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Abstract.    A hybrid optimization method for the identification of state–space models is presented in this 
study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in 
a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. 
The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of 
Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution 
results in a scheme where the entire population cloud is involved in the search for the global optimum, while 
single individuals are involved in the local search, undertaken by the LM method. The novel hybrid 
identification framework is assessed through the Monte Carlo analysis of a simulated system and an 
experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to 
conventional, self-adaptive ES provide significant indication of superior performance. 
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1. Introduction 
 

Recent developments in structural health monitoring and maintenance have advanced the 
promotion of inverse engineering methods and, in specific, of structural identification techniques 
(Friswell 2007, Fritzen et al. 2013, Catbas et al. 2013, Nagarajaiah and Basu 2009). The latter 
usually estimate a mathematical model of the structure and subsequently extract critical quantities 
(e.g., natural frequencies, mode shapes, etc.), which are then used for the formulation and 
monitoring of damage or nonlinearity features (Lin and Betti 2004, Papadimitriou et al. 2012, Wu 
and Kareem 2013). It is thus apparent that estimation accuracy becomes an issue of utmost 
importance, as it forms a major component in the process of decision making for life-cycle 
assessment of engineered systems. 

Under this perspective, estimation accuracy has always comprised a focal point in the 
implementation of numerical optimization methods for parametric system identification. This is 
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especially true for transfer function models in both SISO and MIMO representations, for the 
estimation of which a wide variety of deterministic (Ljung 1999, Verhaegen and Verdult 2007), 
stochastic (Koulocheris et al. 2003) and hybrid (Koulocheris et al. 2008) optimization algorithms 
have been investigated. On the contrary, numerical optimization for the fitting of state-space 
models to vibration data is significantly less explored in the literature. This is mainly attributed to 
the current practice that pertains to the implementation of subspace methods (Kim and Lynch 2012, 
Katayama 2005, Juang and Pappa 1985) for the identification tasks. While they are considerably 
simpler and faster, these methods are suboptimal and amenable to potential inaccuracies (Dahlén et 
al. 1998), especially at low signal-to-noise-ratios. 

Maximum likelihood estimation is further tool that can serve in such a purpose, yet it is known 
that the commonly used numerical methods suffer from significant drawbacks, such as instabilities, 
local extrema and heavy dependence on initial guesses. In the state-space model class these 
problems are even more severe due to the inherent over-parameterizations that lead to surjective 
mappings. In an effort to face these issues, the research has focused on the development of 
gradient projection methods (McKelvey et al. 2004, McKelvey and Helmersson 1997, Gibson and 
Ninness 2005, Bergboer et al. 2002). However, the proposed algorithms inherit the limitations of 
the deterministic ones, while assessments in structural systems are still missing. 

During the last two decades and following the seminal work of Kristinsson and Dumont 
(Kristinsson and Dumont 1992), an alternative approach for attaching the nonlinear estimation 
problem has been developed, relying on the implementation of stochastic optimization algorithms 
(Yu and Gen 2010, Fleming and Purshouse 2002). However, the majority of these studies are 
mostly limited to SISO/MIMO transfer functions. Corresponding investigations on state-space 
models have only recently been reported in Dertimanis (2014) where four distinct instances of ES 
are adapted and benchmarked. The presented analysis showed that well-reported advantages of ES 
(increased efficiency in continuous problems, self-adaptivity, low algorithmic complexity, etc.) can 
be well fitted into this type inverse problems. Following this work, Dertimanis and Chatzi (2014) 
subsequently performed an initial investigation on the implementation of hybrid optimization 
schemes that combine diverse classes of optimization algorithms, such as deterministic and 
stochastic (Dertimanis et al. 2003, Koulocheris et al. 2008), to the state-space model estimation 
problem. It is noted that, other classes of stochastic optimization algorithms that have been used in 
the past for inverse analysis (Casciati 2008, Tang et al. 2008), usually formulate an explicit 
optimization problem in terms of the system’s physical parameters (mass, stiffness and damping). 
In this sense, the algorithm proposed herein provides a wider implementation framework in that it 
may readily be applied in the discussed optimization problems. 

Following this spirit, the aim of this study is to introduce an enhanced version of the early 
hybrid optimization algorithm presented in Dertimanis and Chatzi (2014) for the estimation of 
state-space models, and to test its robustness via thorough investigation of its performance using 
both simulated and experimental data. This novel scheme maintains all the significant features of 
its initial counterpart, interconnecting stochastic and deterministic optimization algorithms, in a 
way that exploits the advantages of both and results into a powerful method that delivers a faster 
convergence rate, as well as increased reliability in the search for the global optimum. Among the 
class of Evolutionary Algorithms (EAs), the stochastic component has been selected to be the 
self-adaptive Evolution Strategy (ES), notated as ES))/,(/(   , in which ,  and denote 
the number of parents, recombination parents and offspring, respectively. This selection is justified 
by existing indications concerning ES's superior performance in similar problems (Koulocheris et 
al. 2003), against Genetic Algorithms (GAs) (Dimou and Koumousis 2003) and Evolutionary 
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Programming (EP). In the current version of the hybrid algorithm, the original recombination and 
selection operators of the conventional ES remain unaltered, while the self-adaptive mutation is 
replaced by the Levenberg-Marquardt quasi-Newton algorithm. The deterministic mutation acts 
only on a subset  of non-privileged individuals (e.g., the worst  of the population during every 
iteration, where  is an additional exogenous parameter of the hybrid algorithm) and contributes 
to the development of a robust and flexible scheme, henceforth notated as 

