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Analysis of orthotropic circular disks and rings
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Abstract. Very few studies on orthotropic circular disks or rings under diametrical loadings are conducted
because of difficulties in treatment. This paper shows analytical solutions and gives the distributions of
stresses and displacements by using Lekhnitskii’s complex variable method. Several numerical results are
shown by graphical representation.
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1. Introduction

The diametral compression test is a simple and relatively inexpensive test means of measuring
the tensile strength of brittle materials. This test is perfomed by placing a circular disk or cylinder
between two (rigid) plates and applying a diametrical compressive load. The test induces a biaxial
stress state in which the stress at the center of the disk is compressive in x-direction (0,), and tensile
in the y-direction (g,). Theoretically, for an isotropic material, the tensile stress reaches a maximum
on the vertical line along the disk center (i.e., at x = 0), except near the applied load, the stress has a
constant magnitude of P/zR, where P is the applied load and R is the radius of the disk. Because
for many brittle materials tensile strength is smaller than compressive strength, the material fails
first in tension.

Circular plane problems, for orthotropic material under diametral compression were addressed by
Cauweleart et al. (1994), Lemmon et al. (1996) and Lekhnitskii (1968); Cauweleart et al. obtained a
solution using the theoretical results for a semi-finite plate under concentrated force. Lemmon et al.
evaluated stresses and displacements using the finite element method, in which the applied load
areas are very narrow. Lekhnitskii attempted to obtain the solution using complex variables: how-
ever, he was unable to obtain the displacement field because of the lack of equations for boundary
conditions.
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For the isotropic ring problem under diametral compression, Durelli er al. (1986) estimated
stresses and displacements on the boundary using Nelson's formula. Hayashi (1960) obtained the
stress fields for the orthotropic circular ring problem, but did not refer to cases under diametral
compression.

In this paper, numerical results are presented for orthotropic circular plates under diametrical load-
ings. Further, by superposing solutions of orthotropic circular plates and orthotropic infinite plates
with circular openings, numerical results are presented for orthotropic circular rings.

2. Fundamental equation

Consider a two-dimensional circular plate and circular ring which have an angle ¥ between the
principal material direction and coordinate axis, as presented in Fig.1. The resultant force X,, ¥, on
the boundary in x, y-direction is represented using stress components:

X, = o,cos(n, x) + 7,,co8(n, x)
' (1)
Y, = 1,,co8(n, x)+ o,co8(n, y)
where
dy dx
= = +_
cos(n, x) :Fds, cos(n, y) L (2)

s represents the length along the boundary of the infinitesimal element, the double sign follows the
underside on the boundary of the circular plate, and the upper side on the inner boundary of the
circular ring, respectively. If X, and Y, are known, the complex functions @ (z;) to obtain stresses
and displacements are

2Re(i®1(21) + Ha ®y(2)] = [ X,ds
5 3)
2Re[D,(z,) + D,(z,)] = ijoynds

y Ey direction y E1 direction

E: direction E; direction

(a) Circular disk (b) Circular ring
Fig. 1 Tractions on the boundary
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Now, the stress components o, O,, 7., and displacement components u,, u, are given by

O, = 2Re[ [P \(z)) + 12D 2(2,)]

O, = 2Re[@(2)) + P2(2,)] )

y

7., = —2Re[u, @' (2}) + 1, P'2(2,)]

u, = 2Re[p1d>l(zl)+p2¢z<zz)]—woy+u2} )
u, = 2Re[q,D,(z)) + ¢, Py(2,) ]+ Wpx + uy
P :alhu%""alb p2=a”,u§+a]2 } ©)
q, = (al?_:u? +ay)t, q,= (amu; +ay)/i,

Where Re represents the real part of the complex function in brackets; and u.°, u,°, and @, repre-
sent the terms of rigid displacement and rigid rotation, respectively. And u;, 1, in the above equa-
tions are obtained as complex values of the characterestic equation below:

all.u4+(2a12+a66)1u2+a22 =0 @)

