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Abstract. Being a significant mode of deformation, shear effect in addition to the other modes of
stretching and bending have been considered to develop two finite element models for the analysis of
beams on elastic foundation. The first beam model is developed utilizing the differential-equation
approach; in which the complex variables obtained from the solution of the differential equations are
used as interpolation functions for the displacement field in this beam clement. A single element is
sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving
end-loadings, thus providing a benchmark solution to validate the other model developed. The second
beam model is developed utilizing the hybrid-mixed formulation, i.c., Hellinger-Reissner variational
principle; in which both displacement and stress fields for the beam as well as the foundation are
approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as
the newly-identified problem of “foundation-locking™ that can arise in cases involving foundations with
extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.c.,
for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with
respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the
performance of the developed beam models in practical applications involving shear deformation effect.
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1. Introduction

Beams on elastic foundation are widely used in many civil, mechanical and aerospace
engineering applications. For instance, they provide typical idealization in soil structure interaction
problems, and are also utilized to simulate the behavior of some engineering problems such as
distortion of box-type bridges, the dowel action effect for shear transfer in concrete after cracks
take place, cylindrical and spherical bearings, railroad tracks, etc. Traditionally, a straight beam
supported by elastic medium has been modeled on the basis of classical Euler-Bernoulli beam
theory for undeformed cross section, resulting in the so called C'-continuous beam elements, with
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cubic interpolation (shape) functions for transverse displacements. Several approaches are used to
include the foundation effect in conjunction with this conventional beam element. For instance,
Tong and Rossettos (1977) utilized the same cubic function for the C'-element to idealize the
Winkler foundation; Bowles (1974, 1977) combined the conventional beam element with discrete
springs at the ends of the beam; while Cheung and Nag (1968) treated the foundation as an
isotropic elastic half space and utilized the Flamant equation (Timoshenko and Goodier 1970) to
derive the flexibility matrix for the foundation which can be added after “inverting” the
conventional beam stiffness. An alternative approach is to develop a stiffness matrix based on the
solution of the differential equation of beam on elastic foundation. Several researchers have
followed this technique by using initial parameters to express the solution of the fourth order
differential equation in terms of four special functions; i.e., the deflection, slope, moment, and
shearing force (e.g., Miranda 1966, Ting 1982, Eisenberger et al. 1985, Ting and Mockuy 1984).

However, more recent developments in structural applications (e.g., Bathe 1982, Cook 1982,
Noor and Peters 1981, Stolarski et al. 1983, Gendy et al. 1992) emphasized the use of shear
flexible modeling approach; thus extending the range of applicability to thick beams where the
coupled flexural-shear deformations become significant, which is in fact more likely to be the case
in practice (e.g., the height-to-span ratio of foundation beams is greater than that in the
superstructure beams). This is the approach adopted in the present work.

In particular, two shear-flexible-beam- on-elastic-foundation models have been developed
utilizing two different approaches. The first model is called DEBF2 element which is a differential
equation-based model whose interpolation functions are of the complex- variables type. These
latter functions are obtained from the solution of the differential equation governing the behavior
of a beam with shear deformation that is supported on elastic medium and subjected to edge
loadings. Few DEBF2 elements arc thus sufficient to provide an “exact” solution for a typical
foundation problem; whereas a single element can exactly represent a continuous part of a
foundation beam with edge loadings.

The second two-noded model is formulated utilizing the hybrid-mixed approach (Gendy et al.
1992, Pian et al. 1982, Pian 1985), and is designated as HMBF2 element. In this C’-beam model,
the Hellinger-Reissner variational principle, with independent discretizations for displacements,
generalized internal stresses, and subgrade reaction (“foundation pressure”) fields, are utilized.
This allows us to use more conventional (i.e., a low-order polynomial) interpolation functions and
in the meanwhile avoid the shear locking phenomenon (both due to large shear-flexural beam
stiffness ratios, as well as large relative foundation-to-beam-stiffness ratios) which are typically
exhibited by alternative models associated with the element developed utilizing the customary
potential-energy/displacement-bases forms. The versatility of this HMBF2 model provides for
general applicability.

