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Abstract. In the present study, the elasto-plastic analysis of prismatic plate structures subjected to
pure bending is carried out using the finite strip method. The end cross-sections of the structure are
assumed to remain plane during deformation, and the compatibility along corner lines is ensured by
choosing proper displacement functions. The effects of both the initial geometrical imperfections and
residual stresses due to fabrication are included in the combined geometrically and materially nonlinear
simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in
modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the
rotation of the end cross sections of the structure is increased step by step. The parameter representing
the overall axial strain of structure is adjusted constantly during the iteration process in order to
eliminate the resulting overall axial force on any cross-section of the structure in correspondence with
the assumption of zero axial force in pure bending. Several numerical examples are presented to
validate the present method and to investigate the effects of some material and geometrical parameters.
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1. Introduction

Some thin-walled structures are subjected to severe flexural loading, which can be simplified as
pure bending. Under such loading, the structures undergo combined local buckling, overall
buckling and elasto-plastic deformation. The ultimate strength and the inelastic post-buckling
behavior are very important issues for design and development of such structures. Therefore,
creation of more accurate and more efficient numerical method to model this behavior is of
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practical interest.

Finite element method has been applied to this problem since two decades ago (Zienkiewicz
1977). However, for the prismatic plate structures, or those which can be reasonably idealized as
such structures, the finite strip method has advantages over the former method with significant
computational saving (Cheung et al. 1996). The finite strip method has been successfully
employed to simulate the nonlinear post-buckling behavior of plate structures under longitudinal
compression (e.g., Hancock 1981, Sridharan and Graves-Smith 1981 and Guo and Lindner 1993)
and has shown its satisfactory performance.

In the present study, the finite strip method is extended to the elasto-plastic analysis of
prismatic plate structures subjected to pure bending. The end cross-sections of the structure are
assumed to remain plane during deformation, and the compatibility along corner lines is ensured
by choosing proper displacement functions. The effects of the initial geometrical imperfections
and residual stresses due to fabrication are included in the combined geometrically and materially
nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity
are employed in modelling the elasto-plastic behavior of the material. The Newton-Raphson
iteration is carried out as the rotation of the end cross sections of the structure is increased step by
step. The parameter representing the overall axial strain of the structure is adjusted constantly
during the solution process in order to eliminate the resulting overall axial force on any cross-
section of the structure in compliance with the assumption of zero axial force in pure bending.

Several numerical examples are presented to validate the present method and to investigate the
effects of some material and geometrical parameters.

2. Displacement functions

In the present analysis, the thin-walled structure (Fig. 1) is modeled by a number of finite strips,
each of which has three equally spaced nodal lines (Fig. 2). In the transverse direction of the strip,
quadratic interpolation is used for in-plane deformation whilst Hermitian cubic polynomials are
employed for out-of-plane bending. The strip is hinged at both ends, and the end cross-sections
are assumed to remain plane during deformation. Moreover, the displacements of two adjacent
strips along any corner line of the structure must be compatible. These conditions can be satisfied

Z 7
Fig. 1 Plate structure under pure bending
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Fig. 2 A finite strip

by the following displacement functions:
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where u and v are the in-plane displacements of the point (x, y, 0) on the midplane, w is the
deflection which is assumed to be constant in the thickness direction z; r is the number of
harmonics employed in the analysis; u,,, v, W;, and (9w /dx),, are the displacement parameters
for the i-th nodal line and the m-th harmonic; / is the length of the strip; N(x) is the quadratic
interpolation function for nodal line i (i=1 to 3) with the following expression:
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F(x) and H(x) (i=1, 3) are Hermitian cubic polynomials as below:
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in which b is the width of the strip; B is the rotation of each end cross-section (Fig. 1), its value is
given as external load; z is the global vertical coordinate with the origin located on the elastic
neutral axis of structural cross-section; ¢ is the longitudinal strain due to global elongation of the
structure at level z=0. Its value is assumed to be zero initially and is adjusted constantly during
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iteration to eliminate the axial force of the structure as mentioned later.

3. Strains and stresses

Including the effects of initial geometrical imperfections u, and w,, the following strain-
displacement relationships are used in the present analysis:
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where &, &, and %, are the strains of the midplane and are defined as
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The underlined term in the expression of £ accounts for the nonlinear effect of membrane
displacement. The other nonlinear terms are considered to be of secondary importance and have
been neglected in the above equations.

