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Practical estimation of the plastic collapse limit of
curved pipes subjected to complex loading
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Abstract. In this paper a practical limit load estimating procedure is proposed for general pipe-elbow
structures subjected to complex loading (in-plane and out-of-plane bending, internal pressure and axial
force). The explicit calculating formulae are presented on the basis of theoretical analysis combined
with numerical simulation. Von Mises' yield criterion is adopted in both analytical and numerical
calculation. The finite element examination shows that the method provides a simple but satisfactory
prediction of pipe structures in engineering plastic analysis.
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1. Introduction

In petrol-chemical and power producing plants, some failure accidents are caused by local
fracture or excessive deformation of a pipeline (especially curved pipes). The analysis of a pipe
bend is very interesting in a bending situation where, as has been known for many years, its
flexibility is significantly greater than that of a straight pipe. Such flexibility may be useful in
reducing thermal expanding reactions. Besides, the pipe bends are also commonly employed as
internal components in various reactors. Usually they are subjected to important and complex
stress and strain arising from differential movements and also due to complex geometry. Despite
the large amount of literature on linear elastic behaviour of bends under various loads, little
information is available to guide the designer to assess the plastic collapse characteristics of pipe
bends.

Failure in curved pipes may be initiated by various causes such as wrinkling, corrosion, creep,
and so on. However, in the present paper, only the plastic limit analysis is studied where the loads
are supposed to be monotonic and proportional. The alternative situation concerning shakedown
analysis (where the loads vary arbitrarily or cyclically) was discussed in a separate report, Yan et
al. (1997a, b). Although in a practical case the loading is always variable, the present analysis still
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has a significant role. On one hand, the limit load as a principal parameter is used not only in
plastic design but also in the fracture toughness estimation of the structure with defects; e.g., Joch
et al. (1993), and Gilles ef al. (1996). On the other hand, limit analysis may be a particular case
of shakedown analysis (Konig 1987). In fact, in some practical cases without thermal loading, the
limit factor may be an upper bound approximation of the incremental plasticity factor of
shakedown analysis, while the alternating plasticity factor (plastic fatigue) could be estimated by
elastic analysis, Gokhfeld & Cherniavsky (1980). In classical analysis, the material is supposed to
be elastic (or rigid) - perfectly plastic and obey von Mises' yield criterion. The small displacement
model is also adopted. Although these hypotheses are never strictly satisfied in practical
engineering, they lead to unique (theoretical) and generally safe estimation of real limit load for
pipe structures. When more accurate analysis is necessary, the two hypotheses should be removed
as discussed by some authors in the work of Mroz er al. (1995). Hence, it should be understood
that the obtained limit load solution in this paper, instead of a real load-bearing limit, actually
concerns a starting point of unlimited plastic flow of structure. The curved pipe has been
considered to be of circular cross section and constant thickness. This is not an unreasonable
assumption since hot forged pipe elbows can be manufactured to close dimensional tolerances.
Finally, it may be necessary to note that the present work is concerned with a general pipe elbow
assemblage rather than a complete pipe structure.

Finding the exact limit solution is generally very difficult due to the complexity of curved pipes.
Two fundamental theorems could be used in classical limit analysis, Martin (1975), and Chen &
Han (1988):

1) The lower bound theorem: Any stress distribution throughout a structure which is internally
and externally in equilibrium and does not violate the yield condition anywhere, corresponds to a
lower bound of limit load. This approach lays in finding an optimal static stress field.

2) The upper bound theorem: Any kinematically admissible strain distribution may correspond
to an upper bound of limit load. The solution is obtained by equating the internal plastic
dissipation to the external loading power in a postulated compatible mechanism of deformation.
This approach lays in finding an optimal kinematic velocity field.

Obviously, if the lower bound and upper bound of solution coincide, which usually happens as
the optimal fields are really found, the exact solution is obtained. Based on these theorems, some
analytical and experimental approaches were studied on pipe structures, among which are Marcal
et al. (1961, 1967), Bolt & Greenstreet (1971), Spence & Findlay (1973), Calladine (1974),
Griffiths (1979), Touboul et al. (1988), Kussmaul et al. (1995) and so on. A finite element
computing code ELSA (Elbow & Structure Limit and Shakedown Analysis) has been developed
in our laboratory using special pipe-elbow finite elements and a mathematical programming
technique. This computing code is based on the kinematical method connecting an optimization
procedure. A large number of numerical tests for various structures shows that its solution is very
close to the exact one. A complete description of the ELSA code and its numerical verification
are presented in Yan (1997a).

