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Out of plane vibrations of thin-walled curved
beams considering shear flexibility

V.H. Cortinezt and M.T. Piovant

Mechanical Systems Analysis Group, Universidad Tecnoldgica Nacional, 11 de Abril 461,
8000, Bahia Blanca, Argentina

R.E. Rossitt

Department of Engineering, Universidad Nacional del Sur, 8000, Bahia Blanca, Argentina

Abstract. In this paper a simple finite element is proposed for analyzing out of plane vibration of
thin walled curved beams, with both open and closed sections, considering shear flexibility. The
present element is obtained from a variational formulation governing the dynamics of a three-
dimensional elastic body in which the stress tensor as well as the displacements are variationally
independent. The element has two nodes with four degrees of freedom in each. Numerical examples for
the first six frequencies are performed in order to assess the accuracy of the finite element formulation
and to show the influence of the shear flexibility on the dynamics of the member.
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1. Introduction

Thin walled curved beams are frequently used in several fields of engineering, in particular in
highway bridge structures. Consequently, extensive research has been performed concerning the
behavior of such members.

Much of the available publications dealing with the static and dynamic behavior of horizontally
curved beams are summarized in survey articles (Mc Manus et al. 1969, Task Committee 1978,
Chidamparam and Leissa 1993). Some of the relevant papers considering the out of plane
dynamics of thin walled curved beams are cited below.

Culver (1967), Christiano and Culver (1969), and Shore and Chadhuri (1972) have determined
the free vibration frequencies of horizontally curved beams by means of analytical solutions of the
equations of motion. The dynamic response of a single span curved beam to moving loads was
considered by Tan and Shore (1968). Chaudhuri and Shore (1977) and Yoo and Feherenbach
(1981) analyzed the free vibration of horizontally curved beams using the finite element method.
In this last paper the case of shear center and centroid not coincident was considered.
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The finite difference method for determining natural frequencies of box girder bridges was used
by Heins and Sahin (1979). Recently Kang et al. (1996) proposed the differential quadrature
method for determining natural frequencies of circularly curved thin-walled beams.

Free vibrations of continuously horizontally curved beams were studied by Snyder and Wilson
(1992) by means of a closed form solution of the equations of motion.

The previously mentioned works have utilized the theoretical model developed by Vlasov
(1961). This theory does not consider the influence of the shear deformability. However this effect
is of importance when higher modes have to be analyzed or even in lower modes if the beam is
deep.

For the case of straight thin walled beams, few papers are available dealing with the shear
effect (Capuani, Savoia and Laudiero 1992, Cortinez and Rossi 1996, 1998). Even fewer works
consider the out of plane vibration of shear deformable thin walled curved beams. Kawakami et al.
(1995) studied the in plane and out of plane vibration of curved thin walled beams considering
shear effects associated to the lateral motion although neglecting the warping shear deformability.
Inversely, Fu and Hsu (1995) have analyzed the statics of thin walled beams taking into account
the warping shear effect but not the bending shear deformability.

According to the authors' knowledge the only one study dealing with vibrations of curved thin
walled beams considering the shear flexibility in a full form is that of Gendy and Saleeb (1994).
However in their excellent paper the main objective was the development of a mixed finite
element but no parametric analyses were done.

In this paper a curvilinear finite element for analyzing the out of plane dynamics of shear
deformable thin walled curved beams, with both open and closed sections, is developed. This
clement may be considered a generalization of the straight beam element presented in an earlier
paper by the authors (Cortinez and Rossi 1998). A Vlasov finite element is obtained as a
particular case of the present one.

Using the current model the first six frequencies of vibration of curved beams with several
boundary conditions are calculated and compared with the corresponding results given by the
Vlasov theory in order to show the influence of the shear deformability on the dynamics of the
beam.

2. Theory
2.1. Variational formulation

The present theoretical development closely follows to that performed by the authors in (Cortinez
and Rossi 1998).

