete bridges have short to medium spans (9.5 to 25 m) and could be 
considered as quite rigid, so they are difficult to excite, as noise can be the same level as the 
structural vibration. Data was obtained for each train passage, for ambient vibration between train 
passages and for vibration due to people jumping or using a “drop weight” system. From data 
obtained with train passages only the free vibration part were used to obtain the dynamic 
characteristics of the bridge. 

Using commercial software Artemis® (SVS 2011) to identify the modal parameters, Stochastic 
Subspace Identification (SSI) techniques and Frequency Domain Decomposition (FDD) technique 
were used and compared between each other and with results from a computational model. 

 
 

2. Description of bridge network  
 
The bridges under analysis are part of a bridge network of the Carajás railway. This single track 

railway of 892 km is mainly used to transport iron ore from Carajás ore mine to Ponta da Madeira 
port in northern Brazil and has 54 bridges. Except for the bridge over the river Tocantins, which 
has quite different characteristics, the other 53 bridges have short to medium spans and are 
classified in 26 groups according to their material type, section, structural system and number of 
spans. Regarding materials, 44 are reinforced concrete bridges, 7 are prestressed concrete bridges 
and 2 are prestressed concrete bridges with one steel truss span. The trains that operate on this 
railway are hauled by three diesel-electric locomotives (with 300 kN per axle) and have 208 
freight cars (with 325 kN per axle when loaded, and 52.5 kN per axle when unloaded). The owner 
of the railway, Vale mining company, intends to increase the loads of the trains and is concerned 
about the load-carrying capacity of the bridges of the network. Since these bridges are about 30 
years old, it prompts the need to assess theactual condition of these railway bridges. 

Therefore, Carajás railway was monitored between 2007 and 2012 by a research program 
conducted by Federal University of Pará in partnership with Vale. In this program, accelerations 
and strains were collected in 25 railway bridges as representativesfrom groups. Samples were 
obtained during the passage of loaded and unloaded iron ore trains and other types of trains, like 
passenger trains. Samples were collected when structure were under ambient vibration and with 
the use of a drop weight system, as well. 

This paper shows the modal analysis of four reinforced concrete bridges of those monitored, 
Bridges B5, B15, B20; and B58A. These bridges were chosen because they roughly represent 4 
different groups of those mentioned above and these 4 groups are formed by 13 bridges of Carajás 
railway. In addition, the visual inspection of them indicated that they are in a good condition. This 
paper aims to present all the work involved in the monitoring program for these four bridges and 
show results of the modal analysis that could lead to a methodology of analysis for all data 
collected and also share the experience in acquiring dynamic characteristics using vibration tests. 

 
 

3. Description of bridges  

2



 
Fig

Bridge
conditi
cross s

The
the top

B20
the pil
bridge
individ
also su
 

 

Modal para

g. 1 shows a g
es B5, B15 
ions describ
section is sho
e reinforced 
p of the bents
0 substructu
e caps, the o
s consists o
dual chambe
upported on f

(a) B

ameters ident

general view
and B20 a

ed in Table 
own in Fig. 2
concrete gir
s or caisson c
re is formed

other bridges 
of caissons. 
ers separated
foundation b

(a) B5 

(c) B20 

B20, B15 and

W
4.65 m

( )

ification of he

w of four brid
are formed b

1 and Fig. 
2(d). 
ders rest on 
caps and on t
d by single c

rest directly
The abutm
by diaphrag

blocks. 

Fig. 1

d B5 

Fig. 2 Sketc

H

 
 
 
 
 
 

eavy-haul railw

dges. All four
by continuo
2(a). B58A 

elastomeric 
the abutmen
column bent
y on the foun

ments have a
gm walls wh

1 Bridges ove

ch of typical c

way RC bridg

r bridges ana
ous spans w
is a simply 

(neoprene) l
t supports.
s of rectangu

ndation block
a hollow rec
hich are fille

erview 

ross sections

ges – experien

alyzed have a
with cross se

supported s

aminated be

ular box cro
ks. The found
ctangular sh
d with grave

(b) B15

(d) B58A

(b) B58A 

6.85

5.65

4.65

nce acquired 

a straight alig
ection and s
span and its 

earings, dispo

oss-section, f
dation of tho
hape, consis
el (ballast), a

 

5 

 

A 

1.
10

1
.5

0

gnment. 
support 
typical 

osed on 

fixed at 
ose four 
ting of 
and are 

 

3



 
 
 
 
 
 