ESh),)/,(/(    and abbreviated as h–ES. 
Accordingly, an estimation procedure is adopted that pertains to the estimation and the 

evaluation of successive state orders over a predefined range. Taking into account previous 
investigations (Dertimanis and Chatzi 2014), in which prior information has been judged as 
necessary, a parameter vector using subspace techniques is initially estimated and used as a 
centroid individual, on the basis of which the initial parental population is generated. Upon 
termination of the order selection process and the determination of a final candidate state-space 
model, the model validation process integrates a physically meaningful dispersion analysis 
procedure (Dertimanis 2013) that quantifies the significance of each identified vibration mode. 
The proposed method is assessed by a Monte Carlo study of a simulated structure, as well as an 
identification study of an experimental structure. In the former case, a linear model of a four-story 
shear building subject to uniaxial horizontal base excitation (ground acceleration) is used, while in 
the latter a laboratory steel frame structure is identified. 

The rest of the paper is organized as follows: the structural identification problem is described 
in Section 2 and the proposed hybrid algorithm is expanded at Section 3. Section 4 focuses on the 
estimation procedure, while Section 5 contains the identification experiments. Finally, Section 6 
summarizes the results and addresses future perspectives. 

 
 

2. The structural identification problem 
 
2.1 The structure in discrete-time state-space format 
 
A structural system with n  degrees of freedom (DOF) can be represented by a second-order 

vector differential equation in the form 

     )()()()( tttt PfKqqHqM    (1)

where M , H and K are the real  nn  mass, viscous damping and stiffness matrices, )(tq is the 

 1n  vibration displacement vector, )(tf is the  1p  vector of excitations and P is a  pn

coordinates matrix. By defining a  12 n  state vector as  TTT ttt )()()( qqx   and assuming 
constant inter-sample behaviour of the input signal (e.g., zero-order hold principle for a sampling 
period sT ), the structural system can be described in the discrete-time state-space as 

         ][][]1[ ttt BfAxx   (2a)

        ][][][ ttt DfCxy   (2b)
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2.2 The parametric identification problem 
 
Given a finite number of structural excitation/response samples, the parametric identification 

problem pertains to the estimation of a discrete-time state-space model 

             ][][ˆ]1[ˆ ttt BfxAx   (3a)

][][ˆ][ˆ ttt DfxCy   (3b)

so that its output closely resembles the measured vibration response. This implies an optimization 
problem that attempts to minimize a quadratic objective function of the form 

           )()(
2

1
)( pEpEp


Tf   (4)

for some parameter vectorp , where  

              ],[ˆ...],2[ˆ],1[ˆ)( pepepepE NTTT


  (5)

N  is the length of the available data samples and ],[ˆ][],[ˆ pyype ttt  . Here, p  is the vector 
that employs the full state-space parameterization, that is  

              TTTTT vecvecvecvec )()()()( DCBAp   (6)

where vec  denotes the operator stacking the columns of a matrix in series, one underneath the 
other. In defining the optimization problem using the state-space formulation of Eq. (3), it is 
assumed that all uncertainties due to modelling errors and noise sources acting on the system are 
lumped together as an additive disturbance at the output vector (Verhaegen and Verdult 2007). This 
implies that the applied estimation procedure belongs to the class of output–error methods. 
 
 
3. The hybrid algorithm 

 
3.1 Description 
 
Deterministic and stochastic optimization algorithms are characterized by disparate features. 

Specifically, deterministic methods exhibit high convergence rates and certain accuracy, provided 
that the objective function of Eq. (4) is regular. On the contrary, stochastic algorithms exhibit very 
low convergence rates, yet, they can search within a significantly broader area for the global 
optimum, in this way alleviating entrapment in local minima. The hybrid algorithm proposed 
herein attempts to combine these two seemingly contradicting features into a common platform. 

The effectiveness of the ESh),)/,(/(    is ensured via its partition into both a local 
and a global search for the optimum. This is succeeded by formulating a super-positioned 
stochastic global search, which is followed by an independent deterministic procedure that is 
conditionally activated for specific members of the involved population. This ultimately leads into 
a structure where every member of the population contributes in the global search, while single 
individuals perform the local search. Such algorithmic structures imitate insects’ societies 
(Monmarche et al. 2000) and they have been presented in, for example, Colorni et al. (1996), 

430



 
 
 
 
 
 

Hybrid evolutionary identification of output-error state-space models 

 

Dorigo et al. (2000) and Jayaraman et al. (2000). Refer to Yu and Gen (2010) for further details.  
The ES has been selected to form the stochastic platform. The selection of ES among the other 

instances of EAs is justified via numerical experiments in non-linear parameter estimation 
problems (Schwefel 1995), which have provided significant indication that ESs perform better 
than the other two classes of EAs, namely GA and EP. Similar indications have been provided by 
Koulocheris et al. (2003) in a system identification problem, although only with respect to transfer 
function model representations. In addition to this evidence and focusing further to the ES family, 
late investigations that deal with the state-space estimation problem (Dertimanis 2014) show that 
multi-membered, self-adaptive versions outperform other ESs instances, such as the (1+1)-ES and 
the CMA-ES. 

