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Abstract. A versatile 4-node shell element which is useful for the analysis of arbitrary shell
structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane
element with a Mindlin plate element. The proposed element has six degrees of freedom per node and
permits an easy connection to other types of finite elements. In the plate bending part, an improved
Mindlin plate has been established by the combined use of the addition of non-conforming
displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the non-
conforming displacement modes are also added to the displacement fields to improve the behavior of
membrane element with drilling degrees of freedom and the modified numerical integration (M) is used
to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid
link correction technique is adopted to consider the effect of out-of-plane warping. The shell element
proposed herein passes the patch tests, does not show any spurious mechanism and does not produce
shear and membrane locking phenomena. It is shown that the element produces reliable solutions even
for the distorted meshes through the analysis of benchmark problems.

Key words: shell element; non-conforming mode, plate element; membrane element; dﬁlling degree
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1. Introduction

Shells have been used for many engineering structures due to the merits of their structural
behaviors and the evolution of finite element technologies played important roles for advances of
shell analysis and design. The problem of shell finite elements is still an open one because of the
difficulty in satisfying the following conditions for an element, all of which should be satisfied so
as to offer an efficient shell element: i) the adjustment for thick and thin cases, ie., the
requirements for no shear and membrane locking; ii) six degrees of freedom per node; iii) the fast
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convergence characteristics; iv) insensitivity for mesh distortion (in-plane and out-of-plane);
v) passing a patch test and correct rank, i.e., the requirements for no spurious zero-energy mode;
and vi) the ease of formulation.

A great deal of research work has been devoted to develop shell elements which satisfy the
above conditions through the following three major approaches: i) the degenerated shell elements
derived from three-dimensional solid elements; ii) the flat shell element formulation; and iii) the
curved shell elements based on classical shell theory. Among these approaches, the degenerated
shell and flat shell elements have been more frequently used because of their generality in
formulation and modeling. The degenerated shell element which was first proposed by Ahmad
and Irons with the form of biquadratic element has five degrees of freedom per node and exhibits
‘shear locking' and ‘membrane locking' in the thin shell case (Ahmad et al. 1968). Despite its
complicated formulation, a lot of researchers' efforts have been being devoted to develop a more
efficient degenerated shell element and recently they have been expanded to an element with six
degrees of freedom per node including the rotational degree of freedom (Kebari and Cassell 1991,
Chroscielewski et al. 1997). On the other hand, the flat shell element was first developed by
Gallagher (1974) with triangular element by combining the plate bending element with a
membrane element. The major advantage of flat shell is a simplicity in its formulation but for
some shell problems, too many flat shell elements are required to obtain a reasonably accurate
solution. Thus, parallel to the research to develop more accurate flat shell elements, efforts to
develop the modified flat shell element to be used for general shell problems are also in progress
(Taylor 1987, Cook 1994, Groenwold and Stander 1995).

The main objective of this paper is to propose a defect-free 4-node non-conforming flat shell
element, which has been developed basically by combining a membrane element with drilling
degree of freedom and a Mindlin plate bending element (see Fig. 1). The element possesses six
degrees of freedom per node which, in addition to improvement of the element behavior, permits
an easy connection to other types of element with six degrees of freedom per node. The plate
bending part of this shell element has been established by the combined use of the addition of
non-conforming modes and the substitute shear strain fields. Non-conforming modes are added to
the rotational degree of freedom to improve the flexural behavior in the distorted mesh in
particular (Kim and Choi 1992, Choi et al. 1998). The membrane part is formulated by the
modification of the membrane element of Ibrahimbegovic et al. (1990) which has the drilling
degree of freedom. To remove the membrane locking shown in the shell element with the
Ibrahimbegovic's displacement formulation of membrane element, Groenwold and Stander (1995)
applied the modified 5-point reduced integration scheme to the original formulation and obtained
more improved results. The same integration scheme, i.e., 5-point integration scheme, is applied to
the Ibrahimbegovic's mixed formulation, to obtain a series of more improved elements in this
study. Among the resulted membrane elements, the best performing element is selected to use in
the development of shell element.