This paper does not give a detailed theoretical description but only provides a simple and
effective means for limit analysis of pipe structures. Some available solutions are used for
comparison. Based on both analytical and numerical work, the explicit formulae of computing
limit load are presented in a separate loading case. Then a general solution for pipe-elbow
assemblage under complex loading (in-plane bending, out-plane bending, axial loading and
internal pressure) is also derived. The proposed solutions are verified by finite element
calculations. By their precision and simplicity, these formulae may constitute useful tools for
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engineers because elastic plastic finite element analysis is generally troublesome due to the
complexity of curved pipe geometry and loading.

2. Limit moment of elbow (without end constraint) under in-plane bending

A pipe bend (elbow) subjected to complex loading is shown in Fig. 1. In this section we
consider only bending moment M, in the symmetric plane. We will call this problem in-plane
elbow. A geometric coefficient 4 is used to characterise the curve extent of the elbow:

A=Rh /r? 1)

Generally A< 0.5 corresponds to a highly curved pipe, while A— cc corresponds to a straight pipe.
Limit load indicates theoretically the maximum load-bearing capacity of structure beyond which
the plastic collapse happens. Here we represent the limit bending moment by a limit factor o

where M; is the in-plane limit moment of the curved pipe; M, is Bernoulli's straight pipe solution
which does not include the effect of ovalization and warping:

2
MP=dh(r2+ %)oy (2b)
where o, is the yield limit of material. For a thin-walled pipe we have approximately
M} =4hr’o, (2¢)
2.1. Calladine - Proposed solution

By using the elastic solution of Clark and Reissner (1951) and the yield criterion of Hodge
(1961) as Eq. (3) (a kind of sandwich approximation of Mises' criterion for cylindrical shell),
Calladine (1974) proposed a static solution as in Eq. (4a) for a highly-curved pipe. This solution
is considered in literature to be very close to the exact one. Our finite element examination shows

My

M; :in-plane moment P :internal pressure

My : out-plane moment F : axial force
Fig. 1 Layout and notation of a curved pipe under complex loading
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that it is valid as A < 0.7 (Calladine gives this solution as A < 0.5). For a slightly-curved pipe (1 >
0.7), Yan (1997a) proposed an approximate solution (4b) validated by numerical analysis. Hence,
Eq. (4a, b) may construct a complete formula of in-plane elbow without end constraint (torus).

3
n 92 + Zm; =1 (3)
where n, and m,, represent nondimensional traction and bending moment respectively.
o =0.934A% A<0.7 (4a)
T
=cos(— A20.7 . 4b
0 = cos(—~ | (4b)

We note that by using a static method as Calladine did, Desquines et al (1997) recently
deduced a lower bound solution. With yield criterion (3), their solution was presented as (5):

[P S— 5)
1+ 0.3015

12

It is interesting to make a comparison between Eqgs. (4b) and (5). To this end, we take the series
expansion of (4b) and (5) respectively:

A, A A%
e T Py ©
2 ap4
1 _q1.B2 138" 0

B 202 2414
\/ 1 +(7)2

where A=m/6 and B=0.549. Indeed when A is large enough such as 1> 0.8, the difference between
(4b) and (5) is very small, Table 1. However the solution (5) seems to overestimate limit moment
for a highly-curved elbow in comparing with finite element solutions in Fig. 2.

