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Fourier series expansion method
for plated-structures

Jiann-Gang Dengt and Fu-Ping Chengt
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1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

Abstract. This work applies a structural analysis method based on an analytical solution from the
Fourier series which transforms a half-range cosine expansion into a static solution involving plated
structures. Two sub-matrices of in-plane and plate-bending problems are also formulated and coupled
with the prescribed boundary conditions for these variables, thereby providing a convenient basis for a
numerical solution. In addition, the plate connection are introduced by describing the connection
between common boundary continuity and equilibrium. Moreover, a simple computation scheme is
proposed. Numerical results are then compared with finite element results, demonstrating the numerical
scheme's versatility and accuracy.
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1. Introduction

Many civil engineering structures can be classified as fold plate structure systems. Examples
include floor, roofs, bridge decks, rectangular storage tanks, and culverts. In regular geometry
with simple boundary conditions, a simplified design chart or equations can be used (Moody
1960). However, this solution is not available for complicated geometry and boundary conditions.
In recent decades, a finite element method has been used to comprehensively analyze these
complicated problems (Irons 1976, Boswell and Zhang 1983, Hrabok and Hrudley 1983).
However, this method is seldom employed to analyze plated structures, partially owing to the fact
that accurate results depend on the use of a large number of elements. Such a large number of
elements require the preparation of a substantial amount of data with large simultaneous equations.
Many approximate methods based on physical considerations have been developed (Cheung 1976,
Kristek 1979, Puckett and Gutkowski 1986). These techniques were simplified from the finite
element method. These methods perform well under certain circumstances. Some boundary
element methods have also been proposed to analyze plated structures (Ohga et al. 1991), thereby,
reducing the size of matrices and input preparation, but a large computation effort in the final
integration is still required. However, a more simple, straightforward method has been developed
on the basis of an analytical solution. That method also uses the Fourier series expansion
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transform to boundary conditions. The fact that the solution is based on in-plane stress and on a
plate-bending theory, i.e., which is within the scope of the assumptions of superposition, accounts
for why the Fourier series expansion method represents an exact method. The solution considers
the structure in its actual form as an assemblage of plate-shaped parts which cumulatively forms a
real spatial system. The solution does not make any distinction between open and closed cross-
sections or multi-celled structures. And various physical properties of the structure's individual
parts are also easily introduced into the analysis. Consequently, the proposed method has become
a rapid and versatile method for resolving a wide-range of problems involving plated structures.

Two Fourier series expansion methods have been utilized in stress analysis. A numerical
procedure for the in-plane stress and plate-bending problems has been proposed (Kang 1993,
Deng and Cheng 1997). Solving these governing equations of in-plane stress and plate-bending
problems is not a difficult task if the geometry and boundary conditions are not complicated.
However, a practical problem likely has a complicated geometry, and must therefore appeal to the
numerical method. The boundary condition of a physical problem is easily presented by the Fast
Fourier Transform (FFT). A half-plane problem can be constructed by defining a local coordinate
system on each edge.

This study applies the analytical solution based on the Fourier series as the solution function of
each half-plane problem. By using the solution function, the influence coefficients that relate the
Fourier series coefficients of all boundaries to each other can be then analytically derived. In
addition, the superposition method is utilized to summarize the influences from all the edges of
the domain and, thus, construct a system of equations which can be easily solved. Both in-plane
stress and plate-bending are included as well, with each edge having four degrees of freedom.
These edge forces and moments are as follows:

1) Transverse bending moments M,

2) Shear forces F,, which act perpendicularly to the element plane,

3) Longitudinal shear forces F;,

4) Transverse normal forces Fy acting in the element plane (as Fig. 1).

Their displacements can be described by four components:

1) Edge rotation 6,

2) Transverse displacement w normal to the element plane,

3) Longitudinal displacement u (along the edge),

4) Transverse displacement v in the element plane (normal to the edge).

The positive sense of these rotations and displacements is coincident with the positive sense of
the respective edge forces or moments.

