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Free vibration analysis of a non-uniform beam with
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Abstract. The natural frequencies and the corresponding mode shapes of a non-uniform beam carrying
multiple point masses are determined by using the analytical-and-numerical-combined method. To confirm
the reliability of the last approach, all the presented results are compared with those obtained from the
existing literature or the conventional finite element method and close agreement is achieved. For a
“uniform” beam, the natural frequencies and mode shapes of the “clamped-hinged” beam are exactly
equal to those of the “hinged-clamped” beam so that one eigenvalue equation is available for two
boundary conditions, but this is not true for a “non-uniform” beam. To improve this drawback, a simple
transformation function ¢ (£ )=(et+&)* is presented. Where &= x/L is the ratio of the axial coordinate x to
the beam length L, « is a taper constant for the non-uniform beam, e=1.0 for “positive” taper and
e=1.0+of for “negative” taper (where |of is the absolute value of ). Based on the last function, the
eigenvalue equation for a non-uniform beam with “positive” taper (with increasingly varying stiffness) is
also available for that with “negative” taper (with decreasingly varying stiffness) so that half of the effort
may be saved. For the purpose of comparison, the eigenvalue equations for a positively-tapered beam
with five types of boundary conditions are derived. Besides, a general expression for the “normal” mode
shapes of the non-uniform beam is also presented.
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1. Introduction

For the “uniform” beams carrying various concentrated eclements, the free vibration problem has
been studied by a lot of researchers (Laura et al. 1975, 1977, Gurgoze 1984, Laura, Fillipich and
Cortinez 1987, Wu and Lin 1990, Hamdan and Jubran 1991, Rossiet al. 1993, Gurgoze 1998). But
for the “non-uniform” beams, even without any attachments, the rescarches on their dynamic
behaviors are relatively fewer (Housner and Keightley 1962, Heidebrecht 1967, Gupta 1985, Abrate
1995, Naguleswaran 1996). As to the free vibration analysis of the “non-uniform” beams carrying
multiple concentrated elements, the information concerned is rare and this is one of the reasons why
the problem in this aspect is studied.

The analytical-and-numerical-combined method (ANCM) has been found to be an effective
approach for the free vibration analysis of the “uniform” beams carrying any number of
concentrated elements (Wu and Lin 1990), hence this paper tries to apply the ANCM to determine
the natural frequencies and the corresponding mode shapes of a “non-uniform” beam with multiple
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point masses. Since the ANCM is available for the cases that the closed-form solution for the
natural frequencies and the associated normal mode shapes of the “unconstrained” beams (without
any attachment) are obtainable, any non-uniform beams having closed-form solutions for the natural
frequencies and the normal mode shapes will be suitable for the application of the ANCM. Hence,
the non-uniform beam with constant depth and biquadratic variation in breadth reported by Abrate
(1995) is studied in this paper. The most predominant feature of this non-uniform beam is that the
equation of motion for the “non-uniform” beam can be transformed into that for the “uniform”
beam so that the closed-form solutions for the natural frequencies and the mode shapes of the “non-
uniform” beam with various boundary conditions may easily be obtained.

Fertis (1973, 1995) has presented a method to replace a “non-uniform” beam of variable stiffness
by an equivalent “uniform” beam of constant stiffness. It seems that the Fertis’ method should be
one of the best approaches to incorporate with the ANCM. However, this is not true because the
Fertis’ theory is obtained based on the assumption that the static deflection of the “non-uniform”
beam is equal to the one of the equivalent “uniform” beam. Therefore, the natural frequencies of the
equivalent “uniform” beam obtained from the Fertis’ method diverge the exact values of the “non-
uniform” beam to some degree and the error becomes larger for the case of the non-uniform beam
carrying multiple point masses.

One of the heaviest tasks for the ANCM is the derivation of the “normal” mode shapes of the
unconstrained beams. A general expression of the “normal” mode shapes is presented for the non-
uniform beam of Abrate (1995) with five types of boundary conditions. It is evident that the last
general expression for the “non-uniform” beam will be also available for the “uniform” beam if one
sets the taper constant to be zero, i.e., 0=0.

In the works of Lindberg (1963) and To (1979), the property matrices of the linearly tapered beam
elements were derived and then the natural frequencies of the non-uniform beams were solved.
Since the foregoing property matrices for the “non-uniform” beam elements are much complicated
than the ones for the conventional “uniform” beam elements, the latter are used to determine the
natural frequencies and the associated mode shapes of the non-uniform beams in this paper. It is
found that satisfactory results may also be achieved if the smaller conventional “uniform” beam
elements are adopted.

2. Closed-form solution for the natural frequencies and normal mode shapes of a
non-uniform beam

Since the ANCM requires the closed-form solution for the natural frequencies and the corresponding
normal mode shapes of the non-uniform beam, the latter is determined first in this section.
The transverse motion of a non-uniform beam is governed by
2 2 2
a—Z[EI(x)gw—()zc’t)J +pA(n) 2D (1)
Ox Ox or
where E is the Young’s modulus, p is the mass density of the beam, A(x) is the cross-sectional area
at the position x, /(x) is the moment of inertia of A(x) and # is time.
According to Abrate (1995), if A(x) and /(x) take the following forms
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4
A@=4,9' ) =4[ 1+o(% ] @
4
16)=1," () =L 1+a7 || G)
where
2
ot)=[1+a7 ] @
then Eq. (1) may be transformed to
' (ow) 4 I (ow) _
El, +pA, =0 5
o’ P ot ®

In the last expressions, 4, and /, are the values of A(x) and I(x) at position x=0, L is the beam
length, while o is a “positive” constant to represent the taper of the beam.

