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Abstract. This paper presents a four-noded quadrilateral C° strain plate element for the analysis of
thick laminated composite plates. The element formulation is based on: 1) the third-order shear
deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and
rotations along element boundaries. Unlike the existing displacement-type composite plate elements
based on the third-order theory, which rely on the C'-continuity formulation, the present plate element
is of C’-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order
expansion of the in-plane displacements through the thickness, the resulting theory and hence elements
do not need shear correction factors. The explicit element stiffness matrix makes the present element
more computationally efficient than the composite plate elements using numerical integration for the
analysis of thick layered composite plates.

Key words: laminated composite plates; Reddy-Levinson third-order plate theory; plate element;
assumed strain FE formulation.

1. Introduction

Because of the high strength-to-weight ratio in the preferred directions, laminated composite
plates are widely used in various engineering applications. On the other hand, laminated
composite plates made from unidirectional fibre-reinforced laminae have low transverse shear
stiffness. This means that transverse shear deformations in composite plates play a more
significant role both in deflections and failure modes than they are in isotropic plates. Therefore,
many shear deformation theories, including the first-order and higher-order shear deformation
theories, have been proposed for analysing laminated composite plates (see e.g., Reddy 1997). In
the first-order shear deformation theories, shear correction factors are needed. Unlike in the case
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of the isotropic plates where the shear correction factor is a constant, the shear correction factors
in composite plates depend on lamina orientations and stacking sequence. However, no shear
correction factors are needed in higher-order theories of composite plates. A comparative study
(Rohwer 1991) showed that the simple third-order shear deformation theory (STSDT) of Reddy-
Levinson (Reddy 1984, Levinson 1980) is one of the best higher-order theories. This is because
this theory uses fewer field variables but gives good results not only for deflections but also for in-
plane displacements and stresses across the plate thickness.

The displacement-based finite element formulation for the higher-order theories is more
complicated than that for the first-order theories. This is because more nodal degrees of freedom
are needed in the higher-order theories and it is difficult to formulate simple displacement-based
C° elements satisfying both the surface traction conditions and the interlayer continuous
conditions (Reddy 1984, Ren & Hinton 1986, Pandya and Kant 1988, Kapania & Raciti 1989,
Cho and Parmerter 1994). By using a mixed formulation, Putcha and Reddy (1986) developed a
C’ plate element based on Reddy's third-order shear deformation theory (SHSDT) (Reddy 1984)
in which eleven degrees of freedom are used at each node. This mixed finite element gives good
results, but it is not efficient computationally. Pandya and Kant (1988) and Kant and Kommineni
(1994) developed C* composite plate elements based on the higher-order shear deformation theory
(HSDT) developed by Kant, Owen and Zienkiewicz (1982). The boundary conditions of the
transverse shear stresses on the plate surfaces are neglected in the theory of Kant et al. (1982).
And it is just the negligence of the traction free condition made it possible that Kant's HSDT plate
clements (Pandya and Kant 1988, and Kant and Kommineni 1994) could be C‘-continuity.
Furthermore, the numerical integration was used in these C° plate elements. Cho and Parmerter
(1996) developed a C° triangular bending element based on an efficient higher order plate theory
(EHOPT) (Cho and Parmerter 1992). However, this C° triangular bending element is valid for
symmetric laminated plates only. The development of accurate and efficient composite plate
elements is still receiving intensive attention from researchers (see, Reddy 1997). The zig-zag
theory (Murakami 1986) has some attractive features, for example, the shear stress continuity at
the layer interfaces is satisfied and the stress distribution across the plate thickness is accurate
(Cho and Parmerter 1992 and 1994, Carrera 1996 and 1997 among others). But once again the
numerical integration has to be employed in the composite plate elements based on the zig-zag
theory (Cho and Parmerter 1994, Carrera 1996).