2.2. Spence & Findlay's solution

Two theoretical approaches are employed and developed by Spence and Findlay (1973). The first
one concerns the use of a linear elastic analysis in the space of stress resultant combining to the
corresponding yield criterion; another is to manipulate the results of a creep analysis of bends to
give an approximate bound. The obtained numerical results were fit into the following formula (8):

o =0.846 A< 145
O = 1 A21.45 @)

Above analytic formulae are examined by comparing with the finite element solution of ELSA.
In Fig. 2 and Table 1, we see the Calladine-proposed solution (4) is in excellent agreement with
the numerical solution for all A values. It appears that the solution of Spence and Findlay (8)
would generally constitute a lower bound.
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Fig. 2 Limit in-plane bending moment of elbow (torus); o,=M/M;

Table 1 Limit factor of in-plane bending of elbow: o=M/M;

A , ELSA Calladine Yan Desquines Spence &
(Rh/r) Eq. (42) Eq. (4b) Eq. (5) Findlay (8)
0.100 0.185 0.2013 0.1791 ©0.2001
0.200 0.311 0.3196 0.3422 0.3046
0.250 0.371 0.3709 0.4144 0.3482
0.300 - 0.4188 0.4794 0.3885
0.363 0.476 0.4756 0.5515 0.4355
0.400 - 0.5074 - 0.5888 0.4617
0.500 0.595 0.5887 (0.5000) 0.6732 0.5278
0.600 - 0.6648 (0.6428) 0.7377 0.5888
0.650 - 0.7013 (0.6927) 0.7639 0.6178
0.700 0.729 0.7368 0.7330 0.7868 0.6458
0.750 - (0.7715) 0.7660 0.8069 0.6732
0.800 - (0.8054) 0.7933 0.8244 0.6998
0.903 0.821 (0.8731) 0.8365 0.8544 0.7525
1.000 0.852 (0.9346) 0.8660 0.8765 0.8000
1.200 0.895 - 0.9063 0.9093 0.8925
1.450 - 0.9355 0.9352 0.9997
2.000 0.954 0.9659 0.9643 1.0

4.000 0.985 0.9914 0.9907 1.0
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3. Limit moment for in-plane elbow connected straight pipes at its two ends

It should be pointed out that the above solutions are independent of the open angle 6 of elbow
if there is no constraint at the ends of elbow to reduce ovalization and warping. Actually it
corresponds to a torus. For an in-plane elbow connected with straight pipes at its two ends which
we will call simply pipe-elbow, the limit bending moment increases due to the stiffening effect of
the straight pipes. Hence a correction seems to be necessary. First we consider respectively an
elbow and a 180° pipe-elbow, the results of which are presented in Fig. 3. It is shown that the
difference between an elbow and a pipe-elbow increases with A decreasing. The following
correcting formula as Eq. (9) may be used:

0/ 0 = 1+0.77 x0.028%%5* )

where o is the solution of elbow joined to straight pipe at ends (pipe-elbow), ¢, the solution of
torus (by Eq. 4).

For a general pipe-elbow with the open angle 6 less than 180°, the limit moment increases as
the open angle of elbow decreases. Simply, we may use a linear interpolation between the
solution of a 180" pipe-elbow and a general pipe-elbow:

o =max[a0, 1+(a0-1)9i} (10)
0

where the reference angle 6,=135° is based on the fact that the stress field of pipe-elbow with 6, >
135° changes little in comparing with the pipe-elbow of 6,=135°, Gilles et al. (1996). The
numerical examination of Eq. (10) is presented in Fig. 4.

It is seen that the predicted results by (10) may be overestimated in comparison with finite
element's results somewhere such as for pipe-elbow of 1=0.903, because in this slightly-curved
pipe the 6, of Eq. (10) may be smaller than 135" . Therefore, Gilles et al. (1996) suggested that
the solution of Spence and Findlay (8) and interpolation formula, Eq. (10) might be combined to
give a lower bound estimation of in-plane pipe elbow:
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moment of pipe-elbow under in-plane bending, 6: open angle of elbow (a=M,/M,)

7]
= 1+ —— (o —1
o max[asp, 135( oF )]

(11)

So the exact solution can be generally enveloped by a quasi upper bound (using Eqgs. 4, 9 and 10)
and a lower bound (using Eqs. 8 and 11).

4. Limit moment for a 90° elbow under out-of-plane bending

In contrast with the above in-plane elbow, little information is available for an elbow subjected
to out-of-plane bending, ref. Fig. 1. We will call this kind of problem as out-plane elbow in
comparison with in-plane elbow. The internal resultant for in-plane elbow is bending alone while
it becomes the one of a mixed mode of bending and torsion for out-plane elbow.