Plated structures are formed as an assemblage of plates that are put together, thereby allowing a
non-co-planar connection of these plates to satisfy the compatibility and equilibrium conditions.
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Fig. 1 Combining degree freedoms of plate bending and in plane stress
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Herein, we also present an effective scheme to connect plates together, thereby forming plated
structures.

2. Fourier series expansion method for in-plane problems

In the following analysis, we use the rectangular Cartesian-coordinate system in which the axes
x and y lie in the middle plane of the plate. The governing equations for in-plane problems can be
stated as follows, where the gravitational force is absent.

aa‘: +%—kdzu =0
aﬂ+ai—kdzv:0in Q (1a)
ox dy
u=ds), v=dys) on d&
Fy =ds(s), Fr=ds) on 0%, (1b)

where k, denotes the equivalent spring constant of the elastic foundation. To numerically treat it,
the constant term of an analytical solution, k, is introduced. For the problem without an elastic
foundation, an extremely small k, is used. E, v denotes elastic modulus and Poisson's ratio
respectively. In addition, €2 represents a polygonal domain (Fig. 2), where 9Q, + 9%, =9
denotes the boundary of £ If nhj series terms are used, the general solution of Eq. (1a) can be
obtained as follows:

nhj
u= 2 an X e P sin(Aax) + by X e~ sin(A,x) (2a)
n=1
nhj
v=agXedy +byxePy + 2 an X cne P’ CoS(Anx )+ bn X dne=a cos(Anx) (2b)
n=1

Wherep():kd, qukd X 02/(1_‘)), Pn = V)onz'l'kdz
Gn =NAZ +kF X 2/(1=), Cn =Py/ Ay dn =G/ A =1/,

5 P / Yj > j
Q o\ i (Xo,Yo) ZJIJ
oy r 4@ 5 g}y \//
| : ;
L & ~X 1 N
00y (d1,d2) IR B

Fig. 2 Edge coordinate system of an analysis plane Fig. 3 Coordinate transform on edges i and j
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where /; is the half period of the boundary condition prescribed on the boundary segment j (Fig.
3), A, represents mode number of /, unknown coefficients a,, b, are amplitudes of mode .

According to Fig. 2, the displacements of each edge of the domain must satisfy the solution for
the governing equations. In addition, influence coefficients on any edge can be calculated from its
local coordinate and the other edges. As an example of edge i, j (Fig. 3), when displacement u;, v,
are held on edge j, the influence of the displacements and forces on edge i can be calculated from
the coordinate transformation as

ui=u; Xcosy; +v; xsiny; (3a)
vi=u; Xsin ¥%; —v; Xsin ¥; (3b)
(FN); = —1—E—5 X {(u;)x X (sin® %; +v X cos? ¥;) + (v; )y X (cos® 3;; +v xsin® ;)
i 4

—(1-v) X ((u;)y +(vj)x) X sin %; cos %; } (3¢)
E

(Fr); = 2(1+)

X {(v;)e X (sin® 3; —cos? ;) + (u; )y X (sin® %; —cos® ;)
+ () = (v;)y) X sin 2%;} (3d)
where 7, denotes the angle between lines j and i. (w), (), (V). (v;), are derivatives of u, v,

These ui, vi, F};, F}; terms can be expanded by half-range cosine expansion, the mth influence
function term of edge i from edge j can be expressed as:

(tm ) :nhl—l (1m); x aj +(u2m,,)fxb,‘;) (4a)
n=0
(V) K (v 1nn)! X @ + (v 2 )/ X ) (4b)
n=0
(FEm)i =S (5 Ton)! % a4+ (s2m)’ X b) (4c)
n=0
 nhj-l . _ ) A
(Fm)i=' S, (@ Lm)} X ah+ (1 2m)} X b) (4d)
n=0

Details of how to calculate (ulmn)i, (U2mn)is V1mn)is (V2mn )i, (81mn)is (52mm)s (¢ 1mn)},

(t2mn )}, can be found elsewhere (Deng and Cheng 1997).