The formulation of a flat shell element is possible only when all of its nodes are on the planar
plane from a definition of flat shell. Otherwise, it can not solve the shell problem with a warped
geometry. The rigid link correction method of Taylor (1987) is adopted to overcome the out-of-
plane warpage problems.

Over a past few decades, a lot of research efforts have been directed at overcoming the shear
locking problems in the Mindlin plate elements, which are the major deficiency of the kind of
element, thus rendering them more effective and reliable for the thin plate applications (Choi 1984,
1986, Hinton and Huang 1986, Hughes et al. 1978, 1981, Lee and Wong 1982, Parisch 1979,
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( DOF of plate ) ( DOF of membrane with Drilling DOF )  ( DOF of shell with six DOF )
Fig. 1 The six degrees of freedom per node

Zienkiewicz et al. 1971). As results of these research efforts, several successful remedial schemes
have been suggested: namely, the reduced (or selective) integration technique (Zienkiewicz et al.
1971, Hughes et al. 1978), the addition of non-conforming displacement modes (Choi and
Schnobrich 1975, Choi 1984); and the use of substitute shear strain fields (Hughes and Tezduyar.
1981, Hinton and Huang 1986, Donea and Lamain 1987). Efforts have been also devoted to the
development of plate bending elements by the combined use of aforementioned schemes and quite
successful results have been reported (Choi et al. 1984, 1986, and 1991, Kim and Choi 1992).
Based on the evolution of the concept of combined use of non-conforming modes and other
remedical schemes, the development of a new 4-node Mindlin plate finite element is one of the
main concerns of this paper.

The shell element proposed in this study passes the patch tests, does not show any spurious
mechanism, and does not produce shear and membrane locking phenomena. It is acknowledged
from the analysis of the selected benchmark problems that the element produces reliable solutions
even for distorted meshes.

2. Formulation of shell element
2.1. New improved 4-node Mindlin plate elements

The Mindlin plate elements have been successfully used in a wide range of plate analysis
problems. The inter-element compatibility requirement in the plate elements is easily satisfied by
this element because the shape functions require only C° continuity. However, this element has
one significant deficiency, i.e., the excessive shear stiffness due to the transverse displacement
constraint in a thin plate. The assumed displacement shape functions used in the isoparametric
element constrain the element to deform in a shear mode imposing a large amount of the shearing
strain in the bending behavior of a plate element, which causes a very slow convergence. In
addition, since the ratio of shear stiffness coefficients to the bending stiffness coefficients of the
element is the order of (L/t)’, the shear stiffness becomes dominant in the element stiffness as the
thickness of the plate ¢ becomes thin. The performance of the Mindlin plate elements, therefore,
deteriorates rapidly in the thin structures and these problems are known as the shear locking.

The development of an improved Mindlin plate element can be accomplished by the addition of
non-conforming modes and by the substitute shear strain field. To improve the flexural behaviors,
two non-conforming modes N,, N, in Fig. 2 are added to the rotational displacement fields of
isoparametric 4-node element. Then, the new displacement fields are expressed as follows:
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@ N,
Fig. 2 The non-conforming modes for four-node eclements

w=<N>{w}
6 =<N>{6:}+<N> {6}
6 =<N>{6}+<N>{6} 0y

in which <N> is the matrix of the original 4-node isoparametric shape functions, Eq. (2), <N> is
the matrix of the non-conforming modes in Eq. (3). {w}, {6,} and {6} are the transverse
displacements and two rotations about x and y axis (Fig. 1), respectively, and 6, and 6, are the
non-conforming rotational displacements. The nonconforming modes used for bilinear elements
are shown in Fig. 2.

Ny= %(1-5)(1—17), N, = %(1+§)(1—n), Ny= %(1+€)(1+n), N,= %(1—5)(1“1) )

Ni=1-8& Ny=1-17, Ny=n(1-8), N,=§1-1), Ns=(1-&)1-1) )

Eq. (4) shows the displacement-strain relationship in which the submatrices associated with the
addition of non-conforming modes are appended to the original isoparametric Mindlin plate
element.