Where a1, ai, an, ae are elastic constants, which are obtained using the elastic moduli Ey, E,,
shear elastic modulus G, and poisson’s ratio vi,, vi3, V3, Va3, v3; at plane strain:

ay = (1 -vyvy)/E,, ayp=(1-vyvy)/E, }

ap =—(vip+vvp)/E;, ag = 1/Gy,

®)

At plane stress, v;3, v31, V23, V3, are set to zero in Eq. (8).
The fomulas which map stress and displacement components into curvilinear coordinates (&, 1)
are shown:

O:+ 0, = 0,+0,
. _ 2 .
0,—0:+2iT:; = ¢ "(0,—0,+2iIT,)) )
ué—iun = e'¢(ux—iu),)
where

oo LW 2 @) (10)

= —2= ¢ = =2
11 (0 ¢ w(d
z = x+iy= () =Ry(E+m/{) ()
Ry =(a+b)2, m=(a-b)/(a+b)
a and b represent the radii of the ellipse. Therefore, we may set a=b (i.e., m=0) for the problem of
the circular disk. Addtionally, the upper bars of the terms represent complex conjugates.
Now, we map into the following equation with ¢, for complex variables z; (=x+1y):
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o = 05) = S{a-imb) G+ (@ + b)) (12

Through this procedure, the boundary and outer or inner region on the z-plane are mapped
through a one-to-one correspondence into a unit circle and an outer or inner region on the {;-plane.

3. Formulation of the problem

3.1. Solution for circular plane

One purpose of this paper is to obtain the solution for a problem in which diametrical concen-
trated load to an orthotropic elastic circular plane is applied, as shown in Fig. 2. We obtain the

solution for this problem by the following procedure. First, tractions on the outer boundary I'y of the
elliptic plane with radii ay, by, as shown in Fig. 3, are expanded into finite Fourier expansions,

s M 4 _ ,
[ ¥, 0ds = o0+ D (0, o™ + Ot 0™,
0 m=1
(13)
d u im6 7 ~im@
JOXn,OdS = Boo+ 2 (Buoe” + Bmoe )
m=1
where, subscript 0 indicates the outer boundary.
The distance ¢ from the origin to the focus is
¢ = Jal-b) = Jaz-b; (14)
Stress functions for the elliptic plane are expanded as follows
M M
Di(z) = z A, oPin(zy), Dolzy) = Z B, oPam(22) (15)

m=1 m=1

Fig. 2 Circular disk under diametral compression Fig. 3 Elliptic disk in the z-plane
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Where Pi.(zi) (k=1, 2) are the power series of m-th order for z;, and are represented by

Pin(z) = {8+ (46" (16)
where
_ ag+ifby _
L = doipb, (k=1,2) )]

If there is no rigid rotation, the complex coefficients A4, B¢ must satisfy the following simulta-
neous equations:

Al o+B o +ALo+Bi o= alo(a"(’+ Ty0),
WA o+ B, o+ LA o+ 2B
= i}(al,o_ 0y 0) = Z};(ﬂl,o*'Bl,o),
:u%Al,O+.u§_Bl,0+.ﬂ?Zl,0+,u§EI,O
=£;(B1,0—ﬂ1‘0)»

(g1 —wp)A, o+ (q2— apa)By
+(q, — 1P )A10+ (G, ~ 2Py)B1,o= 0 (18)

Am.0+Bm’0+ _trlngm,O'*' _t’énEm,():_am’O

A, o+ UoB,, o+ 17, o+ Uz t3 B o=—P,, o

t;’IAm,0+tgan,0+Am-0+Em‘0:_ m’()
.ultrlnAm,0+lJ2t’2an,o+l—1lgm,0+.’-—12§m,0=_Bm, 0
(m>2) (19)

Now, we may set ap=b, for the problem of circular planes. Solving these equations, Ao, Bmo can
be determined.