The dynamic behavior of a vibrating elastic body with imposed displacements on Su may be
described by means of the variational equations
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with i, j=x, y, z, and

- 1
Ec(0;)= Eﬂ (0:)*+ el 0;; G;; (2a-g)

where y and z are the principal axes, y and z are parallel to the first ones but having their origin at
the shear center SC, x is tangent to the curved axes of the member as shown in Fig. 1, #: temporal
coordinate, E.: volumetric complementary energy, &;: strain components in curvilinear coordinates,

o, stress components, p: material density, E: Young modulus, G: transverse elasticity modulus,
u: Poisson ratio and R: curvature radius.

The Eq. (1a) corresponds to the D'Alembert principle of virtual works and Eq. (1b) constitutes
the Hooke's law expressed in a variational form. In Eq. (1) o; and u, are variationally independent.
The displacement field is subjected to the restraint

Su; =0, (u;=u;) on Su (3)
2.2. Thin walled curved beam model

In order to obtain a one dimensional dynamical theory for the member shown in Fig. 1, it is
necessary to propose certain distributions of displacements and stresses over the cross section of
the beam. To do this, the following assumptions are made: (a) the cross section is rigid in its own
plane; (b) the stress tensor results of the composition of two states: the first one is the Saint
Venant pure torsion state and the second one is a membranal state; (c) the variation of curvature
through the thickness is neglected.

From the first assumption, it is possible to write the displacement field for the out of plane

e =L/R
Fig. 1 Thin-walled curved beam
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motjon as

ux=—ez<x,t)(y—yo)+co[e<x,t)+"’(" ’)j+[§(y 2)- w(s)](aq’(" — "Z(;”)) (4a)

uy =vs(x,t)—dx, )z, u: =y P(x, 1) (4b-c)

where v, is the transverse displacement of the shear center, ¢ is the torsion rotation, 6, is the
flexural rotation around the centroidal axis z, @(s) is the sectorial coordinate defined according to
Vlasov, s is the curvilinear coordinate shown in Fig. 2, 6 is a measure of warping along the beam ,
& is the Saint Venant warping function.

Expressions (4) coincide with those of Vlasov (Yang and Kuo 1986) when there are verified
the following internal restraints

dvg ¢
), = ——, 6=—"r 5
0 ox ox ©)

However these restraints are not considered in the present paper. Accordingly, as shown by Cortinez
and Rossi (1998), the components of shearing strain in the middle-line are not neglected here.

On the other hand, from assumptions (b) and (c) one may express, the non vanishing
components of the stress tensor for thin walled open section beams, according to Vlasov, as

O = MZ(;:’ ) y + B(gv’vt) o(s) (6a)
xs=—TW—é):V’—Qlw(s)——Qy(;:’t) ﬂa(s)—Z————TSV(;’t) n (6b)

with
Tap(s) =] @(s)ds; Ae(s)=] Y(s)ds %

where n is the curvilinear coordinate shown in Fig. 2, ¥(s) corresponds to the middle line of the
cross section, M, is the bending moment about z axis, B is the bimoment, T is the flexural
torsional torque, Q, is the shear force pointing to y direction, Ty, is the Saint Venant torsion
torque, I, is the inertia moment respect to z, Cy is the warping constant and J is the torsion
constant.

It must be noted that these expressions coincide with those of a straight beam according to
assumption (c). The present variational formulation requires that the given stress resultants are
considered variationally independent functions.

Substitution of expressions (4) and (6) in (1) allows, after integrating respect to y and z, to
obtain new variational equations in a one dimensional form, whose unknowns are given by 6., 6,
vs, &, M, B, Q,, Ty, and T,.

2.3. One dimensional variational equation

Replacing (4) and (6) in (1b), as explained above, integrating respect to y and z, and neglecting
terms of higher order according to assumption (c), one arrives to

M, =—EL (aez —%J, B =EC, (89 + L 06 j

ox ox R ox
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SC: Shear Center. O Centroid
SN curvilinear coordinates

Fig. 2 General cross sectional geometry
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(8a-e)

(9a-d)

Here e and A are the thickness and the area of the section, respectively. It must be noted that £, is
a correction factor due to flexure shear and ky, is a correction factor due to warping shear (Cortinez
and Rossi 1998). These coefficients are inherent of the present formulation.