The objective of this paper is to present a simple quadrilateral C° composite plate element. This
new C° composite plate element is formulated by using the Reddy-Levinson's simple third-order
shear deformation theory (STSDT) (Reddy 1984, Levinson 1980), the assumed strain formulation
(Tang, Chen and Liu 1980) and interrelated edge displacement and rotations along element
boundaries (Hu 1981, Shi and Voyiadjis 1991). A special feature of the present composite plate
element is that the element stiffness matrix is evaluated explicitly. The explicit stiffness matrix
leads to high computational efficiency in the bending analysis of thick laminated composite plates,
particularly in the nonlinear analysis where the element stiffness matrices have to be evaluated
numerous times.

2. Displacement and strain fields

The displacement field in the Reddy-Levinson third-order shear deformation theory (Reddy
1984, Levinson 1980) can be written as
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where u,, v, and w;, are the displacements of a point on the plate reference plane in the x-, y-, and
z- directions respectively; ¢, and ¢, are the rotations of a normal to the reference plane about the y-
and x- axes; and £ is the total thickness of the plate. Let the first-order shear strains, which are the

shear strains at z=0,
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The in-plane strain vector e, and transverse shear strain vector e, can be written in terms of
membrane strains e,, bending strains e,, transverse shear strains e, and higher-order shear strains
e, as
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3. Strain energy density

The strain energy functional is used in the assumed strain element formulation. The equilibrium
equations in terms of stress resultants and stress couples in the third-order shear deformation plate
theory are different from those of the first-order shear plate theory (Reddy 1984). The
variationally consistent equilibrium equations of the third-order plate theory can be derived using
the principles of virtual work (Reddy 1997).

When the transverse shear stresses are accounted for, but the transverse normal stress is
neglected, the strain energy density of a plate, U, is of the form

h72
U= % j (Oxex + 0yey + 20y ey +20;:€); + 20 ex:) dz (20)
~h2

For a laminated composite plate, the in-plane stresses, ©,, and transverse shear stresses, o,, can
be expressed in terms of strains as
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in which @, and Q, are, respectively, the transformed in-plane and out of plane elastic constant
matrices in the plate coordinates (Reddy 1997). Substituting Eqgs. (21), (22), (14) and (15) into Eq.
(20) leads to
1 h2
U=— J |:{e,,, —e,z —ce, 23 Qp {em — e,z —cey 23} + (1 - 3c22)2esTQtes:| dz (23)
27 m2

where ¢ = 4/(3h°). By defining the generalized rigidity matrices

(A,B,D,E,F,H)=J.M 1,z,2% 23,24, 290, dz (24)
)
S =" (1-6cz2+ 924 Qudz (25)
)

Eq. (23) for U can be expressed as
U= %[e,ZAem +e/De, +e]Se, +e] c?He,,
—(e.Be, + e Ben) — (elcEe,, +el cEen)+ (elcFe,, + e cFe, 26
b b hs b hs

It should be noted that there are two more coupling terms in the above strain energy expression
resulting from the third-order shear deformation theory. Unlike the stretching-bending coupling
matrix B, which vanishes in symmetric laminates, coupling matrix F is nonzero even in the case
of symmetric laminates.

For the prescribed force boundary conditions, we define the stress resultants and stress couples
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where P is the vector of higher-order stress couples. It should be pointed out that transverse shear
forces defined above are different from those used in the classical plate theory and in the first-
order shear plate theories.

By using the principle of virtual displacements, it can be shown that the displacements of the
third-order shear deformation theory in Eqs. (1) and (2) results in one additional boundary
condition involving

ow or P, (29)
on

in addition to the five boundary conditions of the first-order shear deformation theory, when the
modified stress results and stress couples are used for the force boundary conditions in the third-
order shear theory (Reddy 1984). In the above equation n signifies the in-plane normal direction
of a plate boundary.

