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Abstract. Computational procedure within the framework of return mapping technique has been presented
to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete
model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent
operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of
the integration technique is verified and compared with available experimental data. Computational efficiency
is demonstrated by comparing with results based on elasto-plastic tangent.

Key words: concrete; multiple hardening; plasticity; return mapping; consistent tangent operation.

1. Introduction

Accurate prediction of the inelastic behavior of concrete depends to a large extent on the constitutive
model and the algorithm used in the analysis. In recent years, considerable research has been
focused on the mechanical behavior of concrete and in the development of appropriate constitutive
models. Among others, rate-independent concrete models were developed by Chen and Chen (1975),
Willam and Warnke (1975), Han and Chen (1985), and Pietruszczak et al. (1988), Bazant and Kim
(1979), and Dragon and Mroz (1979) applied the plastic-fracture theory; whilst damage theory was
used by Gilles et al. (1995). However, aspects on the numerical treatment of concrete models are
not developed at an equal pace. The main thrust of this study is to implement a computational
procedure to integrate the constitutive behavior of a concrete model based on multiple hardening.
Application of multiple hardening to concrete was first proposed by Murray et al. (1979) and was
generalized by Ohtani and Chen (1988). The concrete model assumes rate-independent plasticity
and associated flow rule. Performance of this concrete model for practical problems was reported by
Chen (1994) and has been demonstrated to be of acceptable accuracy.

In the analysis of inelastic problems by the finite element method, solution at global level is
achieved through consecutive load increments. In each load step, equilibrium equations are solved
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iteratively, for instance, by the Newton-Raphson procedure. For rate-independent plasticity problems,
the return mapping technique has been demonstrated to be highly efficient. Application of the
technique was first reported by Krieg and Krieg (1977) and by Schreyer et al. (1979). Their work
has stimulated a spate of publications (Simo and Taylor 1985, Simo and Hughes 1987, Matthies
1989, Hofestter et al. 1993, Hofstetter and Mang 1994, Matzenmiller and Taylor 1994). Among
others, Simo et al. (1988), Ghosh and Kikuchi (1988), Simo and Govindjee (1991), and Meschke
(1996) applied the technique to visco-plasticity problems; Schellekens and Borst (1990) developed
return mapping algorithms for anisotropic plasticity; and Hofstetter and Taylor (1990) considered
non-associative plasticity. In this study, the return mapping technique is extended to embrace the
analysis of concrete material. 

In what follows, the general development of the approach is presented. Applications involving bi-
axial stress states have been described. The results are compared with experimental data obtained by
Kupfer et al. (1969) and Tasuji et al. (1978). Efficiency of the technique is further demonstrated by
comparison with the results based on elasto-plastic tangents (Hinton and Owen 1980).

2. Governing equations of Ohtani-Chen model

Geometry of the yield surface assumed by Ohtani and Chen (1988) is having the same shape as
the Chen and Chen (1975) model. The yield surface is represented mathematically by a yield
function f with N multiple hardening parameters q1, q2,..., qN.

(1)

where {σ} is the stress vector, and qM is the Mth hardening parameter. The latter is an unique
function of the Mth damage parameter µM, or

(2)

µM is related to αM, a scalar representing the effect of damage to the Mth hardening mode.

(3)

Details in the determination of the coefficient αM is described by Ohtani and Chen (1988). The
equivalent plastic strain εp is the cumulation of the increment of equivalent plastic strain dεp.

(4)

The stress-strain relationship is assumed to obey the Hooke’s Law,

(5)

where {ε p} is the plastic strain vector, {ε} is the total strain vector and {D} is the elastic
constitutive matrix for isotropic material. The plastic strain increment induced during plastic
loading is obtained by enforcing the associated flow rule, i.e.

(6)

where λ is the proportional factor, and a positive scalar.
Consistent with the displacement-type finite element approach, it is assumed that the state

f σ{ }, q1, q2, …, qN( )=0

qM=qM µM( )

µM=  µMd∫ =  ∫αM dεp

εp=  ∫ dεp

σ{ }= D{ } ε{ } ε p { }–( )

dε p { }=λ ∂f
∂σ
------
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variables {σ}, { ε p}, λ and qi are computed from a given deformation history or {ε}. New values of
the state variables are obtained by integration of the constitutive equations projected from an initial
state. In this study, the return mapping technique is used in the integration in the manner now described.