It is known that the plastic limit solution of the beam-bending model is different from that of
the axis-torsion model. For a thin-walled straight pipe, one has:

Beam-bending limit:

Axis-torsion limit:

Their ratio is

b
My &

M’ YA

=~ 0.9060

(20)

(12)

13)

This factor shows implicitly the decreasing tendency of limit moment for out-plane elbow in
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comparison with in-plane elbow.

Another point is that the largest ovalization happens in the centric section of in-plane elbow
while it deviates little from centric section to loading end for out-plane elbow. It seems that the
ovalization is more sensitive to bending than to torsion. This factor will lead to an increasing
tendency of limit moment for out-plane elbow in comparison with in-plane elbow, especially for a
highly-curved elbow.

Due to the interaction of these two factors, the plastic collapse of out-plane elbow does not
happen always at centric section of the elbow as in-plane elbow does. It happens at nonloading
end for slightly-curved pipe (e.g. A>1) while it passes toward another end (where the bending
moment is applied) as A decreases. So there is not a consistently proportional relation of limit
bending moment between in-plane elbow and out-plane elbow. Generally, for a slightly-curved
pipe (4 is large) the out-plane elbow has the limit moment lower than that of in-plane elbow.
However, it will be contrary when A is small because the effect of ovalization is now more
important. So it is reasonable that we use two empirical formulae to present the limit moment of
out-plane elbow respectively for A<0.5 and A > 0.5 as Eq. (15). The numerical results are
presented in Table 2 and Fig. 5. Here we use the axis - torsion solution (12) as reference because
it is actually an asymptotic solution of out-plane bending as A— oo,

* Defining
oy =My /M} (14)

where M,/ is Bernoulli's axis-torsion solution as (12).

* Proposed solution:
Ot” = 1.12/0'6 )u < 0.5 (153)

Ot” - 0.911/3 1.42120.5 (15b)

Table 2 Limit factor of out-plane elbow (90°)

A Proposed Proposed
RA/P) ELSA solution (152)  solution (15b)
0.100 0.281 02763
0.200 0.431 0.4188
0.250 0.480 0.4788 -
0.363 0.615 0.5989 (0.642)
0.500 0.713 (0.7257) 0.7143
0.550 - (0.768) 0.7374
0.600 0.763 (0.809) 0.7591
0.700 0.806 (0.888) 0.7991
0.800 . - 0.8355
0.903 0.873 0.8699

1.00 0.899 0.9000
1.20 0.939 0.9564
1.40 . 10
1.50 0.980 .

2.00 1.000
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Fig. 5 Limit factor of out-plane elbow (90°); ay=M/M,’

Eq. (15) is proposed on the basis of qualitative analysis and an empirical fitting of numerical
results of ELSA. Because the solution of ELSA has been proved to be very accurate at least for
single straight pipe or single elbow, the proposed solution can be applied with a good engineering
precision. The out-plane elbow connected to straight pipes at two ends of the elbow were studied
by Save et al. (1995), Yan (1997a) and other authors. According to their results, it is suggested
that Eq. (9) may be used to estimate the stiffening effect of straight pipe for out-plane-elbow if no
data of higher precise are available. The obtained results appear conservative. More investigation
seems necessary.

It is interesting to compare two types of elbows (in-plane bending and out-of-plane bending).
For the sake of simplicity, we consider a 90° elbow without the end-constraint effect, subjected
respectively to in-plane bending and out-of-plane bending. The results of the comparison are
presented in Fig. 6. It is shown that in-plane bending is more dangerous than out-plane bending
for a highly-curved elbow while it is the opposite for a slightly-curved pipe. They are
approximately equivalent when A is about 0.7. This result has a practical meaning. It is well
known that the in-plane elbow is much easier to analyse than the out-plane elbow due to the
symmetry. The deformation mode of the latter is more complicated and the whole structure must
be discretized in numerical calculation. So from the point of view of practical application, it is
simple and generally safe to apply the results of in-plane bending to out-of-plane bending for a
highly curved elbow (e.g., A < 0.5).