4. Finite element modeling

In finite element modeling, element strains in Eqs. (16)-(19) can, in general, be expressed in
terms of the element nodal displacement vector g and element strain matrices as follows
en =Bnq, e, =B,q, es =B;q, e, =By, q (30)

Consequently, the strain energy in an element of domain €2, I, takes the form
. = % q"[ [BiDB, +BiAB, + BISB, + BL.c’HB,,
Q

If we define the element bending, membrane, shear, higher-order shear and coupling stiffness
matrices, respectively, as

K, =] QB,,TDBbd.Q (32)
Kn=| BiAB.dQ (33)
0
K= BISB,dQ (34)
0
K. =] QB,gczﬂBhsdQ (35)
K. = [~ (B}BB, + B/BB,)— (BicEB,, + B[,cEB,) + (B{cFB,, + B[,cFB,)|d Q (36)
Q

then Eqgs. (31)-(36) lead to the element stiffness matrix K as
K =K, +Kn +K; +K,, + K. 37
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The higher-order transverse shear stiffness matrix K,, and the last two terms in the coupling
matrix in Eq. (36) are the modification for the element stiffness matrix given by the first-order
shear deformation theory.

5. Four-noded quadrilateral assumed strain element

5.1. Quasi-conforming element formulation

The element strain matrices in Eq. (30) can be evaluated simply and efficiently by the quasi-
conforming element technique (Tang, Chen and Liu 1980), an assumed strain method. In the
quasi-conforming elements, the element strain fields are interpolated directly over the element
domain rather than derived from the assumed displacement fields, and the compatibility in an
element domain is satisfied in a weak form. Let a prime signify the assumed strain field, when the
continuity along inter-element boundaries is satisfied a priori, the element strain energy in Eq. (31)
is then modified as

IE=T.+[ Mi(e,-e))dQ2+] N'(en—er)dQ
2 Q
+[ QT(e,—e)dQ+| Pl(e, —e)dQ (38)
— o - Q Q
where, M, N, Q and P and are the test functions corresponding to their relevant strain vectors.
5.2. Four-noded quadrilateral plate element

The element shown in Fig. 1 has seven degrees of freedom at each node. A suitable assumed
element strain field for this element is of the form

1xyxy 0000000 .
e,=(00001xyxy000 (=Pyoy 39)
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3
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Fig. 1 A typical quadrilateral element
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where P, and o; (i=b, m, s, hs) are the strain interpolation matrices and strain parameters. It can
be shown that the above assumed strain field satisfies the rank requirement for the element
stiffness matrix. It is worthwhile to point out that the linear terms in the higher-order shear strains
e,, are merely to satisfy the rank requirement.

Let the weak forms of the compatibility in Eq. (38) be satisfied individually at the element level
and the same interpolation functions be used for the test functions. Then we have

| PIP,oyd 2= Ple,dQ, i=b,m,s, hs (43)
Q £

Consequently, the strain parameters can be evaluated in terms of element nodal displacement
vector ¢ as (Tang, Chen and Liu 1980, Shi and Voyiadjis 1991)

OC,- :Ai_lciq7 i:b,m,s’hs (44)
with
A =[ PIPdQ, Ciq=] PledQ i=b,m,s,hs (45)
Q Pol

For the four-noded element shown in Fig. 1, the element nodal displacement vector g is of the
form

q9=1{9: 9> 95 9.} (46)
q; ={u; v; w; &; ¢&; % Y% J=12,3,4 47)
Therefore, the strain matrices take the form

B, =PA7'C;,, i=b,m,s,hs (48)
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A substitution of the strain matrices defined above into Egs. (32) to (36) gives the element
stiffness matrices. For example, K, is of the form

K. = CLALT] PicH P d QALIC,, 49)

The matrix A; simply involves the integration of polynomials and can be evaluated easily (Shi and
Voyiadjis 1991). Matrix C, can be evaluated using integration by parts. For example

9%
ox
ax ax
5 3 Y R
Chxq=JQP,£ % dQ:jQ % dQ=004 wn, s (50)
X pn
% . 9% 98 oy 4
ady ox dy i *
o% , 9%
y | ox

where dQ2 denotes the element boundary, ds is for the line integral, n, and n, are the direction
cosines of an element boundary. By interpolating displacements in terms of the nodal variables
along element boundary, the line integrals in the equation above can be carried out explicitly; C,,
C, and C, can be evaluated in the same manner. The interrelated interpolations for edge
displacement w, and tangential rotation ¢, (Hu 1981), in which w, is cubic and ¢, is quadratic, are
employed in the evaluation of C, and C, to improve the accuracy and to satisfy the Kirchhoff
assumption in thin plate analysis (Shi and Voyiadjis 1991).