The non-uniform beam defined by Egs. (2)-(5) denotes a tapered beam with increasingly varying
stiffness. It is evident that the natural frequencies and mode shapes of such a beam with “clamped-
hinged” boundary conditions are different from those with “hinged-clamped” ones and the divergence
is dependent upon the magnitude of the taper . To improve the drawback in this aspect in the
existing approaches for the non-uniform beams (Housner et al. 1962, Heidebrecht 1967, Gupta
1985, Abrate 1995 and Naguleswaren 1996), the transformation function given by Eq. (4) is

replaced by
2
(p(x)=[e+(]’—f)a] (6a)
or (&) =(e+a)’ (6b)
where
e=1.0 if ¢ =0; e=1.0H0o] if <0 @)
E=x/L ®)

From Eq. (7) one sees that the taper constant (&) may be “positive” or “negative”. Positive taper
(a>0) means that the cross-sectional area (4(x)) and the moment of inertia ((x)) of the non-
uniform beam increase with increasing the coordinatex (or £=x/L), and negative taper (<0) means
that the values of A(x) and /(x) decrease with increasing x (or £=x/L).

It is noted that for the xy-coordinate systems and the configurations of the non-uniform beams
shown in Figs. 1 and 2 together with the transformation function defined by Egs. (6)~(8), the
symbols 4, and /, appearing in Eq. (5) now denote the minimum cross-sectional area 4(x) and the
minimum moment of inertia /(x) at the “left” end for a positively-tapered beam (see Fig. 1), and
denote those at the “right” end for a negatively-tapered beam (see Fig. 2). Therefore, for a specified
values of 4, and /,, one may obtain a positively-tapered beam by setting the taper constant & to be
a “positive” value and obtain a negatively-tapered beam by setting « to be a “negative” value. By
using this property of the transformation function (X&) defined by Eq. (6b), if the boundary
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y (b)
Fig. 1 A constrained non-uniform beam with “positive” taper constant a=0.5: (a) Top view and (b) Front

view
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Fig. 2 A constrained non-uniform beam with “negative” taper constant o=-0.5: (a) Top view and (b) Front
view

conditions of the positively-tapered beam as shown in Fig. | are changed to the “hinged-clamped”
ones, then the natural frequencies of the new beam may also be obtained from the original
positively-tapered beam with the original “clamped-hinged” boundary conditions by setting the taper
constant ¢ to be a negative value (see Figs. 2).

Eq. (5) is the equation of motion for a uniform beam (with area4, and moment of inertia /,) with
the transverse displacement defined by

v(x,0)=o(x)w(x, 1) )
For free vibration, one has
v(x,0)=V(x)e'"” (10)

where @ is the natural frequency of the beam (uniform or non-uniform) and V(x) is the corresponding
mode shape of the equivalent beam. The substitution of Egs. (9) and (10) into Eq. (5) yields

'8 =0 (11)
where
pA, -
=—1w 12
P~ (12)
and V""=9*V/dx". The solution of Eq. (11) takes the form (Meirovitch 1967)
V(x)=A(cos Bx-+coshBx)+B(cos fBx — cosh Bx) (13)
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+C(sin Bx +sinh Bx) +D(sin Bx — sinh fx)

Where the constants 4, B, C and D are determined from the specified boundary conditions.
2.1. For the clamped-hinged boundary conditions

For a clamped-hinged beam, the boundary conditions are:

wix, 1)=0, D _g 44 x=0 (14a)
ox
2
wix =0, LD o0 4 xop (14b)
ox

From Egs. (6), (9) and (14), one obtains

v(x, =0, YD _g 4 =0 (15a)
ox
2
v(x, 1)=0, M{‘—‘%)M at x=L (15b)
where ox ox
cr=—2% (16)
It is noted that ero
_o2 99(0)_ g) “9(0)_ (96 ’
0(0)=", - Ze(L 2 2 L) (17a)
o(L)=(e+ay’, 20L) (L):Z(e+(x)(g) 0" p(L) “’—2(9‘)2 (17b)
T oo L) 52 L
By using Eq. (10), Egs. (15a) and (15b) are transformed to
V(x)=0, V'(x)=0 at x=0 (18a)
V(x)=0, V”(x):%f V(x) at x=L (18b)
From Egs. (13), (18a) and (18b) one obtains
A=C=0 (192)
B(cosBL — coshBL)+D(sinBL — sinh BL)=0 (19b)
B[-BL(cos fL+coshBL)+4C*(sin fL+sinh BL)] (19¢)

~D[(BL(sinBL+sinhBL))+4C*(cos BL — coshBL)]=0
Non-trivial solution of Egs. (19b) and (19¢) leads to

a,(sina, + sinha,)+4C*(cosa, — cosha,)
sina, — sinha,

20)
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+—a,( cosa, + cosha,) +4C*(sina,+ sinha,) 0
cosa, — cosha,

where
a,=B,L v (21)