3. Integration scheme

Earlier treatments on plasticity problems for concrete employ a direct method to integrate the state
variables. Substitution of Eqs. (5) and (6) into the consistency equation

(7)

the plasticity problem is reduced to the computation of a single unknown λ.

(8)

where {δε} is the change in total strain. Substituting λ into Eq. (6) gives the plastic strain
increment. By considering the governing equations in incremental form, the other state variables
are computed. In general, the updated state variables will not satisfy the yield condition. As a
result, there are possible errors associated with the yield function and the flow rule. The latter is
due to inaccurate prediction of the plastic strain increment. To eliminate these errors, an iterative
scheme local to a set of state variables is implemented.

Let {σ (k)}, { ε p,(k)}, qi
(k) and λ(k) be an approximate solution with respect to a new deformation {ε}.

Here the superscript (k) represents the values at an iterative step k in the computation of the state
variables. Errors associated with the approximate solution are

(9)

(10)

where rf
(k) and {rε

(k)} are the residuals for the yield function and plastic loading respectively. {ε p}
is the plastic strain at the beginning of the iterative process. Improved solution for the next
iteration denoted by superscript (k+1) is obtained by equating to zero the curtailed Taylor’s
expansion of the residuals in the neighborhood of the approximate solution at iteration (k). Thus,

(11a)

(11b)

df=
∂f
∂σ
------

 
 
 

T
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where,

(12a)

(12b)

(12c)

{ ∆σ (k+1)}, { ∆ε p,(k+1)} and ∆λ(k+1) are incremental quantities associated with the iterative step.
Improved values of {ε p,(k+1)}and λ(k+1) are obtained by summation over the number of iterative
steps, i.e.,

(13a)

(13b)

{σ (k+1)} is computed through the stress-strain relationship.

(13c)

where {σ}, { ε p}and qi be a set of variables representing an initial state that satisfies Eqs. (1) to
(6). Linearizing the equivalent plastic strain increment ∆εp

(k+1) and plastic strain increment
{ ∆ε p,(k+1)} by 

(14a)

(14b)

and substituting into Eqs. (11a) and (11b), the problem is reduced to the computation of a single
unknown ∆λ(k+1).

(15)

where {χ} is a square matrix expressed as

(16a)

and ψ is a scalar in the form of

∂ f k( )

∂qi

----------
∂qi

k( )
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-----------=
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(16b)

Similar expressions are also obtained by Hofstetter and Mang (1994). Their study has incorporated
additional internal variables, which are not presented in this concrete model. 

Increment of the effective plastic strain is obtained by

(17)

and the hardening parameters qj
(k+1) are obtained through the following relations

(18a)

(18b)

4. Consistent tangent operator

In every load step, the Newton-Raphson procedure is applied at global level to enforce the
equilibrium condition. Linearization of the nonlinear problem is achieved by the tangent operator,
which is defined as

(19)

To ensure an optimal rate of convergence, the tangent operator is obtained in a manner consistent
with the integration algorithm (Simo and Taylor 1985). Computation of the tangent operator is
achieved based on the state variables obtained at the end of iteration. For simplicity, the superscript
(k+1) is omitted in the equations that follow. Considering the constitutive relation, flow rule and the
yield condition in incremental form

(20a)

(20b)

(20c)

Futher manipulation, the tangent operator is obtained.

(21)

where h is a scalar defined as
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(22)

5. Application

Accuracy and efficiency of the aforementioned procedure is demonstrated through applications on
the Chen and Chen (1975) concrete model. Yield surface is described by a quadratic function with
three independent variables determined from three separate tests, namely uniaxial tension, uniaxial
compression and biaxial compression. The yield function or loading surface is represented by

(23)

where σc, σbc and σt are the hardening parameters representing the yield stresses in uniaxial
compression, biaxial compression and uniaxial tension respectively.