A selected number of numerical examples are given to assess the effectiveness of the two
developed models in practical applications. A special emphasis is given to show the effect of shear
deformations on the deflections and internal forces of beams on elastic foundation, and to demonstrate
the successful treatment of associated phenomena of flexural-shear and foundation locking.

2. The differential equation-based beam model
2.1. Differential equations of beam with shear deformation on elastic foundation

The stiffness matrix of a planer frame element supported on infinite number of closely spaced
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separated springs (i.e., Winkler foundation) shown in Fig. 1 has been developed using the
differential equation approach. The shear deformations are accounted for by considering the
rotation, 6, and deflection, v, as independent; i.e., plane section remaining plane but is no longer
restricted to be perpendicular to the beam center line after deformations. The differential equations
for the deflection and the rotation of a beam on elastic foundation shown in Fig. 1 can be
expressed as

2
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where E is the Young's modulus; G is the shear modulus; I is the moment of inertia of cross
section about z-axis; A is the cross sectional area; s is the shear correction factor; k is the subgrade
reaction modulus which is defined as the distributed reaction per unit length of the beam due to
unit deflection (k=k,X b, where b is the beam width and &, is the subgrade reaction per unit area);
and p is the transverse distributed load as shown in Fig. 1.

Differentiating Eq. (1) twice with respect to (w.r.t) beam axis x, and Eq. (2) once w.r.t.
variable x, one gets

3 4 2
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Substituting from Eq. (3) into Eq. (4) and utilizing Eq. (1), one can write a differential equation
of fourth-order for a beam (with shear deformations) on elastic foundation in terms of the
deflection, v, as follows
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Fig. 1 Generalized forces and kinematic degrees of freedom for a typical beam on elastic foundation
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The rotation can be obtained in terms of the deflection by differentiating Eq. (1) with respect to x
and substituting into Eq. (2) as

3
0= Er [dv+ 1 [—kﬂ+d—pﬂ+ﬂ 6)
dx3

GsA GsA dx  dx dx

Assuming that the beam has no distributed load, i.e., p=0, Eqs. (5) and (6) can be rewritten as
follows; with a=0.5k/(GsA) of dimension 1/(length)’
d* dv | k

3
o= LEL |42 [ 9, CA | v @®)
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It is of particular interest here to note the two parenthetical terms in Eq. (8); the first “a” gives
the relative rigidity of foundation-to-beam-shear-stiffness, and the second (GsA/EI) is a measure of
the shear-to-flexure stiffness of the beam.

Eq. (7) is the governing differential equation of the beam with shear deformations on elastic
foundation. Once the deflection expression is obtained by solving Eq. (7), the rotation can be
determined by back substituting in Eq. (8).

The solution of the differential Eq. (7) can be written in the form

4
vix)=Y ¢ e®ix )
io1
where
o ,=WNa +ib, oy,=*Na —ib (10a)

b= ’\’ —E]—Cf —a3, ¢ =generalized coordinates (10b)

2.2. Stiffness matrix

The displacement field in Eq. (9) can be rewritten in the matrix form as
v(x)=¢C (11)
where
P=[ewr emx ewx eowx], C=[cy, €y €3 Cg)t (12)

The generalized coordinates can be expressed in terms of the unknown element nodal point
displacements v;, 6, v,, and 6, by substituting in Eqgs. (8) and (11) with the following:

at x=0 v=v, and 6=0,
at x=L v=v,  and 6=6, (13)

This leads to
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g=AC (14)
where
g:[vla 91’ Vla GZ]T (153)
1 1 1 1
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Solving Eq. (14) for C and substituting into Eq. (11), one gets
v(x)=Ngq (16)

where N is the one-row matrix of interpolation functions corresponding to the four nodal degrees
of freedom and can be expressed as

N=¢A" (17)

The transverse shear strain, ¥, and bending curvature, ¢,, which are the two components of the
generalized strain vector € for the beam can be expressed in terms of nodal displacements as

g:[%,w:[(g;--e} %ﬂ =EA7g (18

where

{(al—zq)éw (0= Ap) e (04— ) e (m—&)eﬂ
E= (19)
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The stress-resultant vector for the beam, o, whose components include the shearing force, V,

and bending moment, M, can be expressed in terms of the generalized strain vector, &, through the
constitutive relation as

o=Diag. [GsA,FEI] g (20)

where Diag.[ ] is a diagonal matrix. Using Eqs. (18) and (20), the nodal force vector, Q, that
corresponds to the four degrees of freedom are