Eq. (20) is the frequency equation, which is in a different form from the one given by Eq. (41) of
Abrate (1995). It was found that one can not obtain the correct values of the non-dimensional
parameters a, =L (r=1, 2, ...) from Eq. (41) of Abrate (1995), unless some transformation was
made on that frequency equation. However, it is easy to find the values ofa, =B,L (r=1, 2, ...) from
Eq. (20) and the associated natural frequencies of the non-uniform beam are given by (c.f. Eq. 12)

w,=(a,)’ El, (rad/sec), (r=1,2,...) (22)
pA,L
Now, from Eqgs. (13) and (19), one obtains the mode shapes
V.(8)=B,[(cosa,&~ cosha,£)-0,,(sina,& — sinha,&)] (23)
where
cosa, — cosha,
O, =———

sina, — sinha,

For convenience of calculating the “normal” mode shapes of the beam in various boundary
conditions (see the Appendix), Eq. (23) is rewritten in the “general” form below

VA(&)=B,(E,sina,&+F, cosa,&+G sinha,&+H cosha,&) (24a)
=B,V1,(&) (24b)
where
E=0,, F,=1, G,=0,, H,=—1 25)
Vi(E)=E,sina,E+F, cosa,E+G,sinha,&+H, cosha,& (26)

The value of B, appearing in Eq. (23) was determined from

J,PALV(E)dE=B], pA LV (£)dE=1.0 @7
Hence the “normal” mode shapes of the “clamped-hinged” non-uniform beam are given by
V*,(8)=B,,(E,sina,E+F,cosa,&+G,sinha,E+H, cosha, &), r=1,2, .. (28)
where
B, =——t— 29)
pAoLer
Ry, =J,71(&)dE (30a)

1

=%(Ef+Ff—GT+HT)+4a sinh2a,(G* + HY)

sin2a,(—E,2+Ff)+41

r r
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+ sina,cosha cosa,cosha

F(E\G PR H )+ (-E,G+F\H,))
sina,cosha, cosa,cosha,
— (£ H,+F\G\)+——(-E,\H,+F,G))

G4, sinh’a, (30b)

+1 (B H,-F, G1)+E1F1 sin’a,+
ar

r ¥

In this paper, five types of boundary conditions were studied, hence the first subscriptsi of the
symbols V;,*, B;. and R;, appearing in Eqs. (28)-(30) denote the i-th type of boundary condition.
The free vibration response of the non-uniform beam takes the form

wix, )=W(x)e'™ (31

The substitution of Egs. (10) and (31) into Eq. (9) gives the “normal” mode shapes of the non-
uniform beam to be

W, (&)=V,*(E)/P(&)=V,*(E)/(e + Ea)’ (32)
2.2. For the hinged-clamped boundary conditions

Although, by using the transformation function given by Eq. (6), one may determine the natural
frequencies and the corresponding mode shapes of a non-uniform “hinged-clamped” beam with the
formulation for the non-uniform “clamped-hinged” beam, in order to check the reliability of the
presented theory, the closed-form solutions for the natural frequencies and the corresponding normal
mode shapes of a non-uniform beam with the “hinged-clamped” boundary conditions were also
derived in the following.

For a hinged-clamped beam, one has

2
w(x,1)=0, a—YV(——’g”)zo at x=0 (33a)
ox
wix.)=0, WD _o a0 of (33b)
ox
From Egs. (6), (9) and (33), one obtains
) _
v(0, 1)=0, 900 f)=(@‘)av(°’ ) (34a),(34b)
ox’ L) ox
(L, 1)=0, 2L:D (352),(35b)
where Ox
oa=o/e (36)

To insert Eq. (10) into the last expressions yields

V(0)=0, V"(O)JLE‘V'(O) (37a),(37b)
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V(L)=0, V'(L)=0 (38),(38b)

By using the similar derivation steps as shown in Egs. (19)~(30), one obtains the frequency
equation of the “hinged-clamped” non-uniform beam

2(1 - cosa, cosh Oc,)+2a—(ix( sina,cosha, — cosa,sinha,)=0 39)
and the “normal” mode shapes

V. *=;(E sina, &+ F,cosa,&+G,sinha, E+H,cosha, &) (40)
2 2 2 r

" JpALR,,

where
a, a,
Ey==ye=0sn F>=1, Gy=myZ+0s, Hy=-1 @)

a, . .
(cosa, — cosha,)—4—é( sina, + sinha,)

0,,= (42)

sina, — sinha,

The values of R,, appearing in Eq. (40) may be obtained from Eq. (30b) by replacing the values of
E,, F\, G, H, by those of E,, F,, G,, H, defined by Egs. (41) and (42), respectively. Where the
values of o, =B,L (r=1, 2, ...), are the roots of the frequency Eq. (39).

3. Solution for a non-uniform beam carrying point masses

According to the analytical-and-numerical-combined method (ANCM), the eigenvalue equation
for a beam carrying p point masses with magnitudes m; (j=1~p) located at x; (j=1~p) is to take the
form (see Eq. 11 of Wu and Lin 1990)

pn ‘
(@] = @)=Y Y m W, ()W, (x)® 1,=0, r=1,2, .., n (43)
j=1s=1
where @, is the »-th natural frequency of the “unconstrained” beam (without any attachment) with
“normal” mode shape W/(x), @ is the natural frequency of the “constrained” beam (carrying any
attachments) with mode shape W(x), # is the total number of modes considered, 77 is the amplitude
of the generalized coordinate 1(¢), i.e.,

n(t)=ne"™ (44)
and
W(x)=W(x) - &(x—x;) 45)

In the last two equations, 6 (*) is the Dirac delta function, x is the axial coordinate, ¢ is time and
i=J-1.