On the other hand, substituting (4) and (6) in (1a) the following variational equation is obtained

where

L
LK=J'0 {—MJ[-—?%——%)+B5(%+% %}Qﬁ(%—@;)

(10)
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99 _ 9 , 6
+TW6(ax 9]+TSV5(ax + R ] dx (11a)
L 926, 6 1 6
Ly _‘[Op{lz = 86, + Cy (aﬂ t = 55 JSG
92 92
A (5 ~200) B+ 2 (- Az +150) 69| dv (11b)

where y,, z, are the centroidal coordinates, I; is the polar moment respect to the shear center, Ly
and L,, constitute the virtual work done by the elastic and inertial forces respectively.

In deriving the above equations it has been supposed, according to assumption (c), that 1+¢/R
=1, where c is a characteristic length of the cross section.

The curvature radius arising in Eqs. (10) and (11) corresponds to the centroidal line. However
in the framework of assumption (c), and following the Vlasov reasoning, it is also possible to
refer the radius R to the line of shear centers with an insignificant error. On the other hand in
deriving (10) and (11b) it has been supposed that y,=0, but in view of the assumption (c),
according to Vlasov (1961) and Yoo and Feherenbach (1981), these equations are applicable to
beams with asymmetric sections while the curvature is not large. The present formulation was
developed for open cross sections. However, it is also valid for closed sections provided the
proper choice of the cross sectional properties (Krenk and Gunneskov 1981). On the other hand it
is applicable to members with variable cross section and radius of curvature.

3. Finite element formulation

- To determine natural frequencies of free vibrations, a finite element based on the present
theoretical model is developed. A uniform two-node element, of length I, with four degrees of
freedom per node, corresponding to the generalized displacements, is considered. Accordingly the
nodal displacement vector may be written as

p =[v®, 6, ¢, 60, v, 69, ¢, 6] (12)
The displacement field in the element is assumed to be given by
Xibs

Vs =bg+bX +b, 22+ b3 %3, 6.=b,+ +2b,% +3b,%7,

Xds

¢=d0+d1f +d2f2+d3f3, 9:d1+ +2d2f +3d3f2 (13)

where the parameters b,'s and d/'s are indeterminate functions of the time coordinate, whereas

12EI, 12EC
x= zi n=——=—, fp=— (14)
e GAk,12 Glokyl?

The present interpolation yields
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dvg X1b3 e L) X243
— -0, =— , —+ —-0=-=— 15
ox 2 ox 2 (15
It may be seen that when y; (i=1, 2) is negligible, in fact, when the beam is very slender,
expressions (15) coincide with those of Vlasov given by (5). Therefore the Vlasov model is
obtained as a limiting case, thus avoiding the shear-locking phenomenon.
The coefficients b,'s and d's are expressed as functions of the nodal displacements, obtaining

vs =Np, 6. =N,p, ¢=N;p, 0=N,p (16)

where N, are matrices of shape functions of 1x 8 order.
Substituting expressions (16) in Eq. (10) and assembling in the usual way, one arrives to

d*pP
dt?

where K and M are the stiffness and mass matrices respectively and P is the global vector of
displacements. Gaussian quadrature formulae have been used for performing the required
integrations. Details are not given because they are well known.

A Vlasov element, such as that of El-Amin and Brotton (1976), is a particular case of the
present one, when very large values for the shear rigidities are taken (k,=k,=10") in the stiffness
matrix and I,=C,=0 in the mass matrix. If it is only neglected the shear effect associated to
flexure (k,=10"") the Fu and Hsu (1995) element is obtained.

On the other hand the straight thin walled beam element developed by Cortinez and Rossi
(1998) is obtained from the present one for very large values of the radius R (i.e., R=10").