In the domain of a half plane (Fig. 3), for an arbitrary boundary condition d(x) on line j, it can
be expanded by a half-range cosine expansion along line j. If mhj harmonics have been employed,
it can be expressed as

mhj—-1
d;6)="3 (dn); X cos(0mx) )
m=0
where o,=mn/l, 1, denotes the length of the line j, and (d,); represents the half-range cosine
coefficients of the function of d(x). Four possible types of the admissible boundary conditions are
defined as follows:
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1) FN v FN
bei =,(, bch = F, , bci = F; , by = u

For each boundary, the coefficients of any series of terms expanded by a half-range cosine
expansion must have the same value as the prescribed boundaries. According to Eqgs. (4), (5),
boundary conditions can be expressed as

(DMmn)}  (DMwn)) 7 (DM} (Cn)! (dm);
: : (DM ) : :
(DM (DM )Y (DM )iy (Cn )V (dm)u

For the boundary of {bc$}, {bc5}, the influence coefficients matrix and their corresponding
boundary conditions can be found as follow:

| @2 ) 7

OYm = 6ty G2 | 7 (o) 7
6T 62 (Em,

(FMn); = (7)

@t 1mn)! (2m)} | Undi = (@nm),

For brevity sake, Eq. (7) can be replaced as
[DM]x{C}=A{d}, [FM]x{C}={f} 8)

By eliminating the unknown term {C} of Eq. (8), the relation between displacements and forces
along the boundary can be expressed in a matrix form as

KN u FN
K| {v} =F, )

3. Fourier series expansion method for plate-bending problems

The governing equation of the plate-bending problem is a bi-harmonic equation. For a
homogeneous, isotropic, elastic plate on an elastic foundation, the equation is

Viw +kfw =q/D in Q (10a)

w=d(s), xn=ds) on 98
M,=ds(s), (Fy),=d4(s) on 0, (10b)
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whereis D the flexural rigidity of the plate, and g is the load applied to the plate. The reason for
introducing k, has been mentioned earlier. Solutions of Eq. (10a) include both the complementary
solution and the particular solution as

w,y)=we (x,y)+wr(x,y) (11)

where, superscripts ¢ and p represent the complementary solution and the particular solution
respectively.

3.1. Complementary solution

The homogeneous part of Eq. (10a) is described as:
Viwe + kfwe =0 (12)

Herein, we select the exponentially decaying part of general solution of Eq. (12) as the solution
function (Timoshenko and Woinowsky-Krieger 1959). If nhj series are used, the complementary
solution is the summation of all the series as

nhj-1
wex,y)= 2 (An cosPuy + By sin Buy) e #n cos Anx (13)

n=0

where A =nn/l;, . = \/(\M,i‘ +k}+A2)/2, B = \/(\M,:‘ + ki —A3)/2, An, B, are amplitude of
nth harmonic.

Again, we attempt to construct the influence coefficient matrix of each edge. As an example of
edge i, j, when displacement w® are held on edge j, the influence of rotation, bending moment,
twist moment, effective shear on edge i can be calculated from the coordinate transformation as

owe . owe
Xn=-— —g; sin y; + —g}y Cos %; (14a)
M,= %(Mx +M,) - %(Mx ~ M, ) cos 2%; — My, sin 2y; (14b)

o(Awe) | oM
(Fy)y=-D (aw ) + %

g
Definitions of M,, M,, M,,, Aw® can be found elsewhere (Timoshenko and Woinowsky-Krieger
1959). These we, x,, M,, (Fy), terms can be expanded by half-range cosine expansion, the mth
influence function term of edge i from edge j, can be expressed as:

(144d)

(W) = i S (W )AL + (W20m)iB) (15a)
Y =38 (S lu)jAd + (S2m){BI) (15b)

j=1 n=0
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) N nhj-1 L R
@1y =3 S (M Ln YA + (M 20 B1) (15¢)
(Fyom) :i'f (V1 )iAd + (V2 ) 1B) (15d)

Details of how to calculate (W1lm)i, (W2m)i, (S1ma)is (S2m)l, (M1mn)is (M2mn);, (V1m)},
(V2mn); can be found in Kang (1993).
Four possible admissible boundary conditions are defined as follows:

Xn M, M, Xn
{bcll)}z Wi» {bcg}: FVn s {bC§}= W | {bcﬁ}= FV (16)

n

Following the same procedure as we described above, the coefficients of any series term can be
expanded by a half-range cosine expansion to form the influence coefficient matrix and the
boundary vectors. For the boundary of {bc/} and {bcf}, the influence coefficients matrix and
corresponding boundary conditions can be found as follows:

mn 1= . s m v = c a
( )i (Wlmnli [W2m] T Awa} (17
o M1m]i [M2m] £ {Mn}; -
(FMym )} = Vim] V2] | {fm};= {(Fym}; )
The relation between the displacements and forces can be expressed in a matrix form
Km {Xn} Mn 18
kv |*\wl = FVn (18)
3.2. Particular solution
Consider a non-homogeneous governing Eq. (10a), i.e.,
Viwre +kjwr =q(x,y) (19)

For any function g(x, y) over the rectangular domain, its corresponding Fourier coefficients can be
calculated by the following equation:

qx,y)=Y Qi cos 4x cos By (20)
=0

where A, =ln/a, B, =nn/b, a, b are dimensions of the encompassed rectangular (Fig. 2). A two
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dimensional Fast Fourier Transform is used for calculating the Fourier coefficients Q.
The solution of Eq. (19) is assumed to be

wP =W8, |x — i + 2 Z W%, cos 4;x cos By (21)
=0 n=0
The Fourier coefficients of the contributions of the polynomial part, Eq. (21), are
(Wh)(s) = Wio (X D)m (222)
((XB)m ) (s) =— 4 sing,Why (X 3)m (22b)
(M2 )(s)==6D [(1+v) — (1-v) cos 2¢] W5y (X 2)m (22¢0)
((FV,Im)b(s) =—24D [14+(1~v) cos 2¢] sin W5 (X 1) (22d)
The Fourier coefficients of the contributions of the series part Eq. (21), are
. nhj=1nhj-1
WhE="3 Y W, CCy, (230)
=0 n=0
_ nmhj-1nhj-1
@Dmi="S "5 WL [ASC o0y sin 9P CS oy cOS0] (23b)
=0 n=0
ki1 nkj-1
((er,] )”‘ )»"! = i WIl’n [MSlnm -MD Inm COSZ(P:‘ _MTlnm Sin2§0i] (230)
=0 n=0
nhj-1 nhj-1
FIm)i=S S Wh [VSyy singi— VCyy, cosg] (23d)
=0 n=0

subscript p, s, refers to the polynomial and series parts respectively. How to calculate
XD, X3, X2m, XDm and MS)y, MD)y, MT s VChims (VS can be found
in Kang (1993).

Summing up the contributions from both the polynomial part and series parts, the particular
boundary condition is obtained as

@ @ o, + @,
W= oy by [ U= )@ + @) 9

The total solution is the sum of the complementary solution and the particular solution

{d'}={d"}+{d"} (25)
substituting {d} of Eq. (25) to Eq. (18). Relations of displacements and forces can be established as

Km Xn Km xn M, M7
X t = X p + - (26)
Ky w Ky w F} F{in

n
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Z

Fig. 4 Equilibrium of connection boundary

4. Connection of plates

The two plates can be connected by understanding the relationship between equilibrium and
compatibility of the common boundary. As Fig. 4 indicates, non co-planar plates I and II have the
common boundary line 3. The fact that the vector of Fourier coefficients defined on any boundary
are directional accounts shows why the negative direction on line 3 between plates I and II, has a
negative value from the cosine expansion in odd terms. The Fourier coefficient vectors that belong
to the common boundary are then transferred to the same direction defined herein. Next a
transformation of vector {A} is introduced as

{An} = x {An} 27)

From the common boundary compatibility, the relation between displacements u, v, w and rotation
x of plates I, II can be described as

6y =-{sY (28a)

{wsH = {w;} xcos 8+ {u,} xsin 6 (28b)