Eq. (43) is derived from the equation of motion for the “unconstrained” beam by considering the
mertia forces of the p point masses, ij(xj)E)2 (j=1~-p), as the external exciting forces and
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applying the property of orthogonality of the “normal” mode shapes W, (x) (r =1, 2, ...).
For convenience, Eq. (43) is rewritten in matrix form

[41{7i}=® [BI{7} (46)

where

{N={mmn...N.}
[4]= "0, w,...0

nl nxn

[B]=[1],x,t[B'),xn
1="11...1,,,,

(B1=3 m W), x,
j=1

(W= W) b0 AW Y
WDt =AW )W (x) . W (X))}, (47)

In the last equations, the symbols [ ], { } and "  denote the square matrix, column vector and
diagonal matrix, respectively.
Nontrivial solution of Eq. (46) requires that

l41-@'1B1]=0 (48)

Eq. (46) is a standard eigenvalue equation, here the half-interval method (Carnahan, Luther and
Wilker 1969) is used to determine the natural frequencies of the “constrained” beam, @, (» =1~n),
from Eq. (48) and the substitution of the values of @, (»=1~n) into Eq. (46) will determine the
corresponding generalized coordinates {7} } (»=1~n). Finally, the corresponding mode shapes of
the constrained beam are given by

W () ={ W(x) b {7}

From the foregoing formulation for the ANCM, one sees that the natural frequencies @, (» =1~#n)
and the corresponding modes shapes W, () (r =1~n) of a “constrained” non-uniform beam (with
any attachments) are easily obtained if the natural frequencies @, (r =1~#n) and the corresponding
modes shapes W.(x) (r=1~n) of the “unconstrained” non-uniform beam (without any attachments)
are obtainable. Since the accuracy of the first n—1 natural frequencies, @, (» =1~n), will be
satisfactory. if the total number of modes used by the ANCM is n, the order of the two square
matrices in Eq. (46) or Eq. (48), [4],x» and [B],«, is much lower than the order of the property
matrices for the conventional finite element method (FEM). Hence, the numerical calculations with
the ANCM will be faster than those with the FEM.

(r), r=1,2,...,n (49)

4. Numerical results and discussions

The dimensions and physical properties for the non-uniform beam studied in the following are:
minimum height 4,=1.5 in, minimum width 5,=1.0 in, minimum cross-sectional area A,=b,4,=1.5 in’,
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minimum moment of inertia /,=b,h. /12=0.28125 in*, total beam length £=30.0 in, Young’s modulus
E =30x10° psi and mass density of the beam material p =0.73386x107Ib-s*/in/in>. For convenience,
the five compound adjectives for the boundary conditions of the non-uniform beamstudied in this
paper, clamped-hinged, hinged-clamped, clamped-free, free-clamped and hinged-hinged, will be
represented by the five two-letter acronyms CH, HC, CF, FC and HH, respectively, hereafter.

4.1. Check with the existing and FEM results

For the CH non-uniform beam shown in Fig. 1 without carrying any point mass, the lowest six
frequency coefficients a°=(B,L)* (r =1~6) are shown in Table 1(a) for the taper constant =0, Table
1(b) for o=+1.0 and Table 1(c) for a=+2.0. In addition to the ANCM results, those obtained from
the existing literature (Abrate 1995) and the conventional FEM are also listed in Table 1. The FEM
model is shown in Fig. 3, where the entire non-uniform beam is replaced by a stepped beam
composed of 24 uniform beam segments. The cross-sectional area4; and the moment of incrtia /; of
the i-th “uniform beam segment” are equal to the average values of the corresponding ones for the
i-th “non-uniform beam segment”, respectively, and the mass per unit length of the i-th uniform
beam segment is evaluated by pA4,. The length of each uniform beam segment is /=L/24=1.25 in.
From Tables 1(a), 1(b) and 1(c) one finds that the results of ANCM and those of FEM are all very

Table 1 The lowest six non-dimensional frequency coefficients a,’<(B,L)* (r=1~6) for the unconstrained
“clamped-hinged” non-uniform beam (p=0) shown in Fig. 1 with taper constants (a) ©=0.0;
(b) o=£1.0; (c) a=£2.0

(a)
Non-dimensional frequency coefficients
Methods o > 5 3 3 3 5
ai ay as ay as ag
Abrate (1995) 15.4182 49.9649 104.248 178.270 272.032 385.533
FEM 0.0 15.4183 49.9654 104.251 178.282 272.074 383.651
ANCM 15.4186 49.9654 104.247 178.269 272.031 385.531
(b)
Non-dimensional frequency coefficients
Methods a 5 > > 3 3 >
ay a) asy ay as dg
Abrate (1995) 1.0 12.3635 47.6265 102.025 176.105 269.904 383.423
FEM 1.0 12.3755 47.6581 102.089 176.220 270.096 383.756
ANCM 1.0 12.3633 47.6259 102.025 176.105 269.901 383.421
*-1.0 12.3633 47.6259 102.025 176.105 269.901 383.421
©
Non-dimensional frequency coefficients
Methods o4 3 > > 5 3 >
a) a; as ay as ag
Abrate (1995) 2.0 10.5984 46.6678 101.174 175.304 269.136 382.669
FEM 2.0 10.6256 46.7203 101.270 175.463 269.382 383.074
ANCM 20 10.5986 46.6673 101.174 175.304 269.129 382.669
* 2.0 105986 46.6673 101.174 175.304 269.129 382.669