In the elastic stage, the linear stress-strain relationships hold:

1 v
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or in a compact form _
{o} =D e} +{ox} Q)

where E is Young's modulus, v is Poisson's ratio; ., O, and 17, represent the initial residual

stresses due to fabrication.
According to the von-Mises criterion, the material yields when the equivalent stress O reaches

the uniaxial yield stress oy:

6=VNo?+ 62 - 6.0, +375 =0y ®)

After yielding, the stresses can be calculated using the incremental stress-strain relationship:
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d{o}=[D]od{e} =[D]d{e} - [C]d{e} ©)

where [D],,=[D]-[C] is the elasto-plastic matrix, which can be formed from the current stress
level according to the Prandtl-Reuss flow theory of plasticity. The related theoretical foundation
has been described in details in many references (e.g., Zienkiewicz 1977, Owen and Hinton 1980)
and is not to be repeated here. In the present analysis, the following procedures are used for
elastic-perfectly plastic material after yielding:

First, only the elastic part of the stress increments [D]d{e} is added to the stresses obtained in
the previous loading step:

{o}e ={o} +[D]1({e} - {&}") (10)

where {€} is the current value of the strain vector, {o}" and {€}" are respectively the last values
of the stress and strain vectors in the previous loading step k.

Then, the equivalent stress 6, of {o}, is calculated using (8). If 6,< oy, unloading occurs in the
region under consideration, and the elastic relationship should be used. Therefore, the current
stress vector is

{o}={c} 11)

Otherwise with G6,> 0oy the plastic deformation occurs and then Eq. (9) stands. Thus, the second
part of the stress increments in Eq. (9) must be included:

{o}={c} = [C]({e} - {e}*) (12)
where
(S1+VS,) Symm.
[Cl= =2 [(S1+ VS, +V5)  (S,+ V5, (13)
o(1-v)
(S;+vS5,)S, S, +vS)S; 572
in which
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S,=0f-(ct+ )3
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and the superscript k represents the previous loading step.
The stresses obtained from Eq. (12) should be brought to yield surface in order to reduce
numerical error:

{Ghew =2 {0} (14)

where G is the equivalent stress of {o}.

4. Solution procedure

The entire loading process is carried out in a number of steps. In each step, the end rotation 8
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of the structure is increased by a specified amount, and the Newton-Raphson iterations are
implemented until convergence occurs.

Each finite strip is divided into several layers through the thickness direction. In each iteration,
the strains and stresses are computed at the level of each layer. And then, the tangential stiffness
matrix and the vector of unequilibrium loads (Cheung et al. 1996) are updated. The value of o is
assumed to be zero initially with the origin of z located on the elastic neutral axis. Afterwards, its
value is modified according to the resulting average axial force and average axial stiffness of the
structure in each iteration:

[ o dxdyd:
. (15)

antl = a” _
IV D,,,, dxdydz

where V denotes the volume of entire structure; n is the sequential number of iteration; D,,y, is the
second diagonal item of [D],, (see Eq. (9)) and is defined as

for elastic region
1-v2
D= . . (16)
v C,, for plastic region
-V

where C,, is the item of [C] given in Eq. (13).

Thus, the axial force at any cross-section of the structure is reduced to a minimum in
compliance with the assumption of zero axial force in pure bending.

Based on the updated value of @, the stress o, can be recalculated. Then, the bending moment
on any cross-section of the structure is obtained as

M=1[ &7 audyd: (17)
v

in which [ is the length of the structure, M is the average value of the bending moment over the
length of the structure and Z is the structural vertical coordinate. The location of the origin of z
has negligible influence on the value of M since the axial force is zero.

5. Numerical examples
5.1. Simply supported rectangular plate under axial compression

A rectangular plate is simply supported on its four edges. The thickness of the plate is ¢, the
width is a=55t and the aspect ratio is a/[=0.875. The material properties are Young's modulus E=
200,000MPa, Poisson's ratio v=0.3 and the uniaxial yield stress &,=250MPa. The end cross-
sections move rigidly under uniform compressive displacement, whilst the unloaded edges are free
to pull in. The initial geometrical imperfection has a pattern of

y

Wo = 0.005a sin= sin>.
a ]
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The plate is analyzed using the present method by assuming =0 and taking — « as the external
loading, namely the compression strain €. Taking advantage of symmetry, half the plate is divided
into four strips with three layers each, and only two symmetrical series terms (m=1, 3) are used in
the analysis. The edge strip is of 3¢ width with a residual stress 0,,=0;, while the other three strips
are of equal width over the rest of the model with a residual stress ©,,=— (3t/0.5a-3t) 6y, which
means that the resultant of the residual stress 6, on the cross-section of the plate is zero. Further
refining the model only yields little improvement.