The loading surface in the compression-compression region is

(24a)

(24b)

(24c)

The loading surface in the tension-tension or tension-compression region is

(25a)

(25b)

(25c)

where J2 and I1 are the second invariant of deviatoric stress and the first invariant of stress
respectively. The first and second derivatives of the yield surface are included in the Appendix.

The present computational procedure is implemented to predict the constitutive behavior of
concrete. Strain increments are controlled by the arc-length method (Crisfield 1991). The results are
compared with experimental data reported by Kupfer et al. (1969) and Tasuji et al. (1978). Stress
conditions include both uniaxial and biaxial stress states.

The following notations are introduced. fbc, fc and ft represent the initial yield stresses at equal
biaxial compression, uniaxial compression and uniaxial tension respectively, whereas fbc’, fc’ and ft’
are the respective counterparts at ultimate condition.
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5.1. Comparison with Kupfer’s data

Stress-strain relationships for concrete when subjected to biaxial stress were obtained experimentally
by Kupfer et al. (1969). Predictions and comparisons with the experimental results have been conducted
earlier by Ohtani and Chen (1988). Material properties for concrete are the same as those used in
the previous study with fbc’/ fc’=1.15, ft’/ fc’=0.091, fc/fc’=0.60, fbc/fbc’=0.45, ft/ft’=0.50, E/fc’=990 and
ν=0.20.

Figs. 1(a) to (i) shows the stress-strain relationships for different stress ratios (σ1:σ2:σ3). Figs. 2(a)
to (c) gives the variation of volumetric strain against stress. All stresses and strains are assumed to
be positive for tension and negative for compression. Not presented in the figures are the results
obtained by Ohtani and Chen (1988), as they are in close agreement with the results obtained by the
present study over the whole loading range. The results agree well with the experimental data,
especially in the compression-compression loading cases. Similar discrepancies have also been
observed by Ohtani and Chen (1988) in their prediction of the negative strains in tension-tension
and tension-compression loading cases.

5.2. Comparison with Tasuji’s data

Similar experimental studies were conducted by Tasuji et al. (1978). Comparison with the experimental
data was preformed by Ohtani and Chen (1988) and is also repeated in this study. Material properties
for concrete are fbc’ / fc’=1.04, ft’/ fc’=0.09, fc/fc’=0.60, fbc/fbc’=0.45, ft/ft’=0.50, E/fc’=600 and ν = 0.22.

Results from the present study agree well with those obtained previously by Ohtani and Chen
(1988). Fig. 3 shows the stress-strain relationships at different stress ratios. The discrepancies in the
trends of the nonlinear response are similar to what has been observed in the comparison with
Kupfer’s data. This further demonstrates that the difference is inherited in the concrete model and is
not due to the computational procedure.

 
5.3. Efficiency of return mapping technique

Efficiency of the present formulation is examined by comparing with an approach based on a
forward Euler method and elasto-plastic tangent. Increments of the state variables are obtained by
applying Eq. (8) in the manner as described earlier. The elasto-plastic tangent is obtained by
enforcing the consistency condition by applying Eqs. (6), (8) and (20a), 

(26)

with the approximation that {dε}={ δε}.
Again making use of Kupfer’s (1969) experimental data, predictions by the present approach and

the elasto-plastic tangent are included in Figs. 4 and 5, giving the trend of convergence with increasing
number of increments. Two different stress ratios have been considered, namely (σ1:σ2:σ3)=(−1.0,
−1.0, 0.0) and (σ1:σ2:σ3)=(−1.0, 0.103, 0.0) respectively. In these applications, although the
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convergence exhibited by both approaches appears to be satisfactory, the present approach yields
faster rate of convergence. Reasonable results are obtained in the two cases using 15 and 25
increments respectively, which are in close agreement with those obtained using 200 increments.
The use of elasto-plastic tangent requires 200 and 400 increments respectively to achieve solutions
with similar accuracy for these two cases. In the computation with 15 increments case in Fig. 4,
analysis based on elasto-plastic tangent experiences convergence difficulties when the stress
approaches 84% of the ultimate stress. This further demonstrates that analysis based on the use of
elasto-plastic tangent has to be conducted at small increments, otherwise the projected state
variables will not correspond well with the yield surface. Such difficulties are not encountered in the
present approach, and relatively large increments can be allowed in the analysis with minimum
effect on the accuracy of the solution.