It is assumed for the free vibration problem that

P=Peix (18)

where the natural frequency (in Hz) is obtained from f=€/2x.
Substitution of expression (18) in (17) leads to the well known eigenvalue problem

K - PM]P* =0 (19)

Natural frequencies are determined from the above equation by using an inverse iteration method.

M2 1kP=0 17)

4. Numerical examples and discussion

In order to show the influence of the shear flexibility on the dynamics of the beam and the
performance of the developed finite element, the first six natural frequencies for different
boundary conditions and several cross sectional shapes, whose dimensions are shown in Fig. 3,
are obtained.

The considered material properties are: elastic modulus E=2.1x10" N/em’, elastic shear
modulus G=E/2.6, density p=7.83x 10 kg/cm’.

Table 1 depicts the first six frequency values for a simply supported I-beam of length L=1200
cm and curvature radius R=2400 cm by employing 5, 10, 20, 30 and 40 finite elements. The
results are compared with exact values determined by Cortinez, Piovan and Gutiérrez (1997). The
convergence is evident, even the five elements solution gives an acceptable accuracy except for
the first frequency. The forty-element solution may be considered as exact. From the practical
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Fig. 3 Analyzed cross sectional shapes

Table 1 Convergence of natural frequencies of simply supported thin walled curved

beams
Present solutions Analitical solution
Mode Number of elements (Cortinez, Piovan
5 10 20 30 40 Gutiérrez 1997)
First 4.86 4.68 4.60 458 457 4.57
Second 30.57 30.31 2979 - 29.74 29.73 29.71
Third 34.78 34.64 34.58 34.57 34.56 34.56
Fourth 65.08 64.58 64.44 64.41 64.40 64.39
Fifth 72.16 70.63 70.22 70.14 70.12 70.09
Sixth 122.76 119.26 118.41 118.25 118.20 118.13

viewpoint the use of ten elements yields very good results. However, in order to get very accurate
values the calculations indicated below have been determined by taking forty elements.

The effect of shear flexibility on natural frequencies can be evaluated by means of a
comparison among the results of the present model against those obtained by using the Vlasov
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Table 2 Natural frequencies (Hz) of thin walled curved beams with bisymmetrical I-section (Case A of

Fig. 3)

B.C. L [cm] Model f1 2 3 f4 5 fo
S-S 1200 Ia 236 2271 62.10 63.26 82.92 116.83
Ib 2.36 22.65 62.02 63.23 82.83 116.97
Ila 2.36 23.18 63.39 66.14 89.32 125.03
Ib 2.36 23.17 63.33 66.08 89.27 12491
600 Ia 22.66 82.89 116.70 193.07 253.05 340.88
Ib 22.65 82.83 116.97 193.00 254.52 340.51
Ila 23.18 89.32 125.03 250.21 287.80 512.75
Ib 23.17 89.27 124.91 250.18 287.48 512.17
400 Ia 63.17 129.83 252.97 340.64 508.77 576.05
Ib 63.23 129.79 254.52 340.51 514.43 575.52
IIa 66.14 152.08 287.80 543.71 648.95 1153.08
IIb 66.08 152.04 287.48 543.69 648.22 1151.77
300 Ia 116.67 193.01 418.35 496.81 791.15 818.56
Ib - 116.97 193.00 422.51 496.68 795.68 826.20
IIa 125.03 250.21 512.74 960.33 1153.07 2047.00
IIb 124.91 250.18 512.17 960.32 1151.77 2046.35
C-C 1200 Ia 24.26 51.64 64.00 92.96 93.55 146.31
Ila 25.87 55.36 66.64 100.83 109.22 163.85
600 Ia 79.30 107.27 175.06 225.33 314.02 364.47
Ila 85.08 142.29 203.50 377.90 394.15 649.71
400 Ia 149.52 181.25 340.56 375.00 578.04 605.61
Ila 170.54 307.91 452.33 843.05 883.61 1459.12
300 Ia 236.42 259.92 509.04 542.01 813.58 893.03
IIa 294.88 544.07 801.64 1496.43 1569.03 2592.27
S-C 1200 Ia 11.76 38.04 62.91 78.72 87.89 132.10
Ila 12.16 40.15 64.70 83.86 98.17 144.11
600 Ia 51.60 93.52 146.75 209.83 284.21 352.81
ITa 55.36 109.22 163.85 308.96 339.83 579.12
400 Ia 105.95 154.35 299.12 358.32 549.07 586.38
Ila 117.09 217.33 366.38 684.36 762.15 1301.54
300 Ia 175.01 225.24 474.92 512.86 805.88 853.07
Ila 203.49 377.90 649.71 1213.17 1353.25 2312.44
C-F 1200 Ia 1.44 853 21.56 49.56 66.55 92.72
Ila 1.45 8.69 22.23 52.32 68.63 99 .49
600 Ia 11.10 24.79 73.29 117.68 181.30 248.52
IIa 11.38 25.75 78.54 144.83 203.68 378.93
400 Ia 27.28 46.16 148.52 202.28 363.42 426.37
Ila 28.10 50.23 166.92 305.61 453.59 843.79
300 Ia 47.50 74.62 242.30 295.36 572.11 610.36
IIa 49.27 86.39 291.27 537.20 803.39 1497.25