Matrices A; and C; (i=b, m, s, hs) Eq. (46) are constant. The polynomial integrals appearing in
Eq. (49) can be evaluated without numerical integration. Therefore, the element stiffness matrix
proposed in this work can be evaluated explicitly, which leads to high computational efficiency.

Similar to the element QCCP-2 presented by Shi and Voyiadjis (1991), the present four-noded
quadrilateral composite plate element can also be automatically reduced to the corresponding three-
noded triangular element simply by making two adjacent nodes coincidence. However, the
assumed displacement quadrilateral elements are not able to achieve this reduction (Zienkiewicz et
al. 1993, Taylor and Auricchio 1993).

6. Numerical examples

The performance of a similar assumed strain plate element based on the first-order shear
deformation theory was reported in the paper of Shi and Voyiadjis (1991). The efficiency and
accuracy of the present higher-order strain element for the analysis of laminated composite plates
are demonstrated in this section.

Example 1. Simply supported three-ply [0/90/0] square and rectangular plates

The three laminae of the composite plate have an equal thickness and same material properties.

The material properties of the lamina are
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E\/E,=25, G ,/E,=05, Gu/E,=02, v;,=0.25.

In addition G,,=G,s. It should be noted that the lamina considered here is not transversely
isotropic. The central deflections of the plate with aspect ratio a/h =10 under a uniform load are
solved to study the convergence of the present element. Only a quarter of the plate is considered
because of the symmetry. Both regular and irregular meshes are considered. The irregular 2X2
and 4 X4 mesh are shown in Fig. 2. The convergence curves are depicted in Fig. 3, in which wy,,
represents the finite element solutions; w,,, signifies the analytical solutions given by Reddy's
third-order shear deformation theory (Reddy 1984); and the number of elements per edge in Fig. 3
refers to a quarter of the plate. Let a be the dimension of the plate, g, be the density of the
uniform load, the non-dimensional deflection can be defined as

w =100 xw (0, 0, 0) E,h*/(q,a%)

The nondimensional analytical solution of Reddy's third-order theory is 1.09. It should be noted
that finite element solutions depend also on the equivalent nodal loads. This is the reason that the
deflection given by the particular irregular 2X 2 mesh used here is better than that given by the
regular 2X 2 mesh. In general, regular meshes give better solutions than irregular meshes.
The deflections of square and rectangular composite plates under sinusoidal distributed load are
also considered. The sinusoidal load is of the form
y

q(x,y)=qocosg cos ==, —

a b
b 2

2

<x <

a _b, <
22777
where a and b are, respectively, the dimensions of the plate in the x- and y-directions, and the
coordinate origin is located at the plate center. The present non-dimensional central deflections of
the square laminates under a sinusoidal distributed load are tabulated in Table 1, and those of the
rectangular plates with b =3a are given in Table 2. The numerical results here are obtained from a
4x 4 mesh for a quarter of the plate. ELS in Tables 1 and 2 represents the 3-D elasticity solutions
of Pagano (1970). The HSDT solution of Pandya and Kant (1988) in Table 1 was obtained from a
2x 2 mesh of nine-noded quadrilateral element. The EHOPT solutions in Table 2 were given by a
10X 10 mesh of three-noded triangular element (Cho and Parmerter 1994). Table 1 also shows the
influence of the shear correction factors, &, used in the first-order shear deformation theory on the
deflections. The results in Table 1 and Table 2 show that the present element gives reasonable