[ <0> <0> zagz > <0> za<ajz >
& ] <0> -z a<aj;, - <0> -z a<aj;[ > <0 {w }\
& 0> -z JO<N > ZB<N> ~ <N > ZE)<1V> J{e"}
Yyt = <U> o ay ox ay {g"}( (4)
% o> T i {8}
o - -
¥ P <L%> <L%> <N > <0> \ { ey}‘
| agz 2 M®>  <M%> <0> <N> |

In Eq. (4), <L*>, <L%>, <M*> and <M® > are the modified shape functions for the
substitute shear strain fields (Donea and Lamain 1987). The Eq. (4) can be rewritten in a
condensed form.
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B, B,| [u
©=z & {-} | )

where the submatrices B, and B, are the strain matrices associated with the non-conforming
displacements and the submatrix B; is shear strain matrix by the substitute strain fields suggested
by Donea and Lamain (1987). The subscript b and s indicate bending and shear, respectively.

In general, the non-conforming modes make a change of the strain energy (likely reduce the
energy) in an element and give rise to the failure of patch test. Thus, to overcome this
phenomenon the B-bar method (Zienkiewicz and Taylor 1989) is used in which the submatrices
B, and B, are then substituted by B,* and B,* defined in Egs. (6) and (7).

= 1 5 1 1 5
Bb* =Z[7Bb _VJV ;—Bb dV) (6)
_ _ 1 _
Bs*=Bs—_ Bst 7
=38 ()

The element stiffness matrix has been enlarged over the original isoparametric element matrix
due to the addition of non-conforming displacement modes and related unknowns #. Then the
matrix is partitioned as follows:

{CC Km} {u}= f 7 =—K:KL ®)
L Kum| |# 0° "o

The enlarged stiffness matrix in Eq. (8) can be condensed back to the same size as the stiffness
matrix of the ordinary Mindlin plate element (Choi and Schnobrich 1975)

K = ch - Kcn anl KcTr; (9)
where K,,, K., and K,, are defined as,
K. =| BID,B, dV +| B,"D:B. dV
\%4 \'
Koo =[ BID,B,"dV +| B."D.B."dv
\ 4 \4
Km=[ B;"D,B,"dV +| B.;"'D:B,"av (10)
v v

Eliminating the non-conforming displacements using Eq. (8), stresses can be computed by

{o}=[D][B B] {;} =[D][B-B Kx'K%] {u} (11

b
B;

Based on the selection of the remedial schemes, a number of different versions of element
formulation are possible from Eq. (9) and the elements in a series are systematically designated as

s

B B,
where B and B are [ ] and |i— *}, respectively, and [D] is the material rigidity matrix.
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Table 1 The series of Mindlin plate elements

Displacement fields Integration orders
L - Shear
Designations w 0, 6, Bending  Shear
NMS-4Pa (Donea and Lamain 1987) <N> {w} <N> {6} 2Xx2 2X2 Substitute
NMS-4Pb (this study) <N>{w} <N>{6}+<N> {8} 2x2 2x2 Substitute
NMS-4Pc (this study) <N>{w} <N>{8}+<N>{B} 2X2 1x1 Substitute

NMS-4Px which indicates “Nonconforming Modified integrated Shear substitute 4-node Plate
element - version x”. In this study, three different types of Mindlin plates in the series are
considered (Table 1): i) the element designated as NMS-4Pa which is modified by substitute shear
strain field only (Donea and Lamain 1987); ii) the element NMS-4Pb which is modified by
addition of non-conforming modes to the Donea and Lamain formulation; iii) the element NMS-
4Pc which is modified by reduced integration for the shear stiffness of the element. A comparison
will be made on the elements to identify the best plate bending element for the use in the
development of the defect-free shell element.