3.2. Solution for circular ring

Another purpose of this paper is to obtain the solution for a problem in which diametrical
concentrated load is applied to an orthotropic elastic circular ring. In this section, the solution for
orthotropic elastic circular rings is shown, superposing solutions for an infinite plane with a circular
opening, and the circular plane explained in the previous section. First, the coordinates corresponding
to the inner virtual boundary I in the elliptic plane explained in the previous section are

X, = a,cos80, y, = b,;sinf 20)

Because the outer and inner boundaries are confocal ellipses, Eq. (14) must be satisfied.
Using z-coordinates
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L =Xty (k=1,2) 2n

the resultant forces on I" can be determined by

—j;?n,,ds = 2Re[D(z, ) + DPy(2, )]

, (22)
| Xuvds = 2Relp, @,(2,,1) + 1,®,(2,1)]
The right sides of the above equations are expanded into Fourier expansions:
_J'; Yo ids = 7, + il(%"*'eim%" T
. (23)

s M

o im@ —-im@
I Xn’lds = 80’1 + E (€m,1€ + Sm,1€ )

0 m=1

Secondly, consider an infinite plane with an elliptic opening with radii a;, b; under loading for
cancelling out the resultant force on the inner boundary I'; of the elliptic ring, as shown in Fig. 5.
In this case, the stress functions are represented by the following equations:

M —m M % -m
D (z)) = 2 CoiGis Dolz)) = ZDm,lCZ (24)
m=1 m=]
where
C (-t Tm1), D= ——(Emi - 1, Tm1) 25)
m 1= = m, 1 = m, 1) ml = m, 1 — m, 1
RIS ? - !
3 1 2 2 2,2
- (7] —d -
Gk al—i,ukbl(zk_ Z —ay - by) (26)

We may set a;=b, for the problem under consideration. The coodinates corresponding to the outer
virtual boundary I, shown by the broken line in Fig. 5, are represented by the following equations:

/
/.

4
N Ti
X I
\
. :
N
N
~

Fig. 4 Circular ring under diametral compression Fig. 5 Infinite plate with elliptic hole in the z-plane
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Xo = ayc088, y,=b,sinf 27
Using the z,-plane,
ko = X0+ HYo (28)
Therefore, the resultant force on the boundary Iy is represented as
J Yo1ds = 2Re[®1(2,0) + Po(25,0)]
; (29)
_JOXn,lds = 2Re[l, D, (z),0) + L, Py(25,6)]

The same holds for the inner boundary, with the right side of the above equations expanded into
Fourier expansions:

K M

im@ = — -im0

.[ Ynalds = a0,1+ Z(am,le +am,le )
0 m=1

(30)
¥ U im6 7 —im@
_jOXn;ldS = Bo. + z (Bn1e” "+ Pmie™)

m=1

To cancel out the resultant force on the outer virtual boundary I, in the finite plane with an elliptic
opening, the negative values of the above resultant forces are loaded on the boundary of the elliptic
plane shown in Fig. 3. In the following procedure the above operation is repeated N times to satisfy
both boundary conditions. As a result, the stress functions for the orthotropic elliptic ring are obtained
by

Mo~y A Nepm
Oi(2) = 3 (ANP,, (2)+CHT™)

m=1

€1y

M ~n ~N~y—m
D)(z;) = 2 (BmPZm(ZZ)+szZ )

m=1

where

AN N A\/ N
1
Am = zAm,m Bm = zBm,n
n=0 n=20

(32)

Ok

N N ~N N
n=2 Cnw Dn=3 Dy,
n=1 n=1

The coefficients in the above equations are obtained, for example, as Eq. (25).
3.3. Applied load

We address the problem of orthotropic circular planes or circular rings under diametrical loadings
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Fig. 6 Schematic diagram of the diametral compression test

in this paper. If the boundary conditions are given as resultant forces, the equations are the following:

J -P, 0<0<mrm
fX,,ds =
0 0, n<0<2x

(33)
—JJ Y,ds=0
0
In this case, the coefficients &, 3,, (m=>1) are given as
iP m
= meme— 1— - =
Bu=5—{1-(-1)"}, &, =0 (34)