*For the “hinged -clamped” boundary conditions.
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Fig. 3 The finite element model for the non-uniform beam with: (a) Top view and (b) Front view

close to those of Abrate (1995), but the accuracy of ANCM is better than that of FEM, particularly
for the higher modes of the higher taper beam (e.g., as’ for o=2.0). It is noted that the values of
a?=(B.L)* (r=1~6) obtained from the CH beam with “positive” taper (@=+1, +2) are exactly equal
to those obtained from the HC beam with “negative” taper (=1, —2) as one may see from the
final two rows in each of Tables 1(a), 1(b) and 1(c). In the next subsections, all results are obtained
based on the “positive” taper except those for the cases indicated by stars (*).

4.2. Free vibration analysis of the “unconstrained” non-uniform beam

For convenience of comparison, the lowest five natural frequencies @, (r=1~3) and some of the
corresponding mode shapes W, (§) (r=1~5) of the “unconstrained” non-uniform beam (without any

Table 2 The lowest five natural frequencies for the “unconstrained” non-uniform beam (p=0) with five
boundary conditions and taper constant &=0.5

Natural frequencies ®; (rad/sec
Cases  Methods Bour;@ary quencies ( )
conditions W, w w; @y s
FEM CH 1328.20687 4718.77248 10005.97164 17212.65567 26341.18345
1 CH
ANCM HC 1327.59225 4716.81231 10001.92912 17204.94875 26327.19985
FEM HC 1656.80298 5025.75128 10311.38537 17513.05824 26634.34892
2 HC
ANCM — 1657.76545 5028.65459 10317.05808 17522.05884 26645.33977
FEM CF 204.07943  1837.20129 5732.17181 11500.97222 19191.37908
3 CF
ANCM p— 203.83525 1835.61577 5727.57575 11491.78064 19175.07545
FEM FC 547.06614  2493.55986 6356.31530 12117.73476 19795.45096
4 FC
ANCM “CF 547.62025 2496.31653 6363.39762 12131.22403 19816.24566
5 FEM HH 935.71446  3862.22951 8675.33854 15402.33232 24047.99504
ANCM HH 935.89198  3862.96437 8676.91792 15404.44705 24049.59868

*o=—0.5
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Fig. 4 The lowest five mode shapes for the “unconstrained” non-uniform CH beam (p=0)

attachment) are shown in Table 2 and Fig. 4, respectively.

In Table 2 and the subsequent tables, the lowest five natural frequencies for the same non-uniform
beam with taper &=0.5 and five boundary conditions (i.e., CH, HC, CF, FC and HH) are listed.
Since the natural frequencies obtained based on the “positive™ taper are equal to those based on the
“negative” taper, the last results are placed in the same row for each type of boundary conditions in
each table. From Table 2 one sees that the results of ANCM and those of FEM are very close to
each other. From Fig. 4 one sees that the node number N, for the r-th mode shape of the CH beam

Table 3 The lowest five natural frequencies for the constrained non-uniform beam carrying one point mass
(»=1) m;=m;=0.0522874 1b-s*/in located at &=x,/L=0.5

Natural frequencies w; (rad/sec
Cases Methods Bour@ary — — a — ( ﬁ) —
conditions @, @ @3 @4 s
FEM CH 872.64439  4435.74015  8355.01791 16664.28935 23160.40196
1 CH
ANCM P 872.27284 443691706  8380.31183  16699.68756 23483.69626
FEM HC 1058.66779  4864.20255  8534.50548 17105.39814 23302.21228
2 HC
ANCM O 1059.39315 4867.81992 857296803 17141.68163 23661.13839
FEM CF 184.94691 1259.41166  5705.76392  9273.90864 19182.62619
3 CF
ANCM O 184.72330 1258.68294  5701.60635 9312.03428 19167.31272
FEM FC 453.91068 1830.52352  6341.08473 9884.70803  19777.73302
4 FC
ANCM “CF 454.29062 1833.11086  6348.21408  9945.29591  19799.81812
5 FEM HH 617.84920 3838.80069  6878.38984  15388.78028 20464.68372
ANCM HH 617.93874 3839.67257  6907.15213  15391.92198 20827.75045

*a=—0.5
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Fig. 5 The lowest five mode shapes for the constrained CH non-uniform beam carrying “one” point mass
(p=1) m=mp=0.0522874 b-s¥in located at E=x,/L=0.5

is given by N,=r—1, besides, the modal displacements near the left end of the non-uniform CH
beam are larger than those near the right end of the beam in spite of the fact that the left end is
clamped and the right end is simply supported. This is a reasonable result, because the stiffness of
the left end is much smaller than that of the right end of the non-uniform beam as shown in Fig. 1.