The conventional self-adaptive ES is based on three operators that take on the recombination, 
the mutation and the selection tasks. In order to maintain an adequate stochastic performance in 
the algorithm introduced herein, the recombination and selection tasks are retained unaltered (refer 
to Beyer and Schwefel (2002) for a brief discussion about the recombination phase), while its 
strong local topological performance is enhanced through the substitution of the original mutation 
operator by the LM algorithm. 

 
3.2 The deterministic mutation 
 
Previously developed versions of the ESh),)/,(/(    have integrate and test several 

deterministic algorithms that belong to the class of quasi-Newton methods and involve line-search, 
trust-region, or a combination of both, for the calculation of the parameter vector. In this study the 
deterministic mutation realizes the LM method, while it incorporates analytical gradient 
information. Very briefly, the LM algorithm updates the parameter vector by 

       kkk spp 1  (7)

with ks denoting the direction, which is calculated as the solution of the following set of linear 

equations (Moré 1978) 

        k
T
kkkk

T
k EJsIJJ


   (8)

In Eq. (8) k is calculated using trust-region approaches (Moré 1978, Dennis and Schnabel 

1981), while kJ (the Jacobian matrix of residuals) is calculated using information from the 

state-space model (Verhaegen and Verdult 2007). More specifically, since 
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where d is the size of the parameter vector, the calculation of the Jacobian matrix drops down to 
the calculation of the partial derivatives of the output, w.r.t. the parameter vector. This is very 
easily accomplished by differentiating the state-space model of Eq. (3) to obtain 

          ][][ˆ
][ˆ][ˆ

tt
tt

kkk

k

k

k f
p

B
x

p

A

p

x
A

p

x


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It is thus shown that the calculation of one column of the Jacobian matrix pertains to the 
simulation of the state-space system described by Eq. (10), for Nt ,...,1 . Due to the adopted 
parameterization it follows that during the calculation of specific columns of the Jacobian matrix, 
certain quantities of the left-hand sides of Eq. (10) are zero. Indicatively, when the columns that 
correspond to the entries of the state matrix are considered 
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 (11)

A very important matter that significantly affects the performance of the h–ES involves the 
members of the population that are selected for mutation: it has been reported (Koulocheris et al. 
2003) that a possible cause for the poor performance of EA in non-linear multimodal functions is 
the loss of information through the non-privileged individuals of the population. Thus, the 
deterministic mutation is applied only to the   worst of the population, where  is an additional 
strategy parameter. This means that a sorting procedure takes place twice in every iteration step: 
the first time in order to form the pool of the  worst individuals, and the second to support the 
selection operator, which succeeds the novel deterministic mutation one. This modification 
enables the strategy to yield the corresponding local optimum for each of the selected   worst 
individuals in every iteration step. The advantage is reflected in terms of increased convergence 
rate and reliability in the search for the global optimum. 

It is stressed that three further alternatives were tested in the course of this work with 
suboptimal performance, which is not reported herein. In these, the deterministic mutation 
operator was activated by:  

 Every individual of the involved population: this increased the computational cost of the 
algorithm without the desirable effect. 
 A number of privileged individuals: this led to premature convergence of the algorithm to 
local optima of the objective function. 
 A number of randomly selected individuals: this generated unstable behavior that led to 
statistically low performance and insufficient consistency. 

  
3.3 Termination criteria 
 
The adopted termination criteria can be distinguished into both local and global, depending on 

whether they apply to the deterministic mutation operator, or to the ESh),)/,(/(   . For 
the former, standard termination tests are utilized, which are described thoroughly in the literature 
(Dennis and Schnabel 1981, Fletcher 2000):  
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 Objective function value smaller than a specified tolerance, 
 relative gradient norm less than a specified tolerance, 
 relative distance between two successive iterations less than a specified tolerance, 
 not a descent current direction, and 
 maximum mutation operator iterations exceeded. 

The hybrid algorithm terminates if at least one of the following occurs:  
 Difference between worse and best objective function less than a specified tolerance, 
 maximum function evaluations exceeded, and 
 maximum iterations exceeded. 