The resulting compression force P vs the longitudinal strain ¢ is plotted in Fig. 3 in comparison
with the finite difference solution of Harding e al. (1977) and the spline finite strip solution of
Guo et al. (1993). In this figure P,=(at/2)0y, &=0y/E. It can be seen that the agreement between
the present and existing results is generally good.

Because the deformation pattern of a plate under compression is similar to that of the top flange
of a thin-walled structure under pure bending, and the combined geometrical and material
nonlinear deformation of the top flange is the major contribution to the nonlinearity of the latter
structure, the present example can be reasonably used to validate the present approach.

5.2. Box beam under pure bending

A box beam of length /=100.0 cm is subjected to pure bending as shown in Fig. 1. All plate
components have an identical thickness #=1.0 cm and a width a=55.0 cm. The material properties
are E=200,000MPa, v=0.3 and 0,=320MPa. The initial geometrical imperfections have the
following pattern

wo =0.005a sin2- sing—ty—
a l
in all plate components, and two concave flanges are accompanied by two convex webs in the
first half of length (y<1/2).

The residual stresses are 0,,=0; within the width 3/=3.0cm on both sides of each corner and C,,=

= (3t/0.5a-31)0y in the rest areas.
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Fig. 3 Rectangular plate under compression
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By virtue of symmetry, half of the box is analyzed using 16 strips of widths similar to those in
the previous example. Six longitudinal series terms are taken and each strip is divided into three
layers through the thickness direction. Further refined model only makes negligible difference.

As the end rotation B increases, the resulting bending moment M and the maximum deflection
w,, of top flange are shown in Fig. 4. In this figure M,.,=1296 kN-m and B,=0.00292 radian are
respectively the critical bending moment and corresponding end rotation, which are obtained from
a finite strip stability analysis. The longitudinal profile of the buckling mode is identical to the
geometrical imperfections. And M,=1452 kN-m is the ultimate plastic moment obtained using
beam theory.

As shown by this figure, while the end rotation is applied increasingly, the moment varies
nonlinearly and the deflection increases constantly from the beginning because of the presence of
the geometrical imperfections and the residual stresses. The bending moment reaches its maximum
value M,=0.872 M_, at =1.5 3., and then drops due to developing of plastic deformation in large
areas.

5.3. Effect of the yield stress oy

The above-mentioned structure is analyzed using the same model for different values of yield
stress G,. The level of residual stress is also modified proportionally but all other parameters
remain unchanged. The resulting bending moment M vs end rotation B are depicted in Fig. 5 for
0,=240 MPa, 320 MPa and 400 MPa, respectively. The results are also summarized in Table 1.

It can be noticed that the higher strength material shows lower bending moment at beginning
because of the higher level of residual stress, and the ultimate bending moment M, rises not as
much as the yield stress o, increases.
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Fig. 5 Effect of yield stress

5.4. Effects of reduced residual stress and geometrical imperfections

Table 1 Effect of yield stress oy

MM,

PP 6y=240 MPa 6,=320 Mpa 6,=400 MPa
0.5 0.429 0.425 0.421
1.0 0.675 0.755 0.787
1.2 0.695 0.824 0.888
15 0.678 0.872 0.988
1.8 0.671 0.858 1.039
2.0 0.662 0.848 1.035

MM, 0.840 1.120 1.400

M/M, 0.827 0.779 0.742

241

The structure in the second example is analyzed using the same model. However, the residual

stresses are set to be zero with all other parameters unchanged. The results are listed in Table 2.

Then, the process is repeated with the geometrical imperfections reduced to

2ny

. X .
wo = 0.001a sin—- sin ]

and all other parameters identical to example 2. The results are also listed in Table 2. It can be
seen that both changes enhance the strength and reduce the deflection at lower 3, and the effect of
reduced geometrical imperfections is more significant than zero residual stress.
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Table 2 Effects of zero o, and reduced w,

M/M,, wit
B Example 2 Zero O, low w, Example 2 Zero O, low w,
0.4 0.343 0.383 0.371 0.572 0.485 0.166
0.8 0.652 0.734 0.702 0.942 0.851 0.624
1.0 0.755 0.844 0.808 1.163 1.103 0.940
1.2 0.824 0.881 0.873 1.376 1.362 1.206
14 0.867 0.889 0.904 1.583 1.585 1.407
1.5 0.872 0.886 0.911 1.686 1.685 1.502
1.6 0.867 0.883 0.913 1.769 1.780 1.599
1.8 0.858 0.875 0.907 1.970 1.959 1.794
2.0 0.848 0.866 0.898 2.152 2.125 1.974

6. Conclusions

In the present study, the finite strip method is successfully extended to the elasto-plastic
postbuckling analysis of thin-walled structures under pure bending. This method is efficient and
very convenient for parametric study.
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