I: Present model, II: Vlasov model, a: Finite element approach, b: Analytical approach (Cortinez, Piovan, Gutierrez
1997), R=1200 cm, B.C.: Boundary conditions, C: Clamped (vs=8.=¢=6=0), S: Simply supported (vs=M,=¢=B=0);
F: Free (M,=Q,=B=Tg+Ty=0)

theory, which neglects this effect.
The results determined for this study are given in Tables 2-5 for the sectional shapes A), B), C)
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Table 3 Natural frequencies (Hz) of thin walled curved beams with monosymmetrical U-section (Case B

of Fig. 3)

B.C. L [cm] Model f1 2 3 4 s f6
S-S 1200 Ia 1.92 13.84 35.74 65.24 75.31 100.54
Ib 1.92 13.81 35.69 65.16 75.29 100.34
Ila 1.92 14.11 37.53 71.21 77.71 114.79
Ib 1.92 14.11 37.53 71.21 77.71 114.79
600 Ia 13.82 65.18 137.53 139.84 226.87 319.70
Ib 13.81 65.16 137.51 139.73 226.45 318.59
IIa 14.11 71.21 153.95 168.18 304.23 470.49
b 14.11 71.21 153.95 168.18 304.23 470.49
400 Ia 35.70 139.78 229.32 27243 413.62 556.30
Ib 35.69 139.73 229.27 27212 412.55 553.69
ITa 3753 168.18 285.29 386.87 693.17 1000.93
Ib 37.53 168.18 285.28 386.86 693.16 1000.93
300 Ia 65.16 226.55 338.13 413.15 602.34 789.99
Ib 65.16 226.45 338.03 412.55 600.48 785.81
Ila 71.21 304.23 470.49 693.17 1237.76 1744.06
Ib 71.21 304.23 470.49 693.16 1237.75 1744.06
C-C 1200 Ia 16.28 28.27 50.68 80.42 87.09 115.47
ITa 16.92 30.22 56.06 93.58 96.28 141.65
600 Ia 42.00 94.24 166.41 189.99 248.58 336.81
ITa 46.10 117.89 232.34 269.39 388.04 582.30
400 Ia 79.59 178.69 294.35 323.65 431.03 568.55
JIE] 98.28 268.92 529.75 568.56 880.23 1317.68
300 Ia 123.83 267.75 424.96 464.90 614.66 798.30
IIa 174.20 481.29 946.64 989.12 1569.46 2347.32
S-C 1200 Ia 8.58 21.98 43.47 72.96 80.50 108.14
Ila 8.84 22.96 46.89 81.80 85.84 127.91
600 Ia 28.25 80.33 153.56 162.19 238.31 327.76
IIa 30.22 93.58 198.16 204.40 345.00 529.51
400 Ia 57.34 160.35 269.08 289.40 423.12 561.21
Ila 65.84 215.95 408.31 456.22 784.01 1199.57
300 Ia 94.21 248.18 388.54 428.45 609.28 793.05
ITa 117.89 388.04 697.95 815.56 1398.79 2137.74
C-F 1200 Ia 2.06 6.22 14.76 28.43 51.74 82.64
JIE] 2.09 6.34 15.16 29.71 56.11 92.76
600 Ia 11.39 22.80 43.46 100.04 177.44 200.91
Ila 11.56 24.36 47.40 117.98 233.38 267.80
400 Ia 19.35 63.10 84.14 196.25 325.95 341.99
ITa 19.87 71.21 100.27 269.42 530.94 562.53
300 Ia 30.44 114.34 132.81 301.67 475.36 492.55
JIE] 31.88 138.11 174.91 482.03 947.81 976.82