Q=Dn | 23| 47 9=Kg @D

where
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Dn = Diag. [-GsA, —EI, GsA , EI | (22)

and the symbols .|, and .|, indicate evaluations at locations x=0, and x=L, respectively, of 2Xx4
array in Eq. (19). It can be noticed that since the roots of the differential equation contain
imaginary terms, the coefficients of A and E matrices should be treated as complex numbers. The
stiffness matrix, K, in Eq. (21) can be extended to account for the axial deformation by adding the
conventional term EA/L. with positive or negative sign to be associated with the axial
displacements; resulting in (6 X 6) stiffness matrix.

3. Hybrid/mixed beam model
3.1. Two-field form variational principle

The Hellinger-Reissner, two-field, variational principle in which stresses and displacements are
assumed independently (Gendy et al. 1992, Pian and Chen 1982, Pian 1985, Gendy et al. 1994,
Washizu 1982) is utilized. For a typical beam element on elastic foundation whose longitudinal
axis is x, and y and z are*principal centroidal axes, the functional 7, can be written in the form

7'L'HR:I _l~RTl~)—1~R+~RT§R — _lFDs—lF_l_Fv de —W 23)
L 2 2

The first two terms in the above equation are the internal strain energy for the beam element
utilizing the two-field principle; while the following two terms are the foundation effect; and the
term W denotes collectively the work of the prescribed external forces and moments. In Eq. (23),
L is the element length, o, is the independently assumed generalized stress-resultant vector which
can conveniently be written in terms of extensional/shear/bending actions as

or=IN,V,M]" (24)

where N is the normal force, V is the shear force in the y direction, M is the bending moment; F
is the independently assumed subgrade force (force/unit length); £, is the generalized geometric

strain vector (derived from displacements) and defined similarly
,.E,R = [507 ?xy, al]T (25)

where &, is the axial stretch, 7, the (average) transverse shear strain due to flexure, and ¢. the
bending curvature; D! is the inverse of the material stiffness (compliance matrix), i.c.,

D =Diag. [EA, GsA, EI'] (26)
The D ', is the inverse of the subgrade modulus (i.e., — 1/k) such that
F=-kv (27)

Utilizing the strain-displacement relations [e.g., Gendy et al. 1992], the three generalized strain
components in the present one-dimensional beam model (i.e., Eq. 25) can be written as

gr=Iu’, (v - 6), 0] (28)
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The prime indicates differentiation w.r.t. the axial coordinate x.
3.2. Finite element formulation

In the hybrid/mixed finite element approximation, the displacement components of a reference
point on the beam cross section u,u=[u,v, 0], stress resultants Or, and subgrade force F, are

interpolated in terms of nodal displacement g, stress parameters f§ and subgrade parameters i, as
u=Ng, ox=PB, F=RS (29)

where N, B and B are the matrices of interpolation functions for element displacements, stress
resultants, and subgrade force, respectively. They are polynomial functions of the coordinate x.
Some rational comments concerning the choice of these interpolation functions are given next.

First, with regard to the displacement interpolation assumptions, only the compatible
displacement functions are used and they are the familiar Lagrange polynomial interpolation
functions for one-dimensional elements (Bathe 1982, Cook 1982). That is with natural coordinate,
r=(2x/L-1), the interpolation functions for two-noded element are

_1 —r =1 r
1\’1—5(1 ), N, 2(1+) (30)

Second, considering the beam's internal force field, the stress parameters may be chosen in such
a way that the homogeneous parts of the stress equilibrium conditions are satisfied pointwise
within the element. The resulting element is then referred to as an “equilibrium” hybrid element
(Pian 1982). This has been the most popular approach in the early developments of hybrid
elements. However, Pian et al. (1982) developed a hybrid formulation in which the stress
equ111br1um conditions are not enforced initially, but are brought in (if requ1red) in an

‘approximate” (integral or variational) sense, through the use of the functional form in Eq. (23)
itself. Here, for our study, the equilibrium requirements are completely relaxed.