0 g 1 0 4 79 1
0. 3 1. 0..1 3 .6 1.
Irregular 2x2 mesh Irregular 4x4 mesh

Fig. 2 Irregular 2X2 and 4 X4 meshes
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Fig. 3 Central deflections of a s.s. square laminate with a/h =10

Table 1 Non-dimensional central deflections of three-ply [0/90/0] square laminates under sinusoidal
distributed load

alh Present ELS STSDT HSDT FSDT (k=5/6)  FSDT (k=1)
(Pagano 1970) (Reddy 1984) (Pandya & Kant 1988) (Reddy 1984) (Reddy 1984)

4 1.945 2.002 1.922 - 1.776 1.568

10 0.711 0.715 0.713 0.716 0.670 0.631

100 0.431 0.433 0.434 - 0.434 0.433

Table 2 Non-dimensionalized deflections in three-ply [0/90/0] rectangular (b=3a) laminates under
sinusoidal distributed load

alh Present ELS STSDT EHOPT FSDT CPT
(Pagano 1970) (Reddy 1984) (Cho & Parmerter 1994) (Reddy 1984) (Reddy 1984)

4 2.792 2.820 2.641 2.750 2.363 0.503

10 0.911 0.919 0.862 0.918 0.803 0.503

100 0.504 0.508 0.507 0.503 0.506 0.503

good results for very thick plates with a/h =4 and gives good solution for thin plates. The results
in the tables also indicate that the higher-order shear deformation theories should be used in the
analysis of laminated plates with aspect ratio a/h <10 where the first-order theory gives significant
erTors.
Example 2. Simply supported four-ply [0/90/90/0] square plate subjected to a sinusoidal
distributed load

This laminated composite plate consists of the same laminae with an equal ply thickness. The
plate was studied analytically by Pagano and Hatfield (1972). The material properties of the
lamina are the same as those in the previous example. A 4X4 mesh is used for a quarter of the
plate in the present study. The non-dimensionalized deflections and stresses of the square
laminates for different aspect ratios are tabulated in Table 3. The factor for the non-dimensional
deflection is the same as that in the previous example, and non-dimensional stresses are defined as
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Table 3 Non-dimensionalized deflections and stresses in four-ply [0/90/90/0] square laminated plates
under sinusoidal distributed load

alh source w o, o, a, o, o,
Present 0.745 0.526 0.422 0.0297 0.169 0.265

ELS (Pagano 1972) 0.737 0.559 0.401 0.0275 0.196 0.301

Phan & Reddy (1985) 0.717 0.541 0.383 0.0265 0.153 0.263
10 Pandya & Kant (1988) 0.719 0.568 0.395 0.0273 0.172 0.270
Argyris & Tenek (1993) 0.758 0.472 0.397 0.0249 0.207 0.298
Cho & Parmerter (1994) 0.732 0.568 0.408 0.0272 0.146 0.309
Carrera (RMZC) (1996) 0.752 0.586 0.422 0.0288 0.186 0.270
Present 0.431 0.541 0.275 0.0193 0.149 0.296
ELS (Pagano 1972) 0.434 0.539 0.271 0.0214 0.139 0.339
Phan & Reddy (1985) 0.430 0.523 0.263 0.0208 0.103 0.280

100 Pandya & Kant (1988) 0.435 0.544 0.273 0.0215 0.124 0.301
Argyris & Tenek (1993) 0.432 0.531 0.263 0.0208 0.147 0.328
Cho & Parmerter (1994) 0.431 0.539 0.276 0.0216 0.141 0.337
Carrera (RMZC) (1996) 0.435 0.565 0.284 0.0224 0.127 0.301

& = 0.0, 0, /(o) & =050, 0, Lyh/(ga?)