Table 4 The lowest five natural frequencies for the constrained non-uniform beam carrying “three” point
masses (p=3) m=1/3m;=0.0174291 Ib-s/in (j=1~3) located at &=1/3, &=1/2, &=2/3, respectively

Natural frequencies w; (rad/se
Cases  Methods Boup@ary — — : 4 — ies o ¢ (i) —
conditions Iy W, @3 W4 Ws
FEM CH 930.67927 3472.06962  8107.75115 14681.39763 19612.75112
1 CH :
ANCM 7*HC 930.12399 3473.28332  8141.60333  14796.32219 20101.84511
FEM HC 1113.78387  3769.21121 8588.64471  14531.50330 20203.97146
2 HC
ANCM ~————————*CH 111430805  3774.37784  8625.28129 14697.43825 20650.43981
FEM CF 181.67449 1356.67554  4228.70132  9284.83949  17256.18292
3 CF
ANCM _—*FC 181.45834 135548769  4230.73834  9333.00813 17313.13449
FEM FC 433.25328 1980.49308  4812.84403 972297249  17986.60657
4 FC
ANCM *CF 433.58070 1982.70024  4823.70589  9791.57865  18085.90083
s FEM HH 648.86403 2954.50278  7359.25356  13085.86686 17042.32834
ANCM HH 648.90805 2956.39971 7386.61726  13141.65576 17665.21596

*o=—0.5
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Fig. 6 The lowest five mode shapes for the constrained CH non-uniform beam carrying “three” point masses

4.3. A non-uniform beam carrying “one” point mass

(»=3) m=m;/3=0.0174291 Ib-s¥in (j=1~3) located at & =1/3, &,=1/2, £&=2/3, respectively

All the situations of the present example are the same as the last one, the only difference is that a
single point mass with magnitude m,=m,;=0.0522874 b-s¥/in is attached to the center of the beam
(i.e., &;=x1/L=0.5). The lowest five natural frequencies of the constrained non-uniform beam, @, (r=
1~5), are shown in Table 3 for the five types of boundary conditions. The corresponding mode
shapes of the CH beam, p_ (r=1~5), are shown in Fig. 5. From Tables 2 and 3 one sees that the
single point mass m; reduces the lowest five natural frequencies of the constrained beam
significantly and so does the corresponding mode shapes as may be seen from Figs. 4 and 5.

4.4. A non-uniform beam carrying ‘three” point masses

If the single point mass in the last example is equally divided into three point masses (i.c.,
m1=m2=m3=mb/3=0.0174291 lb-sz/in) located at §1ZX1/L:1/3, 52:)(?2/14:1/2, and 53:)(3/14:2/3,
respectively, then the lowest five natural frequencies of the constrained beam, @, (r=1~5), are

Modal displacements, w (&)
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Fig. 7 The lowest five mode shapes for the constrained CH non-uniform beam carrying “five” point masses

(p=5) m=1/5m,=0.01045748 Ib-s¥in (j=1~5) located at &= x;/L = j/6, respectively
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Table 5 The lowest five natural frequencies for the constrained non-uniform beam carrying “five” point
masses (p=5) m= 1/5m;=0.01045748 Ib-s*/in (j = 1~5) located at &=x;/L=j/6, respectively

Natural frequencies ®; (rad/sec
Cases  Methods Boupdary — — d — ( _) —
conditions o, w0, @4 W, o5

FEM CH 1014.36228  3498.23044  7330.88251 12302.84740 17979.73215
1 CH

ANCM 7*HC 1013.75599  3497.38616  7343.03177 12401.36931 18398.50774

FEM HC 1204.86422  3674.37284  7532.83742 12710.82456 19278.90953
2 HC

ANCM —*CH 1205.40915  3677.67665  7557.39337 12873.70416 19627.95120

FEM CF 175.85005 1455.15056  4374.34074  8587.67473 13762.07416
3 CF

ANCM —*FC 175.64694 1453.82883  4372.75513  8609.76994 13937.26143

FEM FC 399.51491 1978.40731 5119.81284  9648.30479  14905.52460
4 FC

ANCM 4*(:]: 399.77693 1980.21645 5127.99381  9686.75699 15116.15563
s FEM HH 701.03674  2834.50828  6353.27981 11228.60299 17438.03585

ANCM HH 701.09247 283542321  6365.44802 11327.69400 17985.17861

*or=0.5

shown in Table 4 and the lowest five mode shapes of the CH beam are shown in Fig. 6. From
Tables 3 and 4 one sees that the lowest five natural frequencies of the non-uniform beam carrying
“three” point masses are not much different from those carrying one single point mass. This may be
due to the summation of the “three” point masses is equal to the “one” single point mass. But the
associated mode shapes are different to some degree as may be seen from Figs. 5 and 6. This may
have something to do with the distribution of the point masses. ‘