Regina Sampaio and Tommy H.T. Chan 

 
Table 1 Geometric characteristics and structural system of the bridges 

Bridge 
Number  

of spans 

Span 

(m) 
Structural System 

Type of 

 material 
Section W*(m) H*(m)

5 3 18 

Continuous span, simply  

supported at both ends  

(abutments) 

Reinforced 

Concrete 

Pi-shaped  

girder 
6.75 2.40 

15 3 20 

Continuous span, one end 

clamped (abutment1) 

without intermediary joints

Reinforced 

Concrete 

Pi-shaped 

girder 
5.85 2.80 

20 5 22.5 

Continuous span, one end 

clamped (abutment2) 

without intermediary joints

Reinforced 

Concrete 

Pi-shaped  

girder 
5.85 3.00 

58A 1 9.5 Simply supported span 
Reinforced 

Concrete 

H shaped  

girder 
** ** 

*indicated in Fig. 2(a)                               ** Not applicable, see Fig. 2(b) for details  
 
 

4. Monitoring program 
 
Bridges under study were monitored with 20 low frequency accelerometers Wilcoxon® 793L 

(http://www.wilcoxon.com/vi_index.cfm?PD_ID=11) with nominal sensitivity of 500 mV/g (Fig. 
4(a)) connected to two Lynx® ADS-2000 data acquisition system, each with 16 channels (Fig. 
4(b)). The accelerometers were mounted on metallic base plates attached to the bridge deck with 
high strength adhesive. The acquisition sample frequency was chosen to be 400 Hz. 

 
4.1 Deployment of sensors 
 
The accelerometers were installed at selected locations (stations) along both sides of bridges 

decks covering the whole length of the bridges as shown in Fig. 3. Those locations were chosen 
according with a preliminary finite element model. At B15 and B20, the accelerometers were 
relocated to different measurement stations, with fixed accelerometers at reference stations as 
indicated in Fig. 3. Reference stations were used due to the limited number of sensors available 
and the limitation of the maximum cable length in 50 meters, as the common arrangement for 
bridge dynamic tests. 

It is worth mentioning that in B15, only data obtained from the right side sensors were 
considered since a considerable number of sensors located at the left side presented a very high 
noise. For this reason, it was not possible to identify torsion modes for this bridge. 
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4.2 Excitations 
 
The main difficulty concerning dynamic measurements of civil engineering structures is usually 

the excitation. In case of bridge operational modal analysis, this is particularly true if the bridge 
span is short to medium and if it is only used by heavy freight trains.  

For the present study, the system modal identification was made using three types of recorded 
signals. Free vibration records were collected immediately after the passage of loaded trains (FV) 
with a record length time correspondent to amplitude decay time. 

Depending on the railway traffic, ambient vibration tests (AV) were performed. The lengths of 
data obtained were: 59 min for B15 and 25 min for B58A and B5. Considering the first bending 
period in vertical and transversal directions for these bridges, the relation between the record 
length and the natural period of the structure, which is the inverse of the natural frequency, is 
shown in Table 2.  

 

 

Fig. 3 Accelerometer layout 
 

Table 2 Relation between Record length time and first bending period – Ambient vibration tests 

Bridge 

Record 

Length (in 

min) 

Record 

Length (in s) 

1st lateral bending 

(FEM) 

1st vertical bending 

(FEM) 
Recorded 

time/Lat. 

period (s/s) 

Recorded 

time/Vert. 

Period (s/s)
Freq. 

(Hz) 

Period 

(s) 

Freq. 

(Hz) 

Period 

(s) 

5 25 1500 4.16 0.24 9.24 0.11 6.2E+03 1.39E+04 

15 59 3540 0.82 1.22 5.04 0.20 2.9E+03 1.79E+04 

58A 25 1500 xx xx 12.66 0.08 xx 1.90E+04 

BRIDGE 15 
68 6 0.656 6 8 6 8 6

BRIDGE 05

6.56.56.511.50.65 11.5 0.656.5 5

BRIDGE 20

7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.57.5 7.5 7.5 7.5 7.5 m 15.0 m

2.5 2.52.45
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the number of physical modes of the system. The main reason for this is that the many channels 
contain the same physical information but different random errors (Herlufsen et al. 2006). The use 
of projection channels decreases the amount of redundant information and the estimated models 
tends to stabilize faster, i.e., at lower state space dimensions (corresponding to “smaller” 
subspaces). Nguyen et al. (2014 a, b) also observed the importance on the use of projection 
technique in presence of data synchronization error and show that SSI- method failed on detecting 
some modes and some modes were mistakenly detected as noise if the channel projection is not 
used.  