I: Present model, II: Vlasov model, a: Finite element approach, b: Analytical approach (Cortinez, Piovan, Gutiérrez
1997), R=1200 cm, B.C.: Boundary conditions, C: Clamped (vs=6,=¢=6=0), S: Simply supported (v;=M,=¢=B=0);
F: Free (M,=0,=B=Ts+Ty=0)

and D) of the Fig. 3, respectively. In each table the first six natural frequencies are obtained for a
curvature radius of 1200 cm and different lengths. The boundary conditions considered are simply
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Table 4 Natural frequencies (Hz) of thin walled curved beams with monosymmetrical I-section (Case C

of Fig. 3)
B.C. L [cm]  Model f1 2 £3 f4 £5 f6
S-S 1200 Ia 2.15 20.11 28.72 37.89 56.96 61.03
Ib 2.16 20.13 28.73 37.90 56.98 61.04
Ila 215 20.28 28.79 38.21 58.06 62.37
Ib 2.16 20.31 28.80 38.24 58.11 62.39
600 Ia 20.10 37.87 93.44 110.10 184.75 252.32
Ib 20.13 37.90 93.48 110.12 184.73 252.32
IIa 20.28 38.21 96.39 114.90 198.03 276.08
Ib 20.31 38.24 96.45 114.92 198.07 276.11
400 Ia 56.93 61.02 184.72 252.28 369.89 534.89
Ib 56.98 61.04 184.73 252.32 369.72 534.83
IIa 58.06 62.37 198.03 276.08 42741 639.96
Ib 58.11 62.39 198.07 276.11 427.46 639.98
300 Ia 93.43 110.09 302.83 433.22 593.62 870.84
Ib 93.47 110.12 302.80 433.31 593.16 870.65
ITa 96.39 114.90 340.72 502.45 748.78 1149.67
b 96.44 114.92 340.77 502.47 748.82 1149.69
CC 1200 Ia 14.01 31.00 40.48 45.73 73.29 84.05
Ila 14.18 31.11 41.55 4647 75.84 87.80
600 Ia 55.10 64.87 128.48 173.87 229.83 328.27
Ha 57.29 67.26 139.02 191.30 261.91 384.05
400 Ia 104.68 143.87 252.60 365.75 443.94 653.61
IIa 113.43 157.51 297.84 443.71 574.16 879.48
300 Ia 169.09 244.90 399.84 589.71 683.89 997.73
Ila 193.68 285.46 520.81 797.51 1011.58 1573.31
S-C 1200 Ia 7.60 28.40 31.30 41.38 66.59 70.64
IIa 7.65 28.66 31.62 41.89 68.19 73.12
600 Ia 40.48 45.71 110.34 141.42 207.10 290.23
Ila 41.55 46.47 116.38 151.29 228.63 328.15
400 Ia 80.34 97.83 218.37 309.18 407.56 595.08
IIa 84.04 103.39 244.93 355.62 497.83 755.27
300 Ia 128.46 173.84 352.24 513.35 640.37 943.17
Ila 139.02 191.30 425.53 642.20 874.98 1353.50
C-F 1200 Ia 1.07 6.32 16.83 30.81 42.73 46.48
Ia 1.08 6.35 16.94 30.95 43.51 47.15
600 Ia 6.75 18.37 57.64 64.90 132.15 177.81
IIa 6.81 18.46 59.15 67.03 140.48 192.52
400 Ia 16.35 32.89 108.44 144.52 263.24 378.01
Ila 16.57 33.21 114.86 155.92 299.53 444.92
300 Ia 29.23 52.34 175.76 247.74 423.73 617.56
IIa 29.81 53.31 194.18 281.85 522.65 798.83