4.5. A non-uniform beam carrying “five” point masses

Similarly, if the single point mass in the previous example was replaced by five identical point
masses, each with magnitude m=m,;/5=0.01045748 Ib-s’/in (j=1~5) and located at E=x;/L=j/6
(j=1~5), respectively, then the lowest five natural frequencies of the constrained beam are listed in
Table 5, while the lowest five mode shapes of the CH beam are plotted in Fig. 7. From Tables 5
and 2 one sees that the lowest five natural frequencies of the “constrained” beam, @, (r=1~5),
shown in Table 5 are smaller than the corresponding ones of the “unconstrained” beam, @, (r=1~5),
shown in Table 2, and the difference between them, Aw, =@~ ®@,, increases with increasing the
mode number ». But the lowest five mode shapes of the “constrained” beam shown in Fig. 7 look
like those of the “unconstrained” beam shown in Fig. 4. The five “identical” point masses
“uniformly” distributed along the beam length should be the main reason arriving at the last results.
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5. Conclusions

1. In addition to the conventional finite element method (FEM), the analytical-and-numerical-
combined method (ANCM) is an alternative simple approach for the free vibration analysis of a
non-uniform beam carrying “multiple” point masses if the closed-form solution for the natural
frequencies and the corresponding mode shapes of the non-uniform beam are obtainable.

2. The natural frequencies and the corresponding mode shapes of the non-uniform beams with
“clamped-hinged” boundary conditions are different from those with “hinged-clamped” boundary
conditions, hence the transformation function including the “positive” and “negative” taper constants
(o) presented in this paper will reduce half of the effort required for the free vibration analysis of
the non-uniform beams.

3. The free vibration characteristics of a non-uniform beam is significantly influenced by the
distributions and magnitudes of the concentrated attachments along the beam length.

References

Abrate, S. (1995), “Vibration of non-uniform rods and beams”, Journal of Sound and Vibration, 185(4), 703-716.

Carnahan, B., Luther, H.A. and Wilker, J.O. (1969), Applied Numerical Methods, New York, John Wiley.

Fertis, D.G. (1973), Dynamics and Vibration of Structures, John Wiley & Sons.

Fertis, D.G. (1995), Mechanical and Structural Vibrations , John Wiley & Sons.

Gupta, A.K. (1985), “Vibration of tapered beams”, Journal of Structural Engineering, 111(1), 19-36.

Gurgoze, M. (1984), “A note on the vibrations of restrained beam and rods with point masses”, Journal of Sound
and Vibration, 96, 461-463.

Gurgoze, M. (1998), “On the alternative formulations of the- frequency equations of a Bernoulli-Euler beam to
which several spring-mass systems are attached inspan”, J. of Sound and Vibration, 217(3), 585-595.

Hamdan, M.N and Jubran, B.A. (1991), “Free and forced vibrations of a restrained uniform beam carrying an
intermediate lumped mass and a rotary inertia”, Journal of Sound and Vibration, 150(2), 203-216.

Heidebrecht, A.C. (1967), “Vibration of non-uniform simply-supported beams”, Journal of the Engineering
Mechanics Division, Proceedings of the ASCE, 93(EM2), 1-15.

Housner, G.W. and Keightley, W.0. (1962), “Vibrations of linearly tapered cantilever beams”, Journal of
Engineering Mechanics Division, Proceedings of the ASCE, 88( EM2), 95-123.

Laura, P.A.A., Maurizi, M.J. and Pombo, JL. (1975), “A note on the dynamic analysis of an elastically
restrained-free beam with a mass at the free end”, Journal of Sound and Vibration, 41, 397-405.

Laura, PA.A., Susemihl, E.A., Pombo, J.L., Luisoni, L.E. and Gelos, R. (1977), “On the dynamic behavior of
structural elements carrying elastically mounted concentrated masses”, Applied Acoustic, 10, 121-145.

Laura, PA.A., Filipich, C.P. and Cortinez, V.H. (1987), “Vibration of beams and plates carrying concentrated
masses”, Journal of Sound and Vibration, 112, 177-182.

Lindberg, G.M. (1963), “Vibration of non-uniform beams”, Aeronautical Quarterly, 14, 387-395.

Naguleswaran, S. (1996), “Comments on ‘Vibration of non-uniform rods and beams’ ”, Jouwrnal of Sound and
Vibration, 195(2), 331-337.

Meirovitch, L. (1967), Analytical Methods in Vibrations, New York: Macmillan.

Rossi, RE., Laura, PA A, Avalos, D.R. and Larrondo, H.A. (1993), “Free vibrations of Timoshenko beams
carrying elastically mounted concentrated masses”, Journal of Sound and Vibration, 165, 209-223.

To, C.W.S. (1979), “Higher order tapered beam finite elements for vibration analysis”, Jowrnal of Sound and
Vibration, 63(1), 33-50.

Wu, J.S. and Lin, T.L. (1990), “Free vibration analysis of a uniform cantilever beam with point masses by an
analytical-and-numerical-combined method”, Journal of Sound and Vibration, 136, 201-213.



Free vibration analysis of a non-uniform beam with multiple point masses 465
Appendix

Closed-Form Solutions for the Natural Freqzuencies and Normal Meode Shapes of

A Non-uniform Beam with ¢(&)=(e + £a)

For the non-uniform beam with cross-sectional area A(x) and moment of inertia /(x) defined by Egs. (2) and
(3), the closed-form solutions for the natural frequencies and the corresponding “normal” mode shapes in
some types of boundary conditions, excluding the “clamped-hinged” (CH) and “hinged-clamped” (HC) types
derived in the context, are listed in this appendix.