2.2. Membrane element wfth drilling degree of freedom

Generally membrane elements have two translational degrees of freedom (u, v) per node, but
the need for the membrane element with a drilling degree of freedom, i.e., the rotation about the
axis normal to the plane of element, arises in many practical engineering problems. When this
element is combined with a plate bending element discussed in the previous section, a flat shell
element can be constructed which has six degrees of freedom per node. This type of element is
useful in solving a continuously curved surface or folded plate structures and provides a easy
coupling with edge beams or rib members which have six degrees of freedom per node. Inclusion
of a drilling degree of freedom (6,) gives also the improved behavior of the element (Allman 1984,
Choi and Lee 1996).

The possibility of membrane elements with drilling degree of freedom was opened by Allman
(1984), Bergan and Fellipa (1985). The concept has been further elaborated by many other
researchers (Cook 1986, MacNeal and Harder 1988, Ibrahimbegovic et al. 1990, Choi and Lee
1996) for more improved elements. Ressiner (1965) first suggested a variational formulation that
includes drilling degree of freedom as an independent rotation with the skew symmetric part of
displacement gradient. Hughes and Brezzi (1989) extended Reissner's formulation to suggest a
way in which the discrete approximation could be stabilized by using the independent rotation
field based on the separate kinematic variables of displacement and rotation.

In this study, the Allman's (1984) rotational fields and a variational formulation suggested by
Hughes and Brezzi (1989) are used as the basic schemes in order to construct membrane elements
with drilling degree of freedom. To obtain the further improved elements, non-conforming modes
are added to the translational and rotational degrees of freedom (Ibrahimbegovic ef al. 1990) and
this mixed type formulation is integrated by the modified 5-point integration rule in this study.

Thus, the displacement field of membrane element is constructed by the 4-node isoparametric
shape functions <N>, rotational fields <C> and <S> and their non-conforming counterparts <N>,
<C> and <S>, respectively.
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u=<N>{u}+<C>{6,}+<N> {i} +<C> {6;}
v=<N>{v}+<S> {6} +<N> {v} + <S> {6:}
6, =<N> {6.} (12)

where {u#},{v} and {6} are the non-conforming displacements. <C> and <S> are Allman's
rotational fields of 4-node element. These are expressed as

1

in which the subscript i is in the sequence of 4,1,2,3, subscript j is 1,2,3,4, subscript k is in 2,3,4,1
and P; is as follows:

1
(CijlijPij _Cjkljkij)’ Sj = § (sijlijPij “Sjkljkij) (13)

Pu=2(-8)-1, Py=2+1-1)
Py = % (1-8A+m), Py= %(1_5)(1_772% (14)

In Eq. (14), [; is the length of side i —j, ¢; and s; are the components of direction cosine of the
normal vector n; to side i —j (Fig. 3). _

To improve the behavior of membrane element, the bubble mode (N;) in Eq. (3) is added to the
translational degree of freedom. The non-conforming modes in Eq. (15), which can be explained
by Timoshenko's beam theory, is added to the tangential direction of an element side with respect
to the rotational degree of freedom

C; =t,Py

iy

S; =5;P; (15)

in which the value of subscript i and j are the same as the sequence in Eq. (13) and ¢; and 5;; are
the components of direction cosine of the tangential vector ¢; of side i —j. (Fig. 3).

The variational Eq. (16) is constructed by the equilibrium equations, the symmetry conditions
for stress, the definition of rotation in terms of the displacement gradient, and the constitutive
equations (Hughes and Brezzi 1989)

0=D I, (u, y, skew o) - (v, o, skew 7)
=j (symm Vv)-C -(symmVu)d.Q+J skew 17 - (skew Vu — y) d 2
Q Q
+I (skew VT — T) - skewod Q- y™' | skew T’ -skeWO'dQ—J v-fdQ (16)
Q Q Q

Fig. 3 The vector notations for a membrane element formulation
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The symmetric part and skew-symmetric part of displacement are expressed by Egs. (17) and
(18) in the matrix form, respectively

{u} _ |{a} o
symmVu=[B]) 1 ¢ +[G1{8:} + [B) 0n 1 +[CKO:} 17)

{u} A U ) R
skewVu — 6, =[b] I +[g]{6:} +[b] I +[gl{6:} (18)

where [B], [G], [b] and [g] are the conforming displacement-strain matrices, and [B], [G], [P] and
[8] are the non-conforming displacement-strain matrices (Ibrahimbegovic ef al. 1990).