I: Present model, II: Vlasov model, a: Finite element approach, b: Analytical approach (Cortinez, Piovan, Gutiérrez
1997), R=1200 cm, B.C.: Boundary conditions, C: Clamped (vs=0.=¢=6=0), S: Simply supported (vs=M,=¢=B=0),
F: Free (M,=0,=B=T5,+T=0)

supported-simply supported, clamped-clamped, simply supported-clamped and clamped-free. For
the case of simply supported ends, analytical results (Cortinez, Piovan and Gutiérrez 1997) are
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Table 5 Natural frequencies (Hz) of thin walled curved beams with rectangular section (Case D of Fig. 3)

B.C. L [em]  Model f1 2 3 4 £5 f6
S-S 1200 Ia 4.40 19.44 4349 75.24 9096  113.24
Ib 4.40 19.43 43.48 75.19 9095  113.09

la 442 19.85 45.61 81.68 91.14  128.06

b 4.42 19.85 45.62 81.69 91.14 12807

600 Ia 19.44 7520 15587  175.87 25124  349.61

b 19.44 7519 15577  175.86 25083  349.60

IIa 19.85 81.68 17627 18474 32900  350.64

IIb 19.85 8169 17627 18476 32904  350.64

400 Ia 4349 15582 26237 30175 45997 52598

Ib 4348 15577 26267 30142 45884 52597

Tla 4561 18474 26305 41657 52819 74095

Ib 4562 18476 26305  416.62 528.18  741.08

300 Ia 7520 25093 34960 45948 67421  705.11

Ib 7519 25083  359.60  458.84 67231 705.10

Ila 81.68 32900  350.64  709.60 740.94  1088.42

1ib 81.69 32904 35064 70958 741.08  1088.32

c-C 1200 Ia 11.01 29.89 56.84 90.28 91.78 12891
Ia 11.29 31.64 62.50 92.50 103.69  155.20

600 Ia 4194 10500  178.60  185.95 27705 35531

Ila 4631 12823  181.81  251.86 361.86  416.68

400 Ia 8553 19923  268.62 33566 48310  537.78

Tla 10471 27580 28919  554.05 56727  841.60

300 Ia 13558  299.05 36050  489.96 691.55 72435

Ila 18646 37379 51441 75687  1007.65  1162.14

S-C 1200 Ia 7.41 24.50 50.09 82.77 9137  121.14
Tia 751 25.44 53.74 91.81 9238  141.31

600 Ia 29.89 9022 17117 17735 26455  352.40

Ila 31.64 10369 17900 21701 35615 37157

400 Ia 6365 17850 26548  319.38 47193  531.81

Ila 71.88 23410 26928  489.02 54084  821.08

300 Ia 10498 27663 35500  475.23 683.15  714.63

Tla 12823 36182 41668 73243 869.53  1123.84

C-F 11200 Ia 1.88 10.24 29.34 48.79 59.15 92.50
Ila 1.88 10.39 30.55 49.40 6346  103.61