{us}! = {w,} xsin 0—{u,} xcos @ (28¢c)

o == (v (28d)

as {d;}, {d,} stands in-plane as plate-bending displacements vector substitute {d.}, {d,} to Eq. (25)
{dis )7 ={dgs Y X[t +{ds} X [1s] (292)

{da}" = {dfs Y X [t] +{d 3} X 1] (29b)

1 0 0 0
where [ty ] = s [tos]= ols (o] =[tes], [ts] == [t ]
0 cos@ 0 sin8
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According to the common boundary's equilibrium, the relation between forces F,, Fy, F, along
with bending moment M of plates I, II can be described as

(MY ={M4)" (30a)
{FL M =— {F1, YT x cos 0~ {Fy;} xsin 6 (30b)
{FysM == {F 1, YT xsin 0+ {Fy5}¥ x cos 0 (30¢)
{Fra} = {Fp5}" (30d)

By combining Eq. (18) and Eq. (30) the force along common boundary 3 of plate I can be
expressed as

(M4} = [Kmay ) {dg ¥ +[Kmap)' {dy, }' +[Km sl {d5s} +{M5Y (31a)
{FiY =[Kval'{d: Y + [Kvyl {dp, } + [Kva] {dgs M +{F7,} (31b)
{FyaY =[Kna] {d Y +[Knap) {d5} + [Kny) {d5; Y (31¢)
{Frs} =[KeaiY {d51 M + [Kto]' {d5> } + [Kez]' {d5 Y (31d)

the force along common boundary 3 of plate II can be expressed as

{M5Y" = [Kma)" {dgs Y + [Kmy,)" {dgs }' + [Kmss} {dys YT + {M5}" (32a)
{Fis Y = [Kva)" {dgs }" + [Kvaal"{dga}" + [Kvss) {dys }' + {Fys " (32b)
{FyaY" = [Kna)" {dgs }' + [Kns )" {ds }7 + [Knys)"{dgs }" (32¢)
{Frs}" = [Kta)" {dss ¥ + [Ktsq]" {d5a }7 + [Ktss) {ds } (32d)

By substituting Egs. (31), (32) into Eq. (30), the unknown displacement Fourier coefficient
vectors of the common boundary can be written as

Knp Kums Ry
K Kvs {dt3}1 RV
e N I (33)
K Kus || {da} | ™ | Ry
Ktp Kis R;
~ 4 ~ /4
where K] = (Kml = [K myy| X (Knw]==[Kmyy| X[t

~ b3 ~ I )
[Kip]=[Kvas] + [K V33j| X [tpp] X cos 8+ [K "33j| X [tps] X 8inO

~ /4 ~ n
[Kis]= [EV33] X [tos] X cos B8+ [Enﬁ} X [tss] X sin@

~ I ) ~ i
[K,,p]=[Kv33} X[tpp]Xsme—-[Kn33] X [t ] X cOSO
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[Kns] = [Knss] + [Ev33]" X [tps] X sin §— [I?,,E}" X [t ] X cOSO
Kol =K 1] Xlto) K] =[Rel = [K )] ]

Ry} == (Ko x ({5} = {d, ) = [Km gl x ({d5z} = (g ¥') + [Km sl x {dgs Y
= (K] Tor gy + [Rmss] (3" = 1231y + [Komas] (i) — (e
(MEY + {5y
Ry} == [Kval x (s Y ~{dg )= [Kviol X ({dho Y = {2 }) + [Kv ool x {5}

. [[1? va] Bl Y = [Kval] (g} ~ (g3~ [K v (Gdis}" — fa }”)]

X cos 6 — ([1? n 34}”{644}” + [1? n 35]” {d,s}")x sin @— {FE, Y + {F £} x cos 6
{Ry}=~[Kny]{d;}} - [Kn sl {d,,}

' [[E va] Tl + [Kval] (gl = 4z + [Rvss] (Gdgs )7 — e )j

X sin — ([1? n33]" [t 1{d2s } - [I? n 34}”{44}” - [1? n35}11{d55}”] X cos 8

1
+ {17{}3} X sin

(10

(10,1

D.10) Z

==z

Il

z] E=10000
1=0.3

]