 
 
4. The structural estimation procedure 

 
Prior investigation on pure ES (Dertimanis 2014) and early explorations of h–ES (Dertimanis 

and Chatzi 2014) indicated that state-space estimation using stochastic and/or hybrid algorithms 
may result in prohibitive computational burden if the initial cloud is allowed to vary freely. Based 
on these indications, the initial population (i.e., the set of parents) is generated around a centroid 
individual that is estimated using subspace techniques. While several other alternatives are 
possible (Katayama 2005), the estimation process realizes a deterministic subspace method that is 
described in Sec. 9.2.4 of Verhaegen and Verdult (2007), which is closely related to the MOESP 
class of algorithms. Upon estimation of the centroid individual, the initial population is generated 
through uniformly distributed sampling, the extrema of which constitute exogenous parameters. 

Model order selection is realized by estimating successive state orders within a predefined band 
and by employing the variance accounted for (VAF) metric   
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that is essentially a scaled version of the objective function expressed in percentage format. The 
adequacy of a model of certain order can be also judged by generating stabilization diagrams that 
plot a structural quantity (e.g., frequency) against the estimated state orders. Indications from a 
very wide and diverse variety of problems has shown that structural modes tend to stabilize, while 
false modes appear scattered on the diagram (Lau et al. 2007).  

Once a final candidate model has been extracted and validated (using typical model validation 
tools, such as the auto-covariance matrix of the residuals and the cross-covariance matrix between 
the residuals and the excitations) the vibration modes are calculated from the eigenvalue problem 
of the (discrete-time) state matrix (Reynders 2012)  

    1ΨΛΨA  (13)

It follows that the natural frequencies, the damping ratios and the mode shapes are calculated 
by 
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where k is the kth eigenvalue of the state matrix and k*Ψ the kth column of the corresponding 

eigenvector matrix. 
The quality of the estimated structural modes is further assessed by applying a physically 

meaningful dispersion analysis framework, which quantifies the individual contribution of every 
identified vibration mode into the total stochastic vibration energy. The relevant methodology is 
described in Dertimanis (2013) and pertains to a modal decomposition of the zero-lag covariance 
matrix of the output vector and to the definition of the Normalized Modal Dispersion Metric 
(NMDM). Under this metric, every identified mode is attributed by an additional quantity k , 

while the mode with the greatest contribution is being normalized to have 1k . Refer to 
Appendix A for a brief review of the method and to Dertimanis (2013) for further details. A 
flowchart of the proposed structural estimation method is displayed in Fig. 1.   

  

Fig. 1 Flowchart of the proposed hybrid structural identification method 
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Fig. 2 Sketch of the simulated shear frame 
 
 

Table 1 Physical and modal properties of the frame 

Physical Space 

Story )(Mgrm j
 )/( mkNk j

 

1 100 200000 

2 80 150000 

3 80 150000 

4 80 150000 

 

Modal Space 

Mode )(Hzfn
 (%)n  

1 2.520 1.00 

2 6.977 1.00 

3 10.341 1.00 

4 12.812 1.00 
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Fig. 3 Spectogram of the Northridge earthquake (Hamming window of size equal to 512, 50% overlapping)
 
 

5. The identification experiments 
 
5.1 Monte Carlo identification study of the simulated shear frame 
 
The first structural identification problem considered is a simulated shear frame structure with 

four DOFs, a sketch of which is displayed in Fig. 2. As illustrated in Table 1, the frame has its 
vibration modes within the [2 13] Hz band, with each one characterized by light damping (1%). 
For the identification tasks, the structure is excited by the Northridge earthquake, the spectrogram 
of which is presented in Fig. 3 (Hamming window of size equal to 512 and 50% overlapping), 
where it is obvious that the frequency band of interest is sufficiently excited. The simulated data 
are obtained through the discretization of the structural equation (in fact its continuous state-space 
representation) into the state–space model of Eq. (5), at a sampling period sT  = 0.01s, using the 
zero–order hold. Accordingly, the structural vibration outputs, i.e., the relative acceleration of 
every story, are mean value subtracted and the respective input-output data records have N=4000 
data per channel. 

In order to test the statistical consistency of the h–ES and perform comparisons to the standard 
self-adaptive ES, this series of tests presumes availability of data from all DOF, as well as known 
state order. A Monte Carlo analysis that involves 100 independent identification processes is 
incorporated. In every such individual process, the h–ES is implemented using standard values for 
the exogenous parameters, that is plus variant with 15 parents, 100 offspring and 2 recombination 
parents (panmictic intermediate scheme) (Schwefel 1995, Bäck 1996, p. 83), while in every 
iteration the 3 worst individuals are mutated (Koulocheris et al. 2008). The initial population is 
uniformly generated within the ±10-4 boundaries around the centroid individual. The standard ES 
uses exactly the same exogenous parameters and initializes at the same random state, to the one of 
the hybrid algorithm. This implies that the initial population of both algorithms is identical during 
a Monte Carlo iteration. Regarding the termination of the optimization process, this occurs when 
both (i) the best objective function is at least 100% better to the one of the subspace estimate, and 
(ii) when the difference between the best and the worst objective function is less than 10-8.  