The choice of the projection channels starts with the channel that correlate most with all the 
other channels. In case of multiple data sets the user-defined reference channels are applied as 
initial projection channels. 

It is noteworthy that the choice of the number of projection channels must be done carefully. As 
an example, Fig. 5 shows the Stabilization Diagrams in a frequency range of 5 to 9 Hz, for tests 
with drop weight in B20, considering: a) without projection channels; b) three projection channels 
and c) four projection channels. 

In this Stabilization diagram, the vertical lines formed by red symbols represent the stable 
modes identified while the vertical lines formed by brown symbols indicate the noise modes. The 
green symbols, in turn, are unstable modes. The Stabilization Diagram is plotted over the graph of 
singular values of the spectral density matrix (SVD plot), whose peaks indicate a possible 
frequency of the system. 

As mentioned early, bridge B20 was monitored with 44 accelerometers measured in 3 data sets. 
Analysis without the use of projection channels gives unreliable results (the red lines do not match 
the peaks of the SVD graphic) and the use of 4 projection channels also miss one mode (the red 
lines do match one peak of the SVD graphic), so the stabilization diagram shows an optimal 
choice of three projection channels (the red lines match two peaks of the SVD graphic), which was 
the minimum number stated by Artemis for this case. 

The number of projection channels selected for each case was the one that provided the best 
results, although in most of the cases it was the minimum number stated by Artemis software.  

The algorithms used in operational modal analysis assume that the input forces are stochastic in 
nature. Although, this is often the case for civil engineering structures sometimes rotational forces 
are seen as harmonic components in the responses, and their influence should be eliminated before 
extracting the modes in their vicinity. Also, in order to eliminate the influence of the harmonic 
components in the modal parameter extraction process, the harmonic detection option was enabled 
in Artemis. As stated by Jacobsen et al. (2007), the consequences of having harmonic components 
from sinusoidal excitations present in the responses depend on both the nature of the harmonic 
components (number, frequency and level) and the modal parameter extraction method used. For 
the EFDD technique it is important that harmonic components inside the desired single degree of 
freedom are identified and their influence eliminated before proceeding with the modal parameter 
extraction process.  

In the present study, the option for checking the presence of harmonics comes from a particular 
situation; generators and drill machines had been used on the bridges during the tests. However, 
even though some harmonics have been detected in the frequency range of interest, they do not 
show much influence in obtaining the structure vibration modes.  

In pre-processing, a high-pass filter with frequency of 0.1 Hz and order 2 was used to eliminate 
excessive noise in the data collected with the drop weight system and ambient vibration. A 
high-pass filtering of the signals can make the identification of the lower modes, using the SSI 
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5. Modal identification 
 
The results concerning the estimated frequency and damping values obtained from analysis 

using EFDD and SSI methods and for all types of records are summarized in Table 3 for B5, B15, 
B20 and B58A. The numerical natural frequencies of updated finite element models are shown in 
the last column of Table 3. 

For B15 and B20, it was possible to identify up to five modes, despite the drop weight system 
had not been used for Bridge B15 and the ambient vibrations was not possible to be used for B20. 
For B5, up to four modes were identified. For tests using the Drop Weight system on B5 and B20, 
it was possible to identify a vertical bending mode that was not identified using Ambient Vibration 
or Free Vibration and which is in a good agreement with a numerical mode shape as shown in 
Table 5 for mode 2 of B5 and for mode 4 of B20. 

Damping factors, in turn, are always difficult to estimate exactly, and the results presented in 
Table 3 are very dispersive. The sources for energy dissipation are various and different from the 
viscous type used in the theoretical formulation of the vibration problems. Particularly the 
damping due to friction between ballast particles can play an important role in this type of 
structures. 