600 Ia 731 41.70 89.19  111.50 19615 26425

Tla 7.40 44.52 90.82  128.92 25127  267.50

400 Ia 16.19 8817 13373  216.80 36391  397.96

Ila 1659 10111 13675  289.30 40387  567.24

300 Ia 2823 14387 17843 33446 53196  541.87

Ila 2945 17263 19156 51293 54645  921.39

I: Present model, II: Vlasov model, a: Finite element approach, b: Analytical approach (Cortinez, Piovan, Gutiérrez
1997), R=1200 cm, B.C.: Boundary conditions, C: Clamped (vs=6,=¢=6=0), S: Slmply supported (vs=M,=¢=B=0),
F: Free (M= Qy—B T+ Ty=0)

also included, which are in very good agreement with the finite element predictions.
It may be noted, from these Tables, that for slender beams (L=1200 cm) the results obtained by
the present theory do not differ appreciably from those determined by the Vlasov model. However,
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the shear effect becomes important for shorter lengths and higher modes. As may be seen the
general effect of the shear flexibility is to decrease the value of the frequency with respect to that
obtained by the Vlasov model.

It is interesting to observe, in the case of the rectangular cross section, that for some higher
frequencies the shear effect is not as important as in open sections. The explanation of this could
be found in the fact that these situations correspond to torsional dominant modes, in which the
warping effect is negligible in comparison with the pure torsion (Saint Venant) behavior for
closed sections.

In Figs. (4a-d) the information of Tables 2-5 corresponding to the first four modes of the
simply-supported case is displayed in terms of the percentage of difference of the frequencies with
and without consideration of the shear effect: 100-(fs - fv)/fv, where fs and fv are the frequencies
obtained with the present model and the Vlasov theory, respectively.

The results given in these tables show clearly that, in general, the shear effect increases with the
reduction of length and the rice of the mode, excepting for some higher frequencies corresponding
to the closed section.

Table 6 shows the variation of natural frequencies with the curvature radius for simply
supported beams with a length of 400 cm, considering and neglecting shear effect. All of the
sectional shapes shown in Fig. 3 were considered.

It is important to point out that the values corresponding to the greatest curvature radius (R=1X
10" cm) coincide with those determined with the straight beam element developed earlier by the
authors (Cortinez and Rossi 1998). As may be seen in Table 6 the increase (or decrease) of the
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Fig. 4 Percentage of difference of the frequencies for simply supported beams, with and without allowance
for shear effect: g%]=100(fs-fv)/fv (A.B.C. and D are the sections of Fig. 3, R=1200 cm)
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frequencies with respect to those corresponding to the straight beam is more noticeable for the
lower modes but it depends on the number of frequency and the cross section taken into account.
The present model and the Vlasov theory yield a similar variation of the frequencies with the
curvature for the lower modes although some discrepancies arise for higher frequencies. In fact for
the case of the U-section, when R=763.94 cm, the present theory indicates, for the fourth
frequency an increase of 13.57% with respect to the straight beam, while the Vlasov model
predicts a decrease of 1.31%. This suggests the inadequacy of Vlasov theory in the range of high
frequencies, where the shear effect is crucial.

5. Conclusions

A finite element for analyzing out of plane vibrations of shear deformable thin walled curved
beams was developed. This element is applicable to open as well as closed sections provided the
adequate cross sectional properties are selected.

Although cross sections with a single axis of symmetry were assumed, this procedure is
approximately valid even for asymmetric sections when the curvature is not very large, according
to Vlasov (1961) and Yoo and Feherenbach (1981). However a more deep analysis of vibrations
of beams with asymmetric sections must consider the coupled motion between out of plane and in
plane displacements. The convergence analysis and the comparisons with exact results show the
very good performance of the present element. It may be concluded from the present numerical
studies that the shear effect is noticeable for frequencies of vibration associated with higher modes
or even with lower modes when the curved beam is deep. It is interesting to remark that the
elements developed by Fu and Hsu (1995) and El-Amin and Brotton (1976) for statical analysis
are particular cases of the present numerical procedure.

It is important to point out that the developed model is also applicable to specially laminated
curved beams (where the longitudinal axis is parallel to an orthotropic axis), in which the shear
flexibility could have a crucial influence because of the large value of the ratio between the
equivalent longitudinal elastic modulus and the equivalent transverse elastic modulus. A numerical
analysis of this last situation will be presented in the future.
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