_ b h
Oy =~ Oy (%: > E)hz/(‘h)az),

G =03 (0, 2, 0 /(qya), G = (2, 0, 0)h/(g10)

The transverse shear stresses are evaluated from the equilibrium equations in which the derivatives
of the bending strains are used. This shows the advantage of the linear bending strain field given
in Eq. (39). Some analytical and numerical results are also given in the table for comparison. ELS
in the table represents the 3-D elasticity solutions of Pagano and Hatfield (1972). A 8 X8 mesh
was used in the solutions of Argyris and Tenek (1993). The EHOPT results of Cho and Parmerter
(1994) were given by a 10X 10 mesh. The RMZC results of Carrera (1996) were given by a 2 X2
mesh of Q9 element. The table shows that the present solutions agree well with the analytical and
other numerical results. More examples on the accuracy of stresses and in-plane displacements
across plate thickness given by the Reddy-Levinson third-order shear deformation theory can be
found in Rohwer's paper (Rohwer 1991).
Example 3. Clamped and simply supported eight layer [0/45/-45/90], square plates

The eight plies in the laminated plate have an equal thickness. The material properties of the
plate are also the same as those in Example 1. Both simply supported and clamped boundary
conditions are studied, and both uniform and sinusoidal distributed loads are considered. The non-
dimensional central deflections are given in Table 4. However, Argyris and Tenek (1993) only
gives the solutions of simply supported plates.
Example 4. Unsymmetric [0/90] cross-ply and antisymmetric [45/-45] angle-ply laminates

Both the cross-ply and the angle-ply laminates are square and simply supported, and all laminae
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Table 4 Non-dimensionalized deflections in eight ply [0/45/-45/90], square laminates under sinusoidal
and uniform distributed loading

Sinusoidal loading Uniform loading
alh Source

S.S. clamped S.8 clamped

Present 1.072 0.972 1.620 1.479

4 Phan & Reddy (1985) 1.084 0.977 1.634 1.465
Argyris & Tenek (1993) 1.094 - 1.631 -

Present 0.389 0.258 0.602 0.388

10 Phan & Reddy (1985) 0.382 0.262 0.590 0.389
Argyris & Tenek (1993) 0.380 - 0.588 -

Present 0.237 0.0705 0.375 0.0961

100 Phan & Reddy (1985) 0.238 0.0699 0.377 0.0960
Argyris & Tenek (1993) 0.238 - 0.380 -

have a same thickness. The material properties of the lamina of the cross-ply laminates are the
same as those in Example 1, and the angle-ply lamina has the following properties:

E/E,=40, G ,/E;=0.6, Gp/E,=0.5, v, =025

and G,,=Gy;. Similar to that in Example 1, the lamina in this example is not transversely
isotropic either. The non-dimensional central deflections of the laminates are given in Table 5. To
study the influence of the stretching-bending coupling, both the results of the laminates with two
layers (NL=2) and the laminates with 10 layers (NL =10) are given in the table. The laminates
with aspect ratios of a/h =10 and a/h =100 are considered here, but only the results for a/h =10
are available in Reddy's paper (1989).

7. Conclusions

Based on the Reddy-Levinson third-order plate theory, a four-noded quadrilateral C° plate
element is presented in this paper for the bending analysis of thick laminated composite plates.
The element has 7 degrees of freedom at each node. The element formulation is based on the
assumed strain method, and the interrelated deflection and rotation interpolations along the
element boundaries are employed. The resulting element does not need shear correction factors,

Table 5 Nondimensionalized deflections in cross-ply [0/90] and angle ply [45/-45] square laminates
under uniform distributed load

Cross-ply Angle-ply
NL alh
Present Reddy (1989) Present Reddy (1989)
5 10 1.977 1.950 1.241 1.281
100 1.643 - 0.623 -
10 10 0.965 0.958 0.691 0.632

100 0.705 - 0.241 -
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and the element stiffness matrix is evaluated explicitly. The present element with explicit element
stiffness matrix can be coupled with the explicit time integration scheme for the dynamic
problems, which will lead to a very computationally efficient finite element scheme in the
dynamic analysis of thick laminated composite plates. The static analysis formulation presented in
this work can easily be extended to dynamic analysis (Shi and Lam 1999).
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