There are two important issues that must be taken into considerations in order to select the
stress parameters properly: (1) avoiding all kinematic deformation modes; (2) ability of the
resulting element to handle constrained problems. For the latter, we imply herein the thin element,
possibly exhibiting flexural shear locking, or beams on excessively rigid foundations relative to
the beam shear stiffness.

With regard to the first issue, suppression of kinematic deformation modes is the most
important requirement in the hybrid-mixed formulation. The necessary condition for the stiffness
matrix to be of sufficient rank is that the number of internal stress parameters, B, should be
greater or at least equal to the difference between the total number of all kinematic degrees of
freedom of the element and the rigid-body modes (Gendy, Saleeb and Chang 1992). Based on the
scheme proposed by Pian and Chen (1983) for choosing the proper set of stress terms, a single 3-
term should be choosen corresponding to cach of the terms in the strain expressions obtained
from strain-displacement relations, thus resulting in the least (“optimal”) number of parameters. In
the context of the present beam-on-elastic-foundation formulation, this condition can be easily
achieved by using the following specific forms for P, and P; of Eq. (29); i.e.,

pP=I, P,=1 31)

where I is a diagonal (3% 3) unit matrix, and the scalar P, is a (1 1) unit matrix. It is noticed
that a constant (one internal stress parameter) is chosen for each of the stress components and that
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the choice of a constant field for the foundation/subgrade reaction field is crucial for the success
of the element in applications involving extreme rigidity of the foundation (relative to the beam
stiffness); i.c., large values of al? see Eq. (8).

The second issue is to check the element behavior so that any potential locking problem is
precluded, for example in its applications to “thin” beam structures and/or rigid foundation. A
convenient way to examine this behavior is to use the method of constraint counting, often termed
as ‘constraint index” as suggested in Hughes et al (1978), and Malkus et al. (1978). The
constraint index, CI, is defined as the difference between the number of kinematic degrees of
freedom brought by an element, when added to an existing finite element mesh, and the number
of independent constraints per element when it is used in the limiting case (e.g., thin beam). A
favorable value of CI is equal to or greater than one which implies that the element is locking free.
For illustration, consider the two-noded hybrid-mixed beam element, HMBF2, under flexural
action only (this is the most critical situation). In the limit as the beam thickness approaches to
zero, the shear deformations should vanish. Correspondingly, the stress parameter 3, associated
with the shearing force approaches to zero for such a case. This will impose one constraint
condition. Thus, when an HMBF2 element is added to existing mesh, the resulting CI is (2-1)=1
(with two pertinent kinematic degrees of freedom associated with flexural response), hence no
locking is expected in this case. On the other hand, the corresponding calculations for the more
conventional counterpart displacement-based model (see Eq. 38), with “exact’ integration for the
associated component stiffness arrays (i.e., two Gauss integration points), CI is equal to (2-2)=0;
this indicates complete failure due to locking in thin beam limit. This conclusion has indeed been
supported by numerical results given in the next section.

A similar locking phenomenon (that is peculiar to the present case of beams on elastic
foundations) pertains to extreme relative values of al” in Eq. (8) approaching infinity, with finite
GsA values. In this case, the pertinent deformation parameter to be suppressed corresponds to 3,
thus resulting in one constraint, while the number of free degrees of freedom is still two, giving
CI=2-1=1; i.e., no locking. Here, again, alternative displacement-based models will yield CI=0
and exhibit severe locking in these cases.

Substituting Eq. (29) into Eq. (23) and following standard arguments (Pian and Chen 1982, Pian
1985, Gendy and Saleeb 1994, Washizu 1982, Pian 1982), the functional 7 can be written as

1 1
T == 5B HB+B" Gg+ - B Hp: - B/ G g -Q" g (32)
where H and H, the flexibility matrices, are defined as
H=[ PTD'Pdx, Ho={ PID'P dx (33)
L L

The matrices G and G; are expressed in terms of strain-displacement matrix B and interpolation
function for transverse displacement N, , respectively, as

G=| PTBdx, G =[ PN dr (34)

the g, is the transverse nodal displacement, and Q is the equivalent nodal force vector, such that
Q7 g =term in W in Eq. (23).