5. Limit internal pressure of curved pipe

The limit pressure of a pipe bend is reduced in comparison with a straight pipe due to the
nonuniform circular stress. By solving Laplace's equation of a curved pipe, one could easily
obtain an approximate analytic solution (16), which has been already recommended in the ASME
code:



430 AM. Yan, D.H. Nguyen and Ph. Gilles

o
1
0.9 /":: — I i M
- - -
-
08 /4
0.7 -
g
06 var
/ / ~ Limit factor of
05 7 in-plane bending
/)
V4
04 / / — — — = LUmit factor of
03 7 out-plane bending
02 7
01
0
0 05 1 15 2 25 A3

Fig. 6 Comparison of limit moments between in-plane and out-plane bending (a=M/M,)

Table 3. Plastic limit pressure of curved pipe of=p,/p*

r/R (Rlﬁrz) Numerical solution Analytical solution, Eq. (16)
0.221 0.903 0.881 0.875
0.4 0.5 0.751 0.750
0.551 0.363 0.609 0.620
Note: mean radius =30, thickness A=6 mm
of =p,/p D= % O'yrh (16)

For numerical examination, we consider a curved pipe as a torus under internal pressure. The
results of plastic limit pressure are presented in Table 3. We note that neither analytical nor
numerical solutions include the effect of axial force. However, in the case of considering the axial
force effect of internal pressure, the numerical examination suggests that Eq. (16) is still usable as
an approximation.

6. Pipe-elbow structure under complex loading

We consider now a pipe-elbow system subjected to a general bending moment M, internal
pressure p and axial force F. If F is in self-equilibrium to internal pressure (as with an end-closed
pipe), no bending moment is caused by the axial force. Otherwise, the added moment by axial
force F should be taken into account, as will be shown later. Clearly we can always decompose a
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general bending moment into its two components as in-plane bending M, and out-plane bending
M,

M = M ,2 + M ”2 (17)
Its collapse limit is
M® C My, Mp)

where M;” and M, are the limit bending moments of in-plane and out-plane elbows, respectively,
without pressure and axial force. For in-plane bending, M°=M,’; for out-plane bending M’=M,’.
We propose using the following relation (18) to investigate the éffect of internal pressure and
axial force on limit bending moment.

- Ml MII -
a=\ s My, F) (18)
My My
Obviously, if p=0 and F=0, we should have o=1.
Hrypp My (19)
MI MII

This shows that the interaction of in-plane bending and out-plane-bending is a cycle. This relation
can be taken as an equivalent exchange between in-plane and out-plane bending. A comparison
with finite element calculation is presented in Fig. 7.

In order to investigate ofp, F) in Eq. (18), i.e., the effect of internal pressure and axial force on
bending limit, we first consider a static model, as shown in Fig. 8, which has been used for
straight pipe analysis by Larson et al. (1975), Yan (1997a). For the present pipe elbow problem,
the moment of torsion need not be considered since it has been included in out-plane bending.

Proposed solution (19)

03 T

® ELSA's solution
02 T

o1y T

0 } } t f f f t f f o II'TII

0 0l 02 03 04 05 06 07 08 09 1
Fig. 7 Interaction of in-plane and out-plane bending (1=0.5)
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M
F
Fig. 8 Static stress distribution of a straight pipe model
We define:
nx:(’x/o-y:F/F[, F,=27l7'h0'y (20)
n(,,=0'¢/0'y =p/p, P =0h Ir (21)

where o, is the yield limit of material, o, and o, are respectively axial stress and circumferential
stress. F, and p, are respectively collapse limit of axial force and internal pressure of straight pipe.
Mises' criterion becomes:

nl+n, —n.n=1 (22)

Its solution is

ne+N4-3n2 ny—N4-3n2

ng = 2 ’ o= 2 (23)

However, this static model is not directly useable for curved pipe because the circumferential
stress field o, is not uniform due to the ovalization and warping of the cross section, and also due
to the difference of areas between the intrados part and the extrados part of a curved pipe,
according to Yan (1997a). Besides, the circular stress distribution due to internal pressure is not
uniform and it leads to different behaviours between closing-elbow bending (M; in the direction of
closing the elbow) and opening-elbow bending (M, in the direction of opening the elbow). The
situation is indeed quite complicated.