Similar to the case of plate bending elements, the surplus strain energy due to the drilling
degree of freedom and the non-conforming mode is removed by the B-bar method in order that
the elements pass the patch tests. Thus matrices B, G and G are modified as follows:

B'=B-_[ Bav, 6'=G -1 Guv, G'=G-—[ Gav (19)
Vv Viv Vv
Particularly the B-bar method applied to G and G is useful for mitigating the membrane locking

caused by drilling degree of freedom (Taylor 1987). From Egs. (16)~(18), Eq. (20) is constructed
in a form of mixed formulation

K hT u bi
h —)/_IV {TO} = 0 (20)
u={{u} {v} {6:} {#} (v} {6&:}}7 (20a)
f={fu} {f} {fe,} 0 0 0} (20b)
where
_ | Ke Ko '
K=ler . @
@:jv [BG ) D[BG*|dV (21a)
K. =jv [BG*"D [B* G*|dV (21b)
Ko =jv [B* G’V D [B* G*]dv (21c)
h=jv [bgb gl dv (22)
and
=== (23)

T 2(1+v)
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Fig. 4 The 5-point integration scheme

In Eq. (20), the constant 7, is skew-symmetric part of stress, and the parameter y is a problem
dependent constant (Hughes and Brezzi 1989). For the isotropic elasticity and Dirichlet boundary
value problem, y can be taken to be equal to the shear modulus as seen in Eq. (23).

The numerical integration rule used to calculate the submatrices of K in Egs. (21a~c) and h in
Eq. (22) is the 5-point integration scheme (Groenwold and Stander 1995). This integration
technique is very useful to avoid membrane locking problems and the effectiveness will be shown
in the hemishperical shell example (Fig. 17) later in this paper.

This integration scheme is defined as follows:

I*(F)=WF(0,0)+ WF(+ o, + ) (24)

where I*(F) indicates the numerical approximation to the exact integral of the function F, and W,
indicates a weighting factor. In this study, W;=0.01 is used

12
1
Wo=1-Wy4d, a= 25
S s

Finally, the stiffness matrix of membrane element can be reduced to the dimension of
conforming element by the static condensation of non-conforming displacements {#}, {v} and
{6:}, and stress term 7, in Eq. (20). The stresses of membrane element with drilling degree of
freedom can be calculated as

u
{o}=[D1[B G™]{v (26)
0;

The same element designation system as that of plate elements is used except that P is replaced
by M which stands for Membrane. Thus, the series of membrane elements which have different
displacement fields are systematically designated as NMS-4Mo, NMS-4Ma, NMS-4Mb, and NMS-
4Mc and listed in Table 2. NMS-4Mo is the original isoparametric element, NMS-4Ma has the
rotational degree of freedom, NMS-4Mb is added with non-conforming mode to translational
displacement and finally NMS-4Mc is added with non-conforming modes to both the translational
and rotational degrees of freedom. A comparison will be made on those elements to choose the
best membrane element with drilling degree of freedom for the development of a flat shell element.
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Table 2 The series of membrane elements

o Displacement fields Integration
Designations
u v 6, orders
NMS-4Mo (original isoparametric) <N> {u} <N> {v} - 2x2
NMS-4Ma (This study) <N> {u}+<C> {6} <N> {v}+<S> {6} <N> {8} 5-point
NMS-4Mb (This study) <N> {u}+<C> {8} <N> {v}+<S> {6} .
+<N> {a@} +<N> {7} <N> {6} 5-point
NMS-4Mc (This study) <N> {u}+<C> {8} <N> {v}+<S> {6}