A.1. For a clamped-free (CF) beam

The boundary conditions for a clamped-free beam are

wix =0, D g 4¢ x=0 (A1)
ox
CALEN)) =0, AL EN) N, (A2)
2 3
ox ox
or
7(0)=0, ¥'(0)=0 (A3a,b)
2
* *
()= )+ 4y (A 4a)
L L
2 3
m 6C* 12C*
L L
The frequency equation is
S1rS22~512,821,=0 (A5)

where
. . 2
S“,:af( cosa, tcosha,)+4C*a,(—sina, — sinha,)—6C* (cosa, — cosha,)

. . 2, . .
Sur:af(smaﬁsmha,)+4C*a,(cosar — cosha,)—-6C*"(sina, — sinha, )

SZI,ZaZ(—Sinar+ sinha,) +6C*2ar(—sinar — sinha,)—12 C*3(cosar — cosha,) o
Szzrzai (cosa,*cosha,) +6C*2a,( cosa, — cosha, )—12 C*3( sina, — sinha,)
The natural frequencies are given by
0.=a, £l - (r/s), r=1,2, ... (A7)
pA,L
and the corresponding normal mode shapes are
V; =1 (Eysina, &+ Fjcosa, &+ Gysinha, £+ Hycosha, £) (A.8)

' A pAoLR3r

Ey==0,,, F3=1, G3=05,, H;==1, 0;,=5,,,/5),, (A9)

where
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The values of R, appearing in Eq. (A.8) may be obtained from Eq. (30b) by replacing the values E|, F|, Gy,
H,; of by those of E3, F5, G5, H; defined by Eq. (A.9). Where the values of a,=B,L (r=1, 2,...), are the roots

of the frequency equation (A.5).
A.2. For a free-clamped (FC) beam

The boundary conditions for a free-clamped beam are
I w(x, 1) Pwlx, 1)
2 0 30
ox ox

at x=0

_o Ow(x, t) _
w(x, t)=0, o 0 at x=L

or
6&2 45
7 o,
VA(0)=——=V(0)+—V"(0
©=-22 v(0)+4%y(0)
_2 _3
" 6o ., 12
L L
V(L)=0, V'(L)=0
where

a=uo/e
The frequency equation is
5 —4
a,+12¢ g _4 — 4 _3 .
r—’+(af —12a a,)cosa,+{(4a a,+ 12 af)sma,
cosha,

_ _3 _2 .
+(4a af—— 2« af)cosa, tanha, +12 ai sing, tanha,=0

The natural frequencies are given by

El
a),:af ° 2 (r/s), r=1,2, ...
pA,L
and the corresponding “normal” mode shapes are
v, -1 (Eysina,&+F cosa,&+G sinha, &+ H,cosha, &)

' A pAoLR4r

where

E4=B,1=04,D,\, F4=B,,=04,D,y, G4=B,3-0,,D,3, H,=B,,—04,D,4

B—a’B*Iar2+lB—a’B—]ar21
rli_a' r2__§ o e < B r47_2 ol

ITCAS 1/a,) 1(a,\’ 1(a,\’
Dn:z(a) L Drfs(a) ; D”:E(E) —L D=3 5)

_ B, sina,+B,,cosa, +B,;sinha, +B,,cosha,

Q4r

D, sina,+D,,cosa,+D,sinha, +D, ,cosha,

(A.10)

(A.11)

(A.12a)

(A.12b)

(A.13a, b)

(36)

(A.14)

(A7)

(A.15)

(A.16a)

(A.16b)

(A.16¢)

(A.16d)
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The values of Ry, appearing in Eq. (A.15) may be obtained from Eq. (30b) by replacing the values of £, F,
Gy, H, by those of E4, Fy, G4, Hy defined by Eq. (A.16). Where the values of a,=f,L (r=1, 2,...), are the roots
of the frequency equation (A.14).

A.3. For a hinged-hinged (HH) beam

The boundary conditions for a hinged-hinged beam are

w(x, 1)=0, 82L’;”Lo at x=0 (A17)
ox
w(x, 1)=0, QZL’;”):O at x=L (A.18)
ox
or
4 4& 4
y(0)=0, v (0)=TV(0) (A.19a, b)
” 4C*
V(L)=0, V' (L)=—F—V(L) (A.20a, b)
The frequency equation is
2
a
2a,C*(cosa,sinha,—sina,cosha,) +8C*(1 — cosa,cosha,)——=(sina,sinha,) =0 (A21)
o
The natural frequencies are given by
El,
0,=a, - (r/s), r=1,2, ... (A7
pA,L

and the corresponding normal mode shapes are

1

Vs k= (Egsina, &+ Fscosa, &+ Ggsinha, £+ H,cosha, &) (A22)
JpA LR,
where
ar ar
ESZ_(E‘FQS;’) Fi=1, G5:_ﬁ+Q5rJ Hy=-1, er:Tllr/ Ty, (A.23a)

a
T,,,=(cosa, — cosha,)—él—é(sma, + sinha,) (A.23b)

T\,,=sina, — sinha,
The values of Rs, appearing in Eq. (A.22) may be obtained from Eq. (30b) by replacing the values of E, F,

G, H, by those of Es, Fs, Gs, Hs defined by Eq. (A.23). Where the values of a,=B,L (r=1, 2,...), are the
roots of the frequency equation (A.21).