 
 

436



 
 
 
 
 
 

Hybrid evolutionary identification of output-error state-space models 

 

Fig. 4 Logarithmic objective function values against evaluation times (simulated frame) 
 

Fig. 5 Histograms for the number of objective function evaluations of each algorithm (simulated frame) 
 
 

Table 2 Percentage improvement (%) from the subspace estimate and computational load in minutes. All 
quantities are provided in mean (± standard deviation) format (second row, simulated frame)* 

 (15/2+100,3)-h-ES (15/2+100)-σ-SA-ES 

Improvement 250.313 (±1.857) 100.116 (±0.130) 

CPU 0.169 (±0.011) 11.030 (±2.528) 

 
Table 3 Mean values of estimated vibration modes. Standard deviations are negligible and therefore they are 

not shown (simulated frame) 

 Theoretical (15/2+100,3)-h-ES (15/2+100)-σ-SA-ES 

Mode )(Hzfn
 (%)n  

k  )(Hzfn (%)n k  )(Hzfn
 (%)n  

k  

1 2.520 1.00 1.000 2.520 1.00 1.000 2.520 1.00 1.000

2 6.977 1.00 0.440 6.977 1.00 0.440 6.977 1.00 0.440

3 10.341 1.00 0.178 10.341 1.00 0.178 10.341 1.00 0.178

4 12.812 1.00 0.027 12.812 1.00 0.027 12.812 1.00 0.027

                                                       
* Simulations were carried out on a PC with a Quad Core 3.20GHz Intel Processor and 8.00GB of RAM, on 

a 64-bit WINDOWS 7 operating system. 
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The results of the Monte Carlo simulation are expanded over Figs. 4 and 5 and Tables 2-4. 
Overall, both the hybrid algorithm and the conventional ES exhibit very good performance in all 
the examined issues and great accuracy in the estimates of the structural vibration modes (Table 4), 
which result identical to their theoretical counterparts, at a negligible standard deviation. Specific 
remarks for each competing algorithm are given below: 

 
 (15/2+100)-σ-SA-ES: the conventional ES manages to return satisfying estimates in all the 

individual experiments, as a result of constantly decreasing iterations. However, as Fig. 4 
illustrates, convergence is extremely slow and spread over a very wide range of function 
evaluations. Indeed, it is observed that in all individual Monte Carlo experiments the algorithm 
terminates at approximately the same objective function value (around -13, that corresponds to 
the base 10 logarithm of the final value of Eq. (4)), which implies that (i) the convergence 
rates return very slow and typical of stochastic optimization algorithms, (ii) the algorithm 
terminates only when the first criterion (at least 100% improvement from the subspace 
estimate) is fulfilled (see also Table 2), and (ii) the second termination criterion (convergence 
in population) has been already fulfilled. This performance is observed to be evolved in a quite 
wide range of objective function evaluations: as Fig. 4 shows, the objective function 
evaluations vary from around 175000, up to 500000, which is a strong indication of poor 
computational consistency. The very high computational costs are also reflected in the 
measured cpu times required for convergence, that have been reached up to 11min in the mean, 
followed by a deviation of approximately 2.5 min. Nonetheless, the identified structural 
vibration modes return identical to the true ones (see Table 3) proving an accurate 
methodology. 

 (15/2+100,3)-h-ES: the proposed algorithm succeeds in returning very satisfying estimates in 
all the individual experiments. Starting from Fig. 4, two distinct features indicate a dramatic 
performance improvement, in respect to the conventional ES. The first feature refers to the 
induced objective function evaluations, which have been dropped down by three orders of 
magnitude, as compared to the ones of the self-adaptive ES. Indeed, due to the presence of the 
deterministic mutation, all individual experiments have been terminated in less than 400 
function evaluations, while convergence is already achieved at about 100-200 objective 
function evaluations, which, given the number of initial population, corresponds to the first, or 
maybe second iteration of the hybrid algorithm. The second feature that is seen from Table 2 
refers to the percentage improvement from the subspace estimate: the hybrid algorithm has 
resulted in a mean improvement of about 250%, in respect to the subspace estimate. This 
figure is quite indicative of the benefits of the deterministic mutation, which actually “pushes” 
a “bad” individual to become the “best”, while this is accomplished in very high rates. This 
performance is characterized by remarkable statistical consistency: as the histogram of Fig. 5 
reveals, more than 80% of the final objective function evaluations result in the same frequency 
bin, while the standard deviation in the resulted objective function values is less than 2%, 
(Table 2). In accordance with these remarks, it is not surprising that the mean cpu load of the 
h–ES results two orders of magnitude smaller than the one of the standard ES and is 
formulated at 0.17min, with a standard deviation of 0.011min (approximately 0.6s). Naturally, 
the estimated structural vibration modes also return identical to the true ones (see Table 3) 
proving a both accurate and rapid methodology. 
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5.2 Structural identification of the laboratory shear frame 
 
The algorithm and the adopted estimation procedure are now applied to the structural 

identification problem of a laboratory frame with lateral force resistance being provided by 
X-braces, which is displayed in Fig. 6 and has the geometrical and material properties of Table 4. 
The frame is mounted through four bolts on a single-axis shake table running on displacement 
control mode (frequency range 0-100 Hz, force range ±100 kN, stroke ±125 mm, max. velocity 
0.55 m/s). 