As an approximation, we still apply this static model but in the meanwhile introduce a
coefficient C, that represents the effect of ovalization and warping of a curved pipe. Besides, a
modification is necessary owing to the fact that the plastic limit pressure of a curved pipe is
reduced from (21) to (16). To take this effect into consideration we replace n, in (22-23) by

ity o, pl* » Pr Y r 1-r /2R ( )
Now we can approximately determine the limit moment of a curved pipe by a simple integration:
M = COIG¢ y4 dS
V4-3n%2 o —2nx
=4C,r%* o 3 ) (25)

2 4-3n,? 2
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Since C, is numerically equal to the reduced factor « in (4) of a curved pipe relative to straight
pipe, one can write: _
a=M/M?, MP=4Cgho, (26)

where M’ is the limit moment of a curved pipe under in-plane bending. The modification for a
general pipe-elbow has been discussed in §8.3 and §8.4. Considering (18) we have a general
solution as follows:

= Mgy Mry NEID o | o2 7

M Mg 2 PR 2 27)

On the other hand, by taking n, =n,, n, being defined by Eq. (21), we obtain immediately the
limit solution of thin-walled straight pipe, which has a formula completely similar to Eq. (27).
For a very thin-walled close-ended pipe elbow: n, ~2n,, Eq. (27) can be simplified further:

\a=3n77

- 28)

o=

Another analytic solution concerning the effect of internal pressure on the limit bending

moment of an in-plane elbow was proposed by Goodall (1978). He adopted the two-limits yield

surface (named limited interaction) assuming that there is no interaction between bending and
stretching. The solution was obtained for highly-curved pipes.

o = 2c 1—11:,
BH* 2
where n, is defined in Eq. (24) above. By comparing qualitatively (29) with (27) or (28), one

may take c* as equivalent to o. This formula means the maximum reduction of limit bending
moment due to internal pressure is about 21%.

=( " (29)

7. Numerical examination

We consider a pipe elbow structure under complex loading as shown in Fig. 9. Different
combinations of loading are dealt with. The in-plane bending moment is in the direction of
closing the elbow. The numerical results of finite elements are compared with the analytic
solution (28) in Fig. 10 and good agreement is observed. It seems that the yield criterion when
used by Goodall is too simple and the solution is deviates from present solutions by using Mises'
criterion when p/p;* > 0.6.

The proposed method is also examined in a 40" pipe-elbow, as shown in Fig. 11, subjected to
in-plane moment M, internal pressure p and axial force F. Four loading conditions are considered:

1) p=F=0, M,=?

2) p=15 Mpa, F=m’p, M,=?

3) p=15 Mpa, F=1.5m"p, M, =?

4) p=15 Mpa, F=2m’p, M, =?

Case 1 and 2 are simple because the internal pressure and axial force are in equilibrium, and we
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E 074+ = ~———=- Solution of Goodall(1978)
Proposed solution (28)
0.6 + O  MI-P-F (in-plane bending)
¢  MiI-P-F (out-plane bending)
0.5+ A MEME-P-F (MI/MII=0.8)
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Fig. 10 Interaction solution of general bending and internal pressure of close-ended pipe elbow (A=0.5)

.:l 4
F N A A &
M< N =7/ 0
L1 R N
40° P
&

Fig. 11 Geometry and calculating model (length in mm) (R=1354, h=62.5, r=393.7, L,=3330, L,=300,
A=0.469, 6=40°, 0,=160 MPa)
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Table 4. The effect of pressure and axial force on limit bending moment (p=15 MPa)

No. of case Axial 1 2 3 4a 4b 4c
force F=0, p=0 F=mr'p F=1.5m"p F=2mr'p F=2m"p F=2ar'p
Numerical solution  M=6505 M=5203 M=4336 M=2504 M=2504 M=2504
Zregw‘l‘g“ 3%1' @ M=6490.7 =4630  M=4108  M=2860  M=2901  M,=2483*
Relative error -0.2% -12.3% -5.1% ) -0.8%
Failure section A (centre of A (centre of B (1/4 elbow) C (1/8 elbow) D (exit of E (fixefi end
elbow) elbow) elbow) of pipe)

*The stiffening effect of fixed end is estimated as 8%

know that the plastic collapse is initiated at the centre of the elbow. For Cases 3 and 4, surplus
axial force will cause the bending moment at the right part of the structure, but we do not know
exactly where the plastic collapse commences. In this situation, we can select a series of possible
mechanisms (locations) for the prediction. According to the upper bound limit theorem, the
minimum of the obtained limit load is the best approximate solution. The predicted results and the
finite element solutions of ELSA are presented in Table 4. Here we take Cases 3 and 4c as
examples to illustrate the predicting method.