Fig. 1 Comparison of computed and experimental data (by Kupfer et al.): Stress-strain relationship
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Fig. 2 Comparison of computed and experimental (by Kupfer et al.): Stress versus volumetric strain

Fig. 3 Comparison of computed and experimental data (by Tasuji et al.): Stress-strain relationship
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6. Conclusions

Computation procedure based on the return mapping technique has been presented to integrate the
constitutive behavior of a concrete model based on multiple hardening concept. The concrete model
was developed previously by Ohtani and Chen, and assumes to be rate-independent and associative.
The consistent tangent operator suitable for the finite element analysis has been derived.

Efficiency and accuracy of this present approach are tested against two sets of experimental data
presented by Kupfer et al. (1969) and Tasuji et al. (1978). The predictions agree well with the
experimental data and previous studies. This has served to verify the technique. Further comparisons

Fig. 4 Convergence of stress-strain relationship with number of increments: σ1:σ2:σ 3 = −1.0:−1.0:0.0

Fig. 5. Convergence of stress-strain relationship with number of increments: σ1:σ2:σ 3 = −1.0:0.103:0.0
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are made with the results obtained based on the elasto-plastic tangent. It has been demonstrated that
the present technique has the advantage of computational economy.

Acknowledgements

The authors are grateful for the financial support provided by the Department of Civil and
Structural Engineering, The Hong Kong Polytechnic University.

 
References

Bazant, Z.P. and Kim, S. (1979), “Plastic-fracturing theory for concrete”, J. Engng. Mech., ASCE, 105(3), 407-428.
Chen, A.C.T. and Chen, W.F. (1975), “Constitutive relations for concrete”, J. Engng. Mech., ASCE, 101(4), August,

465-479.
Chen, W.F. (1994), “Theory of concrete plasticity”, “Implementation and application for concretes”, Constitutive

Equations for Engineering Materials, II: Plasticity and Modeling, Elsevier.
Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons.
Dragon, A. and Mroz, Z. (1979), “A continuum model for plastic-brittle behavior of rock and concrete”, Int. J.

Engng. Sci., 17.
Ghosh, S. and Kikuchi, N. (1988), “Finite element formulation for the simulation of hot sheet metal forming

processes”, Int. J. Engng. Sci., 26(2), 143-161.
Gilles, P.C., Borderie, C.L. and Fichant, S. (1995), “Applications and comparisons with plasticity and fracture

mechanics”, Damage Mechanics of Concrete Modeling, 17-36.
Han, D.J. and Chen, W.F. (1985), “A nonuniform hardening plasticity model for concrete materials”, J. Engng.

Mech., ASCE, 4(4), December, 283-302.
Hinton, E. and Owen, D.R.J. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea,

Wales.
Hofstetter, G. and Taylor, R.L. (1990), “Non-associative Drucker-Prager plasticity at finite strains”, Comm. in

Appl. Num. Meth., 6, 583-589.
Hofstetter, G., Simo J.C. and Taylor, R.L. (1993), “A modified cap model: Closest point solution algorithms”,

Computers and Structures, 46(2), 203-214.
Hofstetter, G. and Mang, H.A. (1994), Computational Mechanics of Reinforced Concrete Structures, Printed in

Germany.
Krieg, R.D. and Krieg, D.B. (1977), “Accuracies of numerical solution methods for the elastic-perfectly plastic

model”, J. of Pres. Ves. Tech., Trans ASME, Nov., 510-515.
Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), “Behavior of concrete under biaxial stresses”, ACI Journal,

August, 656-665.
Matthies, H.G. (1989), “A decomposition method for the integration of the elastic-plastic rate problem”, Int. J.