A random zero-mean Gaussian displacement signal is used as a seismic excitation. The 
corresponding seismic acceleration is measured at the base (actual input excitation, location 0; Fig. 
6(b)), whereas the structural vibration response at each story of the frame (absolute accelerations, 
locations 1-4; Fig. 6(b)). To this, corresponding triaxial lightweight MEMS accelerometers 
(STMicroelectronics LIS344ALH, range ±2 g, sensitivity 3.3/5 V/g, acceleration noise density 50

Hzg / ) are placed at the geometric center of each plate. The sampling frequency is set at sF = 

1250 Hz, yet, as the frequency band of interest is limited to [0 30] Hz, the acquired signals are 
low-pass filtered (16th order Chebychev Type II digital filter with 50 mHz cut-off frequency) and 
resampled at sF = 125 Hz. The final input-output data set used for the identification contains N = 

5000 data per channel. Fig. 7 shows the power spectral density estimates (Welch’s method with 
Hamming window of size equal to 1024 and 50% overlapping) of the structural vibration outputs, 
from where four lightly damped modes can be clearly observed at around 3, 12, 20 and 27 Hz. 

 
 
 

 
(a) The frame (b) Schematic diagram of the experimental setup 

Fig. 6 The laboratory shear frame structure 
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Table 4 Physical properties of the laboratory frame 

Component Dimensions (L×W×H mm) Material Young modulus Density 

Story plate   500 × 470 × 12 

Steel S235 210 GPa 7850 kg/m3 
Column  550 × 45 × 10 

Weak column  550 × 45 × 4 

X-brace 623 × 40 × 6 

 
 

 

Fig. 7 Power spectral densities of the structural responses of the laboratory frame (Welch’s method,
Hamming window of size equal to 1024, 50% overlapping) 

 
 
The Monte Carlo analysis contains two distinct cases, at two different sizes of the estimation 

set, that is, N=1000 and N=1500 data per channel. In order to check the proposed scheme under 
limited data availability, the data set used to the identification experiments contains the earthquake 
acceleration and the structural responses, in the form of the first and the last story absolute 
acceleration. During every Monte Carlo iteration, the identification is carried out for state orders n 
= 8, 10, 12, 14, 16 and 18, which correspond to parameter vectors of lengths shown at Table 5. 
The hybrid algorithm is implemented using the same setting as before (plus variant; 15 parents; 
100 offspring; 2 recombination parents; mutation of the three worst individuals; uniform 
generation of the initial population within the ±10-4 boundaries around the subspace-based centroid 
individual). Termination of the optimization process now occurs only when the difference between 
the best and the worst objective function is less than 10-8 (convergence in population). 
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Table 5 State orders and lengths of the corresponding parameter vectors 

n 8 10 12 14 16 18 

d 90 132 182 240 306 380 

 
Table 6 VAF (%), improvement (%) from the subspace estimate and CPU time (min) for each state order 

considered (laboratory frame, N=1000 case). All quantities are provided in mean (± standard 
deviation) format 

n 8 10 12 14 16 18 

VAF 94.90 

(±2.26×10-6) 

95.13 

(±2.57×10-6)

95.15 

(±2.51×10-3)

95.19 

(±3.48×10-5)

95.19 

(±2.74×10-5) 

95.38 

(±4.44×10-5)

Improvement 34.27 
(±2.26×10-6) 

36.79 
(±2.26×10-6)

38.49 
(±2.26×10-6)

39.93 
(±2.26×10-6)

51.15 
(±2.26×10-6) 

74.66 
(±2.26×10-6)

CPU 0.056  
(±0.008) 

0.148  
(±0.024) 

0.284  
(±0.046) 

0.859  
(±0.311) 

6.235  
(±3.530) 

1.287  
(±0.808) 

 
 
5.2.1 Results for N=1000 
Fig. 8 and Table 6 illustrate the main results of the Monte Carlo analysis. As a general 

comment it can be argued that the hybrid algorithm has retained similar performance to the one 
observed in the numerical case study for almost all the examined state orders. In view of the 
critical issues assessed, the following specific remarks can be made: 
 Statistical consistency: Fig. 8 displays the performance of the hybrid algorithm in terms if 

objective function values against evaluation times, as well as histograms of the latter, for 
each state order considered. Up to and including n=14, the behavior is quite similar, 
showing that a stationary point has already been achieved at low iterations, whereas 
afterwards the algorithm obviously attempts to fulfill the criterion of population 
convergence. This implies a greater deviation in the final number of objective function 
evaluations (observe the corresponding histograms), but not to a level that reduces the 
statistical efficiency of h–ES. In the last two orders a slight alteration from this performance 
is observed. Although this requires further attention and it is certainly related to the size of 
the parameter vector, it can be also attributed to the quality of the subspace estimate. In 
specific, by looking at the percentage improvement of the final objective function value in 
comparison to its subspace estimate (Table 6), it is obvious that at n=16,18 the values are 
sufficiently higher, reaching up to about 75% when n=18. This indeed means that the hybrid 
algorithm requires further effort to reach to the same results produced at lower orders. It is 
likely that this behavior is attributed to the induced numerical inefficiencies implied by the 
selection of such high orders. The implementation of more sophisticated subspace methods 
may partially resolve this issue.     
The consistency of the proposed algorithm can be also positively assessed by the induced 
VAF values. As Table 6 displays, these have resulted very high for all the considered orders, 
while the corresponding standard deviations are negligible. Same levels of deviations have 
been also resulted for the percentage improvements from the subspace estimates, although 
the relative mean values are significantly different when the order increases, as commented 
above. 
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Fig. 8 Logarithmic objective function values against evaluation times and histograms for the number of
function evaluations for each state order considered (laboratory frame, N=1000 case) 