" Invoking the stationary condition of Eq. (32) with respect to the independent variation of
stresses yields Band s in terms of g and g,
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B=H"Gq, B=HIGq. G5)

thus allowing for the elimination of stress parameters § and B, on the element level. Substitution
of Eq. (35) into Eq. (32) yields
1 1
ﬂHR=EQTI§g—EgvTI~<s q--Q"q (36)
from which the stiffness matrices for the hybrid-mixed element on elastic foundation, HMBF2, are
given by

K=G"H'G, K.=G/H:'G, (37)

For the purpose of comparison, the stiffness matrix for the displacement-based beam element on
elastic foundation with two nodes, designated here as DBF2, has been obtained from the familiar
expression e.g., (Bathe 1982, Cook 1982) of the principle of minimum potential energy. Thus, for
the present case accounting for shear deformation, we use linear shape functions for both the
transverse deflection and rotational components of the single (displacement) field involved. A
straightforward driviation will then lead to the final stiffness equations for the DBF2 element:

Kp=| B"DBdx | N.DiN.dx (38)

In the above, the first term is the contribution from the internal strain energy, while the second
term is the foundation effect. Note that the foundation pressure field (calculated from
displacements in this case) is also linear.

4. Numerical examples

A number of test problems are considered in this section to assess the performance of the
developed elements. As before, we use the following designations throughout: DEBF2 for the
differential equation-based element; and HMBF2 for the hybrid-mixed-based element. For the
purpose of comparisons, results for some of the test problems are also obtained using the “more-
conventional” displacement-based element DBF2.

4.1. Mesh convergence

A simply supported beam on elastic foundation, shown in Fig. 2, has been analyzed using a
different meshes of DEBF2, HMBF2, and DBF2 elements. The beam length is 2.0 m., width is 1.0
m., and depth is 0.10 m; with the material and foundation constants given in Fig. 2. By making
use of symmetry, only one half of the beam is analyzed. The normalized deflection under the load,
and the rotation at the left end are plotted in Figs. 3 and 4, respectively. The deflection and
rotation converged to -0.0841 m. and -0.1060 rad., respectively, using one DEBF2 element, when
the shear deformations are taken into considerations. However, the DEBF2 element gives -0.0837m.
and -0.1064 rad. for the deflection and rotation, respectively, when the shear deformations are
neglected (i.e., by considering “large” values for shear rigidity GsA). These former values are
identical to those obtained in Eisenberger and Yankelevsky (1985) using stiffness matrix
developed based on the solution of the differential equation of beam on elastic foundation without
shear effects; and also agree with the “exact’ solutions given in Timoshenko (1956). The results
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Fig. 2 The problem of a simply supported beam on elastic foundation
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Fig. 3 Convergence study for the mid-span deflection of a simply supported beam on elastic foundation

obtained with the HMBF2 and DBF2 clements are normalized with respect to those obtained by
the DEBF2 in Figs. 3 and 4. As shown from these figures, solutions using HMBF2 element give
good results with about 1% error using 4 elements. On the other hand, due to the mild degree of
flexural shear locking, the convergence is very slow using DBF2 element. For instance, the
deflection exhibits an error of 37% with a mesh of 4 DBF2 elements; and even with a mesh of 20
elements the deflection still exhibits an error of approximately 3%.

4.2. Shear locking phenomenon

The effect of shear locking is investigated by considering again the simply supported beam on
elastic foundation shown in Fig. 2. Here, the beam is analyzed using different values of aspect
ratio L/h (length to height ratio). Four elements are used to idealize one half of the beam. The
vertical deflection under the load (i.e., in the middle of beam span) using DEBF2, HMBF2, and
DBF2 elements are shown in Fig. 5. In fact, the solution obtained using HMBF2 elements are
almost identical to those obtained by the DEBF2 clements for the entire range of aspect ratio L/h.
On the other hand, the results obtained with the DBF2 element exhibit a shear locking of this
element. That is, for a limiting case of thin beam, i.e., L/hA becomes very large, the predicted
values for the deflection approaches to zero, obviously a worthless result contradicting the
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Fig. 4 Convergence study for the rotation of a simply supported beam on elastic foundation
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Fig. 5 Mid-span deflections for beams with various height-to-span ratios supported on elastic foundation

physical problem considered. For instance, for L/A=50 the solution with DBF2 element exhibits an

error of 64% when it is compared to that obtained with the DEBF2 element.