Numer. Meth. Engng., 28, 1-11.
Matzenmiller, A. and Taylor, R.L. (1994), “A return mapping algorithm for isotropic elastoplasticity”, Int. J.

Numer. Meth. Engng., 37, 813-826.
Meschke, G. (1996), “Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model”,

Int. J. Numer. Meth. Engng., 39, 3123-3143.
Murray, D.W., Chitnuyanondh, L., Rijub-Agha, K.Y. and Wong, C. (1979), “Concrete plasticity theory for biaxial

stress analysis”, J. of Engng. Mech., ASCE, 105(6), December, 989-1006.
Ohtani, Y. and Chen, W.F. (1988), “Multiple hardening plasticity for concrete material”, J. of Engng. Mech.,

ASCE, 114(11), 1890-1910.
Pietruszczak, S., Jiang, J. and Mirza, F.A. (1988), “An elastoplastic constitutive model for concrete”, Int. J.

Solids Struct., 24(7), 705-722.



226 S.S. Eddie Lam and Bo Diao

Schellekens, J.C.J. and Borst, R.D. (1990), “The use of the Hoffman yield criterion in finite element analysis of
anisotropic composites”, Comp. & Struct., 37(6), 1097-1096.

Schreyer, H.L., Kulak, R.F. and Kramer, J.M. (1979), “Accurate numerical solutions for elastic-plastic models”,
J. of Pres. Ves. Tech., Trans ASME, August, 226-234.

Simo, J.C. and Taylor, R.L. (1985), “Consistent tangent operators for rate-independent elastoplasticity”, Comp.
Meth. in Appl. Mech. and Engng., 48, 101-118.

Simo, J.C. and Hughes, T.J.R. (1987), “General return mapping algorithms for rate-independent plasticity”,
Constitutive Laws for Material: Theory and Applications, eds. C.S. Desai et al., Elsevier Sci Publishing Co Inc.

Simo, J.C., Kennedy, J.G. and Godvindjee, S. (1988), “Unconditionally stable return mapping algorithms for non-
smooth multi-surface plasticity amenable to exact linearization”, Int. J. Numer. Meth. Engng., 26, 2161-2115.

Simo, J.C. and Govindjee, S. (1991), “Non-linear B-stability and symmetry preserving return mapping algorithms
for plasticity and viscoplasticity”, Int. J. Numer. Meth. Engng., 31, 151-176.

Tasuji, M.E., Slate, F.O. and Nilson, A.H. (1978), “Stress-strain response and fracture of concrete in biaxial
loading”, ACI Journal, July, 306-312.

Willam, K.J. and Warnke, E.P. (1975), “Constitutive model for the triaxial behaviour of concrete”, Int. Asso. for Bridge
and Struct. Engng., Seminar on concrete structure subjected to triaxial stresses, IABSE Proceedings, 19, 1-30.

Appendix

First derivatives of the Chen-Chen loading surface are

where A=Ac and n=0 in the compression-compression region, and A=At and n=−1/3 otherwise.
In the compression-compression region:

and in other regions:

Second derivatives of the Chen-Chen loading surface are

In the compression-compression region:

and in other regions:
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1 1 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2
 
 
 
 
 
 
 
 
 
 
 

+

2 3⁄ 1 3⁄– 1 3⁄– 0 0 0

1 3⁄– 2 3⁄ 1 3⁄– 0 0 0

1 3⁄– 1 3⁄– 2 3⁄ 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2
 
 
 
 
 
 
 
 
 
 
 

∂ 2f
∂σ i j ∂σc

------------------=
σc

2 4σc– σbc σbc
2+

3.0 2σbc σc–( )2
------------------------------------------δi j , 

∂2f
∂σi j ∂σbc

--------------------=
2 σc

2 σc– σbc σbc
2+( )

3.0 2σbc σc–( )2
-----------------------------------------------δi j , 

∂ 2f
∂σ i j ∂σt

------------------=0

∂ 2f
∂σ i j ∂σc

------------------=
∂ 2f

∂σi j ∂σt

------------------=
1
6
---δ ij ,  

∂ 2f
∂σi j ∂σbc

--------------------=0