+<N> {7} + <C> {8} +<N> {7} + <§> {&} <N> {6} S-point

2.3. Construction of shell element

When the nodes of flat shell elements are all in the same plane, the behavior of plate elements
and that of membrane elements are uncoupled. Thus the stiffness matrix of a shell element can be
formed by combining the plate stiffness and membrane stiffness obtained independently as follows;

Kplate 0

[K ]ﬂat shell = 0 Kme (27)

mbrane

To solve the geometrically warped shell problems a flat shell element needs to be modified
because its formulation is based on the flat geometry and uncoupled membrane and plate bending
characteristics of the element. In order to take into account of the warped geometry, the rigid link
correction is used (Taylor 1987). For the rigid link correction, the mean plane is formed by
central point of each side and the distances between the mean plane and each nodes are taken to
be the same ([z|=h). Then, the stiffness matrix is constructed at a mean plane which is the
projection of warped geometry as shown in Fig. 5.

As seen in Fig. 5, the relationships for the kinematic conditions at nodes are

6.'=6:+zv, 6,/'=6,-zu (28)

Fig. 5 The projection of warped geometry
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The matrix form for each node is

u 100000
v 010000
w 001000

0 (=] 020100 |3 (29)

8’| |-~z00010
6.’ 000001

PP ® I ex

and when assembled for all the nodes in an element

{u} =[W]{u} (30)

where z defines the warpage at each node (which is constant and either 4 or — 4 at each node)
and quantities with a superscript act on the projection plane. The stiffness matrix considering the
warpage effects is obtained with the rigid link correction matrix [W] assembled as follows:

(K Jiocar = [W][K]flat (w1 (31)

And then the element stiffness in the global coordinates system [K],.. can be obtained by
multiplying the rotation matrix [R]

[K ]global = [r ]T [K ]local [R ] (32)

This simple method to handle the warped geometry is very effective and produces a good result.
It will be shown by the pre-twisted beam example (Fig. 18).

3. Numerical Test 1

3.1. Basic test

3.1.1. Eigenvalue test (Test #B1)

The eigenvalue analyses of the elements have been performed in order to check the presence of
spurious zero energy modes with respect to both the Mindlin plate elements and the membrane
elements. While the plate element NMS-4Pa and NMS-4Pb do not have any zero energy mode,
the element NMS-4Pc has one. And all the membrane elements, i.e., NMS-4Ma, NMS-4Mb, and
NMS-4Mc, do not exhibit any spurious mechanism.

3.1.2. Patch test (Test #B2)

The patch test is a simple numerical test widely accepted as a tool to verify the consistency and
convergence of a finite element. For the proper test, a patch of distorted elements as shown in Fig. 6
is frequently used. Using the patch model, the consistent nodal loads that correspond to a state of
constant strain are applied to the boundary nodes to describe pure strain states, i.e., the pure
bending, the pure transverse shearing, and the pure twisting in the plate elements, and the pure
tensioning and in-plane shearing in the membrane elements. In Table 3, it is shown that the plate
element NMS-4Pc is the only element tested which does not pass the patch test due to rank
deficiency.
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0,10) (10,10)

0,0 (10,0)
Fig. 6 Patch test model

Table 3 The patch test results

Plate Bending In-plane
Elements - - — Elements -
Bending Shearing Twisting Tension Shear
NMS-4Pa Pass Pass Pass NMS-4Mo Pass Pass
NMS-4Pb Pass Pass Pass NMS-4Ma Pass Pass
NMS-4Pc Fail Pass Fail NMS-4Mb Pass Pass
NMS-4Mc Pass Pass

3.2. Test of plate element

3.2.1. Shear locking test (Test #P1)

To check the proposed Mindlin plate elements in a wide range of thickness-span ratios, the
shear locking tests with an irregular mesh shape have been carried out. The selected mesh shape
for the test is shown in Fig. 10b (the clamped square plate under central concentrated load). The
test results for shear locking are shown in Fig. 7. Element NMS-4Pa and NMS-4Pb show a good
result but the behavior of element NMS-4Pc is shown to be unreasonable. The result of element
NMS-4Pb shows the best results in all the range of thickness-span ratios without showing any
locking phenomenon.