—_—
(10,0,5)
=0y

=0 y=p (10,1657~

Fig. 5 Example of two orthogonal plane under a surface uniform load
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Fig. 7 Comparison of displacement and rotation along x=10, plate II

~

R == (KT (oY ~ Kol (! = [K 1] T} + K 1! 1o}
+ [K 15517 {d, 51"

where | K | and |K | denote the row and column transformation of [K] respectively.
p

Eq. (33) has constructed a system of simultaneous equations. It can be easily solved by any
linear equation solver to obtain {d2,}, {d;}'. Furthermore, {d;}" and {d,;}" can be obtained
by substituting {d2,}’ and {d,} into Eq. (28) as well. Unknown coefficients of amplitude {a,},

{b.}, {An}, and {Bn}, of each edge can be easily solved from Eq. (6), respectively. Therefore,
displacements u, v, w, x and forces M, F,, F;, Fron any point of the domain can be easily calculated.
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Fig. 9 Comparison of displacement and rotation along x=5, plate II

5. Numerical example

The proposed method's accuracy is demonstrated by examining a problem which involves two
orthogonal plates with a simple geometry under a concentrated load (as illustrated in Fig. 5). For
a rectangular plate having a size of 10 10 and a thickness of 0.1 unit, the complicated boundary
involving simple and fixed supports is assumed. The boundary conditions of both in-plane stress
and plate-bending of plate I are

{ds ¥ ={bc§ bc§ bcs besY, {dv} =[bc] bch bch bk )

and plate II are
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Fig. 10 Comparison of moment and shear force along x=5, plate 11
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Fig. 11 Comparison of moment and shear force along x=0, plate II

Table 1 Comparison of computational performance

Degrees of freedom CPU time (sec)
ANSYS 800 elements 4680 46
ANSYS 3200 elements 18960 256
ANSYS 20000 elements 119400 10649
Fourier series 33 harmonic 528 62
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{d: Y = {bc3 bes by besl, {dp} =[beh beh bel beh )

The above problem is analyzed herein by the approach with nine harmonics and ANSYS with 800
shell elements. Two results are compared. According to Fig. 6, the deformed shape is attributed to
the thirty-three harmonics. In comparison of the two methods for displacement; rotation, normal
force and bending moment of plate Il are shown as Figs. 7-14. According to those figures, the
results from both methods are nearly close to either displacements or forces on the interior plane
or boundary line, except for the shear force along the connection boundary. This difference may
be attributed to the twisting moments, as confirmed by a FEM mesh refinement. Herein, three
cases of FEM mesh, ie., 800, 3200, and 20000 elements, are selected to evaluate these
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convergence characteristics. Fig. 15 compares the shear force results of both methods. Table 1
summarizes their computational performance. According to Fig. 15, FEM converges slowly in
shear force computation. For the case of 20000 elements, 119400 degree of freedoms and 10649
sec CPU times have not converged to the same value as proposed method.

6. Conclusions

This work presents a simple and straightforward structural analysis method, and then applies it
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to the static problem of plated structures, using the Fourier series expansion developed herein.
Also the solution function of the governing equations with constant coefficients for in-plane and
plate-bending problems is analytically derived. In addition, a non-co-planar connection of the
plates is proposed for the structures with a complicated cross-section in a real spatial system. The
efficient Fast Fourier Transform is also used to calculate discretely prescribed boundary conditions.
It gives a lot of efficiency in the problem. In addition, lesser degrees of freedom are required than
most available numerical methods. From the numerical example presented herein, we can
conclude the following:
1. A much smaller amount of memory and a more minimal computational effort are required
since no numerical integration is involved and lesser degrees of freedom are used.
2. Only the boundary of elements is required as a geometry description, thus indicating that the
proposed approach can save a significant amount of time in problem-modeling.
3. Errors arise only along the boundary, since an approximation is made on the boundaries. In a
domain's interior, the solution at each point can be obtained with a high degree of accuracy.
4. Owing to the “twisting moments”, the shear force along the connection boundary of two
plates is over-estimated and then converges slowly for FEM. This allows us to verify the
effectiveness of the proposed method.
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