 
 

Table 7 Estimated vibration modes (laboratory frame, N=1000 case) 

Mode )(Hzfn
 (%)n  

k  

1  3.53 ± 2.51×10-8 0.47 ± 9.80×10-9 0.74 ± 1.32×10-6 

2 11.77 ± 5.06×10-8 0.34 ± 6.45×10-9 0.53 ± 1.16×10-6 

3 20.30 ± 7.21×10-8 0.19 ± 1.91×10-9 1.00 

4 26.92 ± 4.50×10-6 0.35 ± 1.69×10-7 0.06 ± 1.23×10-6 

 
 
 Computational cost: the induced CPU times in minutes are listed in the last row of Table 6. At 

lower state orders the computational time is comparable to that of the simulated frame and the 
standard deviations are one order of magnitude lower that the respective means. At higher 
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orders the same values increase and this is attributed to both the complexity of h–ES, yet also to 
the quality of the subspace estimate, which decreases with increasing state order, causing the 
hybrid algorithm to require more time to reaching to a stationary solution. It is reminded that 
the current implementation of h–ES utilizes a large number of individuals (parents and 
offspring), in accordance to literature suggestions. A compromise among the utilized number of 
individuals, the quality of the estimate and the required computational costs remains an open 
issue. 

 Quality of the estimated vibration modes: the numerical results of the Monte Carlo analysis 
suggest that n=8 is a sufficient state order for the description of the laboratory frame. Taken 
under consideration that the structure is characterized by four modes of vibration, this selection 
corresponds to zero overdetermination degree and enhances the numerical efficiency of the 
proposed method, besides confirming the good quality of the measured data. The estimates of 
the four structural vibration modes are depicted in Table 8 and are in line with the 
nonparametric estimates (see Fig.7). The damping has resulted quite light, which may be also 
inferred by observing the sharp peaks of the FRFs, while the third mode has resulted the most 
significant in terms of its contribution to the total stochastic vibration energy. Of particular 
importance are the induced standard deviations of the structural estimates, which have resulted 
very low, again confirming the statistical consistency of h–ES and providing significant 
indications that the estimated quantities are close to their “actual” values. 

 
5.2.2 Results for N=1500 
Increasing the length of the estimation set produces the results shown at Fig. 9 and Tables 8 and 

9. A general impression is that this increase does not result in significantly greater quality although 
it seems that it enhances the consistency of h–ES. More specifically: 

 
 Statistical consistency: as Fig. 9 shows, the hybrid algorithm appears more consistent than 

before. Indeed, a stationary point is achieved at low iterations for all state orders and the 
histograms of the objective function evaluations are expanded over narrower deviations. All 
other monitored quantities are slightly improved, including the VAF values and the percentage 
improvements from the subspace estimates. An unexpected behavior is, however, observed for 
n=12: at this order, the results of the Monte Carlo analysis have returned quite dispersed (see 
Fig. 9(c) and the relative column of Table 8). Apart from numerical issues, there is no apparent 
explanation for this performance, especially after taking into consideration the corresponding 
results for N=1000, yet it requires a more detailed examination 

 Computational cost: the returned CPU times at lower orders are comparable to that of the 
N=1000 case, whereas at higher orders the computational cost increases, reaching up to four 
times larger mean values when n=18. Again, for n=12, a discrepancy is observed in both the 
mean and the variance of the CPU time. 

 Quality of the estimated vibration modes: as previously, n=8 is considered a sufficient state 
order for the description of the laboratory frame resulting in zero overdetermination degree. 
Table 8 illustrates the estimates of the four structural vibration modes, which are in line with 
both the nonparametric estimates (see Fig.7) and the parametric ones for N=1000 (see Table 7), 
apart from the damping of the first three modes which is slightly different. The induced 
standard deviations have returned at the same levels and provide further evidence of the 
algorithm’s efficiency. 
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Fig. 9 Logarithmic objective function values against evaluation times and histograms for the number of
function evaluations for each state order considered (laboratory frame, N=1500 case) 

 
 

 
Table 8 VAF (%), improvement (%) from the subspace estimate and CPU time (min) for each state order 

considered (laboratory frame, N=1500 case). All quantities are provided in mean (± standard 
deviation) format 

n 8 10 12 14 16 18 

VAF 95.31 

(±9.77×10-9) 