4.3. Rigid foundation locking phenomenon

We consider the same beam solved previously in Fig. 2, with a mesh of ten elements in one
symmetric half and for a particular value L/h=2; i.c., a case of relatively thick beam so that
flexural-shear locking is not an issue (both HMFB2 and DEBF2 behave well for this case for k=
10°). Rather, a wide range of values for the foundation stiffness constant k (10° to 10") will be
considered to investigate the phenomenon of foundation locking; see pertinent discussion in Sec. 3.2.
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For convenience, results are reported in Table 1 in a normalized format for the mid-span
deflection, v, under the load; i.e., 2kv/Pg, versus the foundation stiffness k, whére g=[k/4EI]", P
is the central load and L is the total length of the beam. As seen from Table 1, for “moderate”
values of k, both the displacement and mixed models give equally good results (e.g., compare the
top two rows in the table, where the first row pertains to the case considered in Figs. 3 and 4, and
Sec. 4.2 above). However, results from the two models start to deviate with increasing k. In
particular, very significant differences are seen for the extreme higher values of k; e.g., the
deflection obtained from DBF2 is nearly one-order-of-magnitude less than that produced by
HMBEF?2 for the case corresponding to the last row in the table. This clearly signifies the severe
“foundation” locking exhibited by DBF2 in such cases. On the other, the mixed model HMBF2
has maintained excellent performance for the entire range of k, indeed yielding identical results to
the “exact” model DEBF2 (not shown in Table 1).

4.4. Effect of shear deformations

The effect of shear deformations is investigated by analyzing the same simply supported beam
on elastic foundation shown in Fig. 2. The beam is analyzed for different aspect ratios L/h; and
with and without taking into considerations the shear deformations. The vertical deflection
obtained using the DEBF2 and HMBF2 elements are given in Table 2. As shown from this table,
the results obtained with the HMBF2 element are in good agreement with those obtained by
DEBF2 element. Shear deformations are significant for small values of aspect ratio L/h. For
instance, the deflection under the load is increased by 60% for L/h=1 when the shear deformations
are accounted for.

Table 1 Normalized deflection demonstrating the rigid-foundation locking phenomenon

Normalized Deflection

k DBF2 HMBF2
10° 0.04626 0.04636
10° 0.97718 0.97910
10" 2.6836 2.7433
10" 3.6266 8.4618
10" 1.2674 13.3459

Table 2 Effect of shear deformations on the mid-span deflection

Lk DEBF2* HMBEF2*
no shear with shear no shear with shear
1 -0.0370 -0.0590 -0.0365 -0.0587
2 -0.2946 -0.3386 -0.2901 -0.3341
3 -0.9717 -1.0352 -0.9578 -1.0215
4 -2.1707 -2.2477 -2.1454 -2.2228
5 -3.7819 -3.8621 -3.7553 -3.8367

*all values are in cm.
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Fig. 6 The problem of unrestrained beam on elastic foundation
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Fig. 7 Bending moment distribution of unrestrained beam on elastic foundation

4.5. Unrestrained beam on elastic foundation

Consider the beam on elastic foundation given by Bowles (1977) and shown in Fig. 6. The
beam length is 15 ft; width is 8 ft; and depth is 2 ft. The beam is made of material with Young's
modulus £E=452 700 ksf; and supported on a soil with subgrade reaction modulus k,=1152 ksf.
The subgrade modulus of the two end elements is double that of the other as shown in Fig. 6.
The beam is idealized using 8 elements for both DEBF2 and HMBF2 models. This is the same
mesh size utilized in the reference solution of Timoshenko and Goodier (1977). The nodal
deflections obtained with the DEBF2 and HMBF2 models are listed in Table 3 along with those
obtained by Bowles (1977) and by Ting and Mockry (1984). As is evident from this table,
predictions of nodal deflections obtained by DEBF2 and HMBF2 elements are almost identical to
those given in Bowles (1977) and Ting and Mockry (1984).