3.2.2. Convergence test (Test #P2)

To examine convergence characteristics of the plate elements, a simply supported square plate
under a uniform load is analyzed (Table 4 and Fig. 9). The theoretical value of deflection at the
center is 4.062. The element NMS-4Pb shows the fastest convergence.

3.2.3. Square plate (Test #P3)

The 1/4 model of the clamped square plate under a uniform or a concentrated load as shown in
Fig. 10 is tested with respect to the normal and distorted mesh.

The theoretical maximum displacement is 1.26 for the case of distributed load and 5.60 for the
central concentrated load. The test results are shown in Table 4. The element NMS-4Pb exhibits
better results than other elements.

3.2.4. Circular plate (Test #P4)
To check the robustness of the proposed Mindlin plate elements, a clamped circular plate under
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Fig. 8 The model for convergence test

Table 4 The central deflection for simply supported square plate under a uniform load

Mesh

Elements

NMS-4Pa

NMS-4Pb

NMS-4Pc

2x2
4x4
8x8
16X 16

3.189 (78.5%)
3.969 (97.7%)
4.041 (99.5%)
4.057 (99.9%)

3.392 (83.5%)
4.018 (98.9%)
4.053 (99.8%)
4.062 (100%)

8.893 (218.9%)
4.679 (115.2%)
4329 (106.6%)
4.186 (103.1%)

Theory

4.062
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Fig. 9 Convergence test

the distributed load is analyzed. A quarter model considering symmetric condition is used. The
theoretical value of the maximum bending moment is 8.125x 107> at center. The test results are
shown in Table 6.

3.2.5. Razzaque's 60° skew plate (Test #P5)

A 60° skew plate which is simply supported on two opposite edges and free on the other two
edges and applied with a uniformly distributed load. Razzaque suggested 7.945x 10° for central
deflection. The test results with refined meshes from this study are shown in Table 7.

3.3. Test of membrane element

3.3.1. Simple beam (higher order patch test - Test #M1)
A simple beam with a length to height ratio of 10 is subjected to a state of pure bending. The

CL CL
yoIv4 ///// //////////
04/ 0.7/ 09 Young’s Modulus = 1.7472E
? / / / ? P:issin’sM F:atiojo.; et
/ Thickness = 0.0001
Lo / / / gisuib;l;fd Ic;oag :86(31001
/ % entral Load = 0.
2NN
2RI
| 0.1 03 0.7 1.0
- 1.0 o
(a) Normal mesh (b) Distorted mesh

Fig. 10 The rectangular plate
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Table 5 The maximum displacement of square plates

Loads Meshes Elements -
NMS-4Pa NMS-4Pb NMS-4P¢ SAP (C&S inc.)
Distributed Normal 1.251 1.257 1.330 1.319
Load Distorted 1.278 1.286 1374 1355
Theory 1.26
Concentrated Normal 5.404 5.444 6.425 5.897
Load Distorted 5471 5.515 6.529 5.813
Theory 5.60

Young’s Modulus = 10920
Poisson’s Ratio = 0.3

0.5 Thickness = 0.001
Distributed Load =1.0

L |

a 05
(@N=3 B)N=12 (c)N=48
Fig. 11 Mesh of circular plate (N: number of elements)

beam is modeled with six membrane elements as shown in Fig. 13. Two load cases are considered;
the first load case (Case I) is a unit couple (P=1.0) applied at the free ends and the second load
case (CaseII) is a unit moment applied at the end nodes. The theoretical value obtained by beam
theory is 1.5 for vertical displacement and 0.6 for end rotation.

The test results are shown in table 8 and it is acknowledged that except element NMS-4Mc
which produces non-symmetric end rotations at both load cases, all the elements produced reliable
results. It is noted that elements which have additional nonconforming modes (NMS-4Ma, NMS-
4Mb, and NMS-4Mc) show more flexible results.

3.3.2. Cantilever beam (Test #M2)

A cantilever beam under shearing load as shown in Fig. 14 is selected as the next test problem.
The theoretical elastic solution for the tip displacement is 0.3558. The test results are shown in
Table 9.