95.55 

(±3.57×10-6)

95.55 

(±0.15×10-0)

95.63 

(±0.10×10-3)

95.63 

(±9.03×10-6) 

95.77 

(±8.74×10-3)

Improvement 29.02 
(±5.67×10-7) 

31.50 
(±2.81×10-6)

33.21 
(±2.33×10-0)

39.93 
(±2.60×10-2)

49.90 
(±1.84×10-5) 

71.20 
(±9.54×10-2)

CPU 0.055  
(±0.008) 

0.289  
(±0.020) 

7.312  
(±6.335) 

0.955  
(±0.237) 

1.484  
(±0.095) 

4.302  
(±1.588) 
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Table 9 Estimated vibration modes (laboratory frame, N=1500 case) 

Mode )(Hzfn
 (%)n  

k  

1  3.53 ± 1.03×10-7 0.49 ± 8.91×10-9 0.78 ± 1.84×10-6 

2 11.78 ± 7.61×10-8 0.37 ± 4.21×10-9 0.63 ± 1.40×10-6 

3 20.30 ± 6.35×10-8 0.22 ± 4.07×10-9 1.00 

4 26.91 ± 8.08×10-6 0.35 ± 1.34×10-7 0.07 ± 1.40×10-6 

 
 
6. Conclusions 

 
This study proposed a novel, hybrid optimization algorithm, followed by a corresponding 

estimation procedure, for the parametric, time-domain identification of structural systems via 
state-space models. The hybrid algorithm, h–ES, has been designed in a way that integrates the 
advantages of its deterministic and stochastic counterparts and combines high convergence rates 
and increased reliability in the search for the global optimum. This is succeeded by setting a purely 
stochastic platform using the conventional ES and by replacing the original mutation operator by 
the LM method. This operator is applied to a preselected number of the worst individuals of the 
population in every iteration and contributes to the convergence of the population into (at least) a 
stationary point.   

Although the underlying mechanisms that determine the actual performance of the algorithm, 
in respect to the structural identification problem that is being faced, are still under careful 
investigation, it seems that there are two performance potentials. Specifically, h–ES may either (i) 
significantly improve the effects of the initial population, by providing sufficiently better estimates 
in every iteration, until the population converges, or (ii) converge to a solution that can already be 
provided by the mutation of the initial population (via the LM method) in a way that leads into a 
stationary point. This second potential implies that the job could be done by the LM method its 
self (given a good initial “guess”), yet, the hybrid algorithm ensures that this point is indeed 
stationary (or global optimum) by “pushing” the whole population to converge to this point. 

The application of the algorithm to the test cases considered in Section 5 can be summarized by 
the following remarks: 

 The hybrid algorithm showed increased statistical consistency. This is confirmed by a 
number of observed features that included the range of the final objective function values, the 
almost identical quality of the final estimates and the required computational costs, over the set 
of Monte Carlo iterations.  
 The computational load of the hybrid algorithm is drastically lower than the one of its fully 
stochastic counterpart and can provide accurate state-space models in feasible times. 
 In respect to the experimental case, the hybrid algorithm produced accurate results using 
data of low length and limited observations. Moreover, at this length, a zero overdetermination 
degree resulted (despite the fact that the latter is also due to the quality of the acquired data). 
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 A certain degree of robustness over the subspace estimate seems to characterize the hybrid 
algorithm. Indeed, as the experimental study revealed, h–ES exhibited capability to estimate 
state-space models of the same degree of quality, by starting from “not so good” subspace 
vectors. This is unavoidably achieved at a greater computational cost.    
 The boundaries for the uniform generation of the initial population greatly affect the 
performance of the algorithm in respect to the computational cost. A systematic investigation 
of the relation among the subspace estimate, the adopted boundaries and the result of the 
process is still under development.  

The encouraging results suggest further development towards this direction. In this respect, 
current research undertaken by the authors investigates the aforementioned critical issues, as well 
as the perspectives of using more sophisticated state-space representations, such as the tridiagonal 
one. It is believed that the latter can lead to a new establishment of the induced optimization 
problem and result into an even greater reduction of the computational cost, combined with 
increased estimation accuracy. 
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Appendix A: the normalized modal dispersion metric 
 

Given a state-space description of a structural system with n DOF and provided a zero-mean 
Gaussian white excitation, a modal decomposition of covariance matrix of the output can be 
expressed as 

         h
k

n

k
kyy h 




2

1

][ QΓ  (A.1)

with the involved quantities defined in Dertimanis (2013). At zero lag, the covariance matrix 
becomes  
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where the asterisk denotes complex conjugate. Eq. (A.2) can be used to the evaluation of the total 
vibration energy associated with the output of the involved state-space realization. Define the kth 
modal dispersion matrix   

          *
kkk QQE   (A.3)

and the kth normalized modal dispersion matrix as the one with elements 
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Then, any norm can be implemented towards the derivation of a metric that quantifies the 
significance of the kth mode. The 2L modal dispersion metric is thus defined as 

         
2kk Δ  (A.5)

while its normalized version as  
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