We represent the concentrated force as loading on a point on the boundary. To approximate this
condition, consider the circular plane or circular ring loaded to the width @/2(rad) and the
magnitude P, of which the center is on the x-axis. The resultant forces on the boundaries are

represented by PO w_ 0<

[ X.ds = (35)

where
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B = (1= (1)} sin2 a0 (36)
m

4, Results and discussion
4.1. Circular plane

Fig. 7 shows how the normalized tensile stress (0y)/0y;,,) on the x-axis of the circular plane is
affected by the load area for the selected orthotropy ratio (E»/E=2.0, 5.0) and the angle between the
principal material direction and coordinate axis (¥=0, /4, n/2).

In analysis using a series as in the present study, the convergence and accuracy of calculated value
must be always discussed. The number of terms M in Eq. (13) affects this. It is not neccesary to use
a large number of terms to calculate in the case of large loading areas. Nevertheless, A,, B,
converge to zero using one hundred terms; little change is observed using larger number of terms at
@/2r=2%. On the other hand, a large number of terms is necessary for problems involving
concentrated force, because the resultant forces are represented as step functions. A,, B, converge to
zero with two hundred fifty terms. The error is 6% with one hundred terms, 3% with 150 terms and
1% with two hundred terms. In this paper, calculations were carried out with 250 terms for
concentrated force, otherwise one hundred terms. )

For E,/E,=2.0, the minimum value is observed at the center of the circular plane, and the maxi-
mum value at a distance of 0.9 times the radius from the center of the circular the plane when the
principal material directions are parallel to the axes (i.e., ¥=0, m/2).

Furthermore, there is good agreement between the authors’ numerical results and the numerical
results from FEM obtained by Lemmon et al. (1996) on load area a¥2mw=2%, 4%, 8% for the
circular plane. Conversely, maximum value is observed at the center of the circular plane when the
principal material direction is not parallel to the axes (i.e., ¥= m/4). For E,/E|=5.0, the minimum
value at the center of the circular plane decreases; the maximum value at a distance of 0.9 times the
radius from the center of the circular plane increases when the principal material directions are
parallel to the axes. In addition, the maximum value is observed at a distance of 0.95 times the

—r—r—T7—T—
Concentrated force

Fy/E.=5.0,v=0.25 R

Distance from center of disk x/ag
3
|

Distance from center of disk x/ag
&

A

EvE

| N 1 N [ s [ N 1
2 4 6
Tensile stress 0y/0,is0 Tensile stress 0,/0yhiso

(a) EJ/E/ =2.0 (b) E-/E; =5.0

1

Fig. 7 The effect of loading area on tensile stress along the diameter
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radius from the center of the circular plane when concentrated forces are loaded on the circular
plane, of which the principal material directions incline 7/4 to the axes.

Fig. 8 shows the dependence of the normalized tensile stresses at the center of the circular plane
(0y0/0yis,) as a function of the material orthotropy ratio. The graph shows the stress at the center of
the circular plane for cases in which the principal material directions are parallel to the axes (¥=0,
7/2) and for those that are not parallel (¥=r/4). Tensile stresses decrease as the material orthotropy
ratio increases when the principal material directions are parallel to the axes; however, tensile
stresses increase as the material orthotropy ratio increases when the principal material directions are
not parallel to the axes.

Fig. 9 shows the normarized tensile stress (0,/0y;,) and shear stress (7,,/(20y,)) at the center of
the circular plane as a function of the material orientation (¥ in degree) for four selected material
orthotropy ratios (E»/E=0.98(Isotropy), 2.0, 5.0, 10.0) under concentrated force. The shear stress at
the center of the circular plane is zero when the principal material directions are parallel to the axes
(i.e., ¥Y=0°, 90%), but is otherwise nonzero.