 
 

Table 3 Frequencies and damping factors extracted from experimental modal analysis and numerical 
frequencies obtained using Finite Element Method (FEM) models 

  Free Vibation Drop Weight Ambient Vibration   

Bridge N 
SSI EFDD SSI EFDD SSI EFDD Mode 

Type 
FEM

Frq. 
(Hz) 

Damp. Frq. 
(Hz) 

Damp. Frq.
(Hz)

Damp. Frq.
(Hz)

Damp. Frq.
(Hz)

Damp. Frq. 
(Hz) 

Damp. Frq.
(Hz)

5 

1 8.91 1.36% 9.17 0.24% 9.03 0.85% 9.01 0.96% 9.23 1.57% 9.28 1.34% 
Vertical 
bending 

9.24

2 xx xx xx xx 10.84 1.99% xx xx xx xx xx xx 
Vertical 
bending 

10.19

3 11.15 0.17% 11.13 0.50% 12.60 0.78% xx xx 11.96 0.45% 12.04 0.78% 
Vert.&lat
.Bending 

11.55

4 13.06 0.57% xx xx 13.14 1.05% 13.12 1.02% xx xx 13.34 0.86% torsion xx 

15 

1 xx xx xx xx xx xx xx xx 2.46 3.70% 2.45 1.09% 
lateral 

bending 
2.41

2 7.46 1.96% xx xx xx xx xx xx 7.47 0.52% 7.46 0.65% 
Vertical 
bending 

7.92

3 8.53 2.15% xx xx xx xx xx xx xx xx xx xx 
lateral 

bending 
8.78

4 xx xx xx xx xx xx xx xx 10.40 1.18% xx xx 
Vertical 
bending 

9.11

5 11.20 0.85% xx xx xx xx xx xx 11.15 1.49% 11.23 1.72% 
Vertical 
bending 

11.68

20 

1 
2.58 2.29% xx xx 2.61 1.45% 2.60 0.21% xx xx xx xx 

lateral 
bending 

2.25

2 
4.00 3.12% 3.88 0.73% 4.34 2.73% xx xx xx xx xx xx 

lateral 
bending 

4.36

3 
7.31 1.17% 7.24 1.11% 7.33 1.87% 7.28 0.50% xx xx xx xx 

Vertical 
bending 

7.28

4 
xx xx xx xx 8.16 1.03% 8.13 0.54% xx xx xx xx 

Vertical 
bending 

7.87

5 8.97 2.97% 9.08 0.59% 9.09 1.35% xx xx xx xx xx xx torsion 8.11

58 
1 12.89 2.88% 13.13 1.12% 13.06 2.85% 13.13 2.33% 13.06 3.06% 13.11 3.20% 

Vertical 
bending 

12.66

2 23.22 2.05% xx xx 21.50 2.95% 21.84 4.29% 20.59 1.83% 20.71 0.87% torsion 23.33
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Table 4 Frequency variation considering: a) Method of analysis (SSI x EFDD) and b) Type of records 
(DWxFV, AVxDW and AVxFV) 

Bridge N Mode Type 
SSSIxEFDD SSI EFDD 

FV DW AV DWxFV AVxDW AVxFV DWxFV AVxDW AVxFV

b 

1 
vertical 
bending 

2.9% 0.2% 0.5% 1.3% 2.2% 3.5% 1.8% 3.0% 1.2% 

2 
vertical 
bending 

         

3 
vert.&lat. 
bending 

0.2%  0.7% 12.2% 5.2% 7.0%   7.9% 

4 torsion  0.2%  0.6%    1.7%  

15 

1 
lateral 

bending 
  0.4%       

2 
vertical 
bending 

  0.1%   0.1%    

3 
lateral 

bending 
         

4 
vertical 
bending 

         

5 
vertical 
bending 

  0.7%   0.4%    

20 

1 
lateral 

bending 
 0.3%  1.2%      

2 
lateral 

bending 
3.2%   8.1%      

3 
vertical 
bending 

1.0% 0.7%  0.3%   0.6%   

4 
vertical 
bending 

 0.4%        

5 torsion 1.2%   1.3%      

58 
1 

vertical 
bending 

1.8% 0.5% 0.4% 1.3% 0.0% 1.3% 0.0% 0.2% 0.2%5.3%

2 torsion  1.6% 0.6% 7.7% 4.3% 12.0%    

 
 
To investigate the influence of the type of record (free vibration, drop weight and ambient 

vibration) and the methods of analysis (SSI and EFDD) on the results obtained in this work, the 
variation between the values of natural frequency identified were calculated and are shown in 
Table 4. This variation is the difference between two values divided by the average of the two 
values, shown as a percentage and is given by Eq. (1). 