The distribution of the bending moment along the beam using DEBF2 and HMBF2 elements are
depicted in Fig. 7 along with the results reported by Bowles (1977) and by Ting and Mockry
(1984). Again the results given by DEBF2 and HMBF2 elements compare favorably with those
given in Bowles (1977) and Ting and Mockry (1984).

4.6. Two-bay two-story frame on elastic foundation

A two-bay two-story frame supported on a continuous beam on elastic foundation (see Fig. 8)
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Table 3 Nodal deflections of a beam on elastic foundation

Node DEBF2* HMBF2 Bowles (1977)  Ting et al. (1982)
1 -0.05091 -0.05097 -0.05015 -0.05075
2 -0.04487 -0.04500 -0.04452 -0.04490
3 -0.03963 -0.03975 -0.03951 -0.03972
4 -0.03627 -0.03636 -0.03625 -0.03636
5 -0.03334 -0.03340 -0.03339 -0.03339
6 -0.03029 -0.03028 -0.03036 -0.03025
7 -0.02729 -0.02718 -0.02732 -0.02712
8 -0.02262 -0.02246 -0.02292 -0.02260
9 -0.01778 -0.01750 -0.01825 -0.01784

*all values are in feet; 1 ft=0.305 m.

is chosen as an example of practical application of superstructure-soil interaction. The frame is
made of concrete with Young's modulus of 25 % 10° KN/m’, Poisson's ratio of 0.22, and subgrade
modulus for soil of 5x10° KN/m’. The two girders of the frame are of T-cross section, the
columns are of rectangular cross section, and the foundation beam is of (inverted tee) L -cross
section. The frame cross sections have the following dimensions: (1) for girders with T-section:
total depth is 0.6 m., flange width and thickness are 1.0 and 0.12 m., respectively, web width is
0.2 m.; (2) for columns in the first story: the depth and width are 0.5 and 0.25 m., respectively;
for columns in the second story: the depth and width are 0.4 and 0.25 m., respectively; (3) for the
foundation beam: total depth is 1.5 m., flange width and thickness are 1.5 and 0.4 m., respectively,
and web width is 0.75 m. The structure is idealized using DEBF2 as well as HMBF2 elements. In
order to demonstrate the effects of shear deformations, the analysis has been carried out with and
without taking the shear deformations into considerations. The deflections as well as the forces
obtained by using DEBF2 and HMBF2 are identical. The deflection curves of the foundation
beam with as well as without shear effect are depicted in Fig. 9. It can be noted from this figure
that the maximum deflection is located under the maximum loaded point, i.e., middle column,
with a value of 0.4785 mm. when shear effect is considered, and 0.3550 mm. when shear effect is
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Fig. 8 The problem of two-bay two-story frame on elastic foundation
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Fig. 9 Deflecion of foundation beam of two-bay two-story frame

neglected (i.e., relative difference of 25.8%). Similarly, the maximum bending moments for these
two cases are located just to the left of the middle column with values of 639 and 710 KN.m,
respectively; i.e., the relative difference is nearly 11%.

5. Conclusions

Two models have been developed to represent shear-flexible beams on elastic foundations. The
first is formulated utilizing the differential equation-based approach, thus facilitating comparisons
with benchmark, “exact’, solution for cases of end loads. The second is developed for general
applications, using the hybrid-mixed variational principle approach. The effectiveness of this latter
model is demonstrated in a fair set of numerical examples. In particular, these models were shown
to be free from the well-known shear locking, as well as the special type of locking phenomenon
resulting from the extreme foundation rigidity relative to the supported beam's stiffness. They
exhibited accurate displacement- and stress-prediction capabilities. This is in sharp contrast to the
counterpart element developed utilizing the conventional, “pure”, displacement formulation. In
several cases, the shear deformations are shown to be very significant, and thus must be accounted
for in both deflection and internal stress calculations. This is especially true when the ratio of the
beam height to its span increases, which is typically the case in practical foundation beams.
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