« Case 3: F=1.5m"p

For Case 1 without p and F, we obtain limit bending moment M,*=6490.7 KNm by using Eqs.
(2, 4, 9, 10). Now for Case 3 one needs only to consider the effect of pressure and axial force.
Assuming the plastic collapse is initiated at section B(6=30"), one has

F =m2p(1+0.5c086), n. =F /F;=0.392
p=15 MPa, n, =p/p*=0.783

Substituting n,, n, into Eq. (27):
M} = aM;'=0.753 X 6490.7=4770.7 kNm
The bending moment due to supplemental axial force at section B is
M[=0.5X nr’p X R(1-c0s8)=662.5 kNm
So the limit bending moment is finally found to be:
M,=M;-M=4108 kNm

* Case 4c: F=2mr/p

We assume that the failure mechanism forms near section E where the bending moment attains
the maximum. At first the stiffening effect of the fixed end is not considered, so it becomes a
straight pipe problem. Its bending limit is given by (2b)

M;=7236 kNm

Now we consider the effect of internal pressure and axial force:
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F=mr’p(1+cos40), n,=F/F,= 0.483
p=15 MPa, n=p/p/’=0.6374

V4-3n2 cos n,=2n w
2 Va4-3n3 2

M?=oM}P= 5746 kNm

o=

:| =0.794

Considering the stiffening effect of the fixed end (about 8% according to numerical analysis) the
limit bending moment near section E may be estimated as:

M} =~ 1.08 xM,°=6205 kNm
The bending moment due to surplus axial force at section E is
M= m’p[R(1 - cos40)+L,sin40]=3722 kNm
So the limit bending moment is finally predited to be:
M, =M, - M/=2483 kNm

By comparing the limit bending moments corresponding to different mechanisms (see cases 4a, 4b
in Table 4), we know the collapse happens very near the fixed end. The predicted results are in
good agreement with the finite element solution, although the predicting calculation is relatively
simple and sketchy.

This encouragingly shows that the above predicting method can be applied to estimate the
collapse limit of a general pipe elbow subjected to complex loading with good precision in the
condition of selecting well the collapse mechanism (here the mechanism means a location where
the plastic collapse happens initially). This can be realized by a simple qualitative analysis. For a
complex problem, one needs to select some different mechanism to find the minimum limit value.
We note also that the effect of a traversing load (shear stress in cross section) and radial stress are
not included in the above analytic calculation, which is generally considered small. However, for
a short pipe with a large diameter, a correction to consider the effect of shear stress is necessary.

8. Conclusions

We have presented a predicting method for the limit loading estimation of a general pipe-elbow
system under complex loading. Some explicit predicting formulae are proposed on the basis of
theoretical and numerical analysis. They can be easily applied to a general pipe-elbow structure
with good engineering precision. The upper bound and lower bound of limit bending moment are
suggested to satisfy different situations. The numerical examples show the application of the
proposed method which is useful for engineers who wish to estimate the plastic collapse limit of
pipe structures by a simple calculation.

However, it should be pointed out that the present study is carried out under some idealised
conditions. The limit solution may not represent real sustainable load for real pipe structures. The
negligee of the strain hardening effect of material should be introduced somewhat conservatively.
Nevertheless, the experimental results of Griffiths (1979) and Kussmaul et al. (1995) showed that
this safe margin due to material model is not important for pipe structures. In fact, despite the
displacement in the plastic state, the limit bending stress of elbows could be well characterised by
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the initial yield limit or o0,, of material. However, the large deformation of a pipe section may
have definitive influence on the ultimate load-bearing capacity. For example, the experimental
results show that the loading level of the opening moment may overpass largely the analytic
prediction, while only the in-plane closing mode has a real collapse limit. This is due to the
different ovalization modes in different bending modes. The AMSE code (1989) has
recommended a "twice slope of linear response” method to define the limit load. The limit
solution given in this paper may be used as a theoretical parameter to characterize the limit state
or to control excess deformation of pipe structures.
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