ሺ%ሻ݊݋݅ݐܽ݅ݎܸܽ ൌ
ห௙೔ି௙ೕห

൫௙೔ା௙ೕ൯/ଶ
ൈ 100                       (1) 

Where ௜݂ and ௝݂ are two corresponding natural frequencies obtained by different methods and 
excitations sources. It can be noted that the type of record used for analysis affects more the value 
of the frequency identified than the method used to identify it. As seen in Fig. 6, the average 
values of frequency variation are less than 2% considering the method of analysis SSI and EFDD. 
On the other hand, the maximum variation of frequencies identified for each type of records is 
12.2% (Table 4) but the mean values are between 2.5% and 4.1% except for one case (Fig. 6). 
Particularly for this case, which compares frequencies identified in drop weight and free vibration 
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Modal parameters identification of heavy-haul railway RC bridges – experience acquired 

B15 were in the group of the first bridges analyzed and Bridge 58A is very distinct from others, 
two types of models were developed, one considers the bridge deck as a unique frame element for 
Bridge B5 and the other model the bridge deck was modeled using shell elements for Bridges B15, 
B20 and B58A, as shown in Fig. 9. They are better described as follows. 

The commercial software SAP 2000 was used to build the FE models. All finite element 
models were based on the assumptions of linear, isotropic, and homogeneous material behavior. 
The values of the E-modulus adopted for concrete initially were obtained from various relevant 
bridge projects. Then, E-modulus of concrete was evaluated from laboratory compression tests on 
core samples (minimum of two) extracted from various structural elements. These actual material 
properties were then used to update FE models of bridges (Table 6). 

Modal data (natural frequencies and mode shapes) extracted in experimental analysis were used 
as a target for model parameter adjustment. The parameters modified during the updating were: 1) 
spring stiffness of end bearing pads; 2) spring stiffness of intermediate bearing pads; 3) E-modulus 
of bridge deck and 4) E-modulus of Bridge columns. The adjustment was done manually.  

 
6.1 Bridge B5 
 
Bridge B5 was modeled using frame elements for the reinforced concrete spans and caissons; 

and shell elements for the abutments and caisson caps. The two reinforced concrete I-shaped 
stringers and the deck slab were modeled as a unique frame element with a pi-shaped section, and 
Timoshenko’s plane-section assumption was adopted. The variation in the web thickness of the 
stringers was taken into account by using nonprismatic elements. Each span was subdivided into 
10 elements to better represent the dynamic behavior of the bridge. The neoprene elastomeric 
bearings were modeled as SAP2000 link elements. The stiffness of each bearing was calculated 
according to empirical expressions presented in Pfeil (1989). To precisely represent the soil 
stiffness, the piles were discretized into 50 frame elements; each about 1 m in length, and a linear 
spring (link element) with translational stiffness in three directions was attached to each joint. The 
values of this stiffness were obtained from studies of the soil profile in previously conducted 
standard penetration tests (SPTs). Additional mass on the deck (due to ballast, sleepers, rails, 
fastenings, etc.,) was carefully taken into account as linear mass per unit length. 

 
 
 

Table 6 Actual E-modulus of concrete evaluated from compression tests on core samples 

  E-modulus (MPa) 

Bridge Deck Abutment Column Caisson cap 

B5 48.7 39.3 xx 42.3 

B15 24.6 27.2 xx 40.5 

B20 26.1 31.5 34.9 xx 

B58A 35.7 47.5 xx xx 
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Modal parameters identification of heavy-haul railway RC bridges – experience acquired 

time window without traffic is necessary, depending on the number of spans. If the bridge has a 
high number of spans it becomes unfeasible. 

Ambient vibration tests in case of heavy-haul railway bridges also require a considerable time 
without traffic, since the train–bridge mass relation is high and in this case the system (train-bridge) 
dynamic properties are different from the bridge dynamic properties. This time window depends 
on bridge natural period and also on the ambient conditions such as wind velocity. For bridge 
B58A, according to Table 2, the time length for ambient vibration was 25 min and it was sufficient 
to identify the first bending frequency of the structure, which was 12.66 Hz in vertical direction. 
But for Bridge B5, with the same time length of record, only the first vertical frequency (9.24 Hz) 
was identified and lateral lower bending modes were missed. Finally, for bridge B15, with a record 
much longer, 59 min, but lower natural frequencies, the lower mode identified was the third lateral 
bending. 

Free vibration tests were performed considering the record obtained after the passage of loaded 
trains, the amplitude decay time was sufficient for mode identification in these cases. 

Based on the testing of 25 number of railway bridges, categorising 4 types, the paper provides 
guideline on methods of excitation, record length of time, methods of modal analysis including the 
use of projected channel and harmonic detection. This can help people obtain good dynamic 
characteristics from measurement data and consequently is useful for model updating to obtain 
good model for prediction of structural behaviour as well as damage detection.  
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