Fig. 9 also shows that as the orthotropy ratios increase, the magnitudes of both the tensile and
shear stresses increase and are greater than that of the isotropic case.

| T I I T T
Maximum tensile stress on x axis
under concentrated force

v=0.25,M=250

_

i Y=n/4

Maximum tensile stress Oymax/Oyiso
i
T
}

4 6 8 10
Orthotropy ratio E»/F,

Fig. 10 The effect of orthotropic elastic ratio on maximum tensile stress



Analysis of orthotropic circular disks and rings under diametrical loadings 47

Fig. 10 shows the dependance of the normalized maximum tensile stress (Oymax/Gyiso) as a function
of the material orthotropy ratioy The graph shows that the maximum tensile stress on the x-axis
increases asymptotically to 3.5 when ¥=0, and decreases when ¥=m/2. When the principal material
directions are not parallel to the axes (i.e., ¥=m/4), the maximum tensile stress is not smooth at £,/
E;=2.3. Therefore, maximum tensile stress appears on the center of the circular plane when the
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(c) Radial displacements along the outer boundary

Fig. 11 Stresses and displacements on the boundaries of isotropic circular ring under diametral compression



(¢) Radial displacements along the outer boundary

Fig. 12 Stresses and displacements on the boundaries
of orthotropic (E»/E\=5.0) circular ring under
diametral compression
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orthotropy ratio is smaller than 2.3 and at a distance of 0.95 times the radius from the center of the
circular plane when the orthotropy ratio is larger than 2.3.
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Fig. 13 Stresses and displacements on the boundaries

of orthotropic (E»/E,=0.2) circular rings under
diametral compression
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4.2. Circular ring

(a), (b) and (c) in Fig. 11 show the normalized tangential stresses, normal displacements on the
inner boundary and normalized normal displacements on the outer boundary for the isotropic
circular ring, where ¢=a,/a, is the parameter representing the thickness of the circular ring. In this
study, the accuracy of the analysis depends on the accuracy of estimating the resultant force on both
boundaries, because of the cancelling out of the resultant force arising on the virtual boundary of
the circular plane or on the infinite plane with a circular opening. And the greater accuracy of
convergences of Eqs. (23) and (25) becomes slower as the more thickness of circular ring decreases.
Calculation is carried out when the number of terms is 250 through the thickness of the circular ring.

Furthermore, the number of repeated calculations N increases as the thickness of circular ring o
increases. In this study, N is a value from 5 to 50. Except for the displacement on the loading point,
there is good agreement between the computations here and those shown by Nelson or Durelli ez al.
when ¢ is smaller than 0.7. When o is greater than 0.7, the present authors’ numerical results are
smaller than those reported by Durelli, in the case of a large enough value of N. Further, the
difference between the authors’ numerical results and those of Durelli become greater as o
increases.

It is observed that tangential stress, normal stress on the inner boundary, and normal displacement
on the outer boundary increase with the thickness of circular ring.

Fig. 12 and Fig. 13 show graphs similar to those in Fig. 11 for an orthotropic elliptic circular ring.
For both of these, the principal material directions are parallel to the axes; Fig. 12 is for E/E,=5.0,
and Fig. 13 is for E/E;=0.2. It is observed that the normal stress at 8=90° on the inner boundary is
larger and the displacement is smaller than that of an isotropic circular ring when Young’s modulus
parallel to loading is larger, and the reverse is true when Young’s modulus parallel to loading is
smaller.

5. Conclusions

In this paper, solutions are proposed for orthotropic elastic circular planes under diametrical
loading with Lekhnitskii’s complex variable. The applicability of the analytical solutions in this
paper has been evaluated with reference to the numerical results of FEM.

Furthermore, solutions are proposed for orthotropic elastic circular rings under diametrical loading
by superposing the solutions proposed in this paper and the solutions for orthotropic elastic infinite
planes with a circular opening proposed by Lekhnitskii (1968) for the required boundary conditions.
For isotropic elastic circular rings, there is good agreement between the authors’ numerical results
and those of Durelli er al. (1986) or Nelson (1939). For orthotropic elastic circular rings, some
numerical results are shown in this paper.
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