Table 6 The maximum bending moment of circular plate (x 107%)

Elements
No. of Elements N
NMS-4Pa NMS-4Pb NMS-4Pc Hinton and Huang (1986)
3 7.530 7.707 8.050 7.408
12 7.988 8.124 8.186 7.842
48 8.179 8.164 8.195 8.062

Theory 8.125
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Free / / / / Aree 86.6 Young’s Modulus = 10920
’ Poisson’s Ratio = 0.3
Thickness = 0.1
Distributed load =1.0

Fig. 12 Skew plate

Table 7 The central deflection of skew plate (X 10°)

Mesh Elements
s NMS-4Pa NMS-4Pb NMS-4Pc SAP (C&S inc)
4x4 6.722 6.764 7.465 7.736
8x8 7.591 7.615 7.907 7.870
16X 16 7.826 7.834 7.953 -
Reference value 7.945

3.3.3. Cook 's tapered panel under shear load (Test #M3)

This panel was proposed by Cook as a test for the accuracy of quadrilateral elements. Besides
the shear dominated behavior, it also displays the effects of mesh distortion. The result for the tip
deflection is compared with the reference value of 23.91 obtained by numerical analysis for a
refined model.

3.4. Defect-free Flat Shell Element

Numerical test results are summarized in Table 11 in which the plate bending elements and the
membrane elements are separately listed and each element is compared with the elements in the
same group to identify the best performing element in each group. As seen in the Table, the
element NMS-4Pb gave the best result for the plate bending problems and NMS-4Mb gave the
best result for membrane problems. The competing plate element NMS-4Pc has a spurious mode

P ( M M P Young’s Modulus =100.0
< L » Poisson’s Ratio = 0.0
M M Il‘o Thickness = 1.0
— -+ P=1.0 N M=0.5
P P
fe
' 10.0 -

Fig. 13 Simple beam
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Table 8 The higher order patch test

223

Case 1 Case 1
Elements i i
'Vertlcal End rotation . Vertical End rotation
displacement displacement
NMS-4Mo 15 - 15 -
NMS-4Ma 1.5 0.6 1.5102 0.64647
NMS-4Mb 1.5 0.6 1.5103 0.65046
NMS-4Mc 15 * 1.5200 *
Taylor and Simo (1985) 15 1.2 1.5 2.18980
Iura and Atluri (1992) 1.5 0.6 N/A N/A
Ibrahimbegovic et al. (1990) 1.5 0.6 1.5 0.62070
Beam Theory 1.5 0.6 1.5 0.6

*non-symmetric rotations at both ends

and did not pass the patch test. And the competing membrane element NMS-4Mc shows the best
behavior for the cantilever beam and the Cook's problem but makes unreasonable solutions for the
higher order patch test. Thus, the linear combination of these two elements (Eq. (27)), designated
as NMS-4Pb and NMS-4Mb, a highly effective new four-node flat shell element can be
established. The new element has been designated as “NMS-4F" which indicate “Non-conforming
Modified integrated Shear substitute 4-node Flat shell element” . The behavior of this new element

is tested in the following section.

Young’s Modulus = 30000
Poisson’s Ratio = 0.25

12.0 40 Thickness = 1.0
e N
48.0
Fig. 14 Cantilever beam
Table 9 The tip displacements of cantilever beam
Meshes
Elements
1x4 2% 8 4X16 8x32
NMS-4Mo 0.2424 0.3161 0.3446 0.3528
NMS-4Ma 0.3283 0.3460 0.3528 0.3550
NMS-4Mb 0.3445 0.3502 0.3539 0.3553
NMS-4Mc 0.3493 0.3516 0.3544 0.3554
Ibrahimbegovic et al. (1990) 0.3449 0.3525 0.3546 N/A
Frey (1989) 0.3283 0.3460 0.3529 N/A
Sabir (1985) 0.3281 0.3454 0.3527 N/A
Allman (1988) 0.3026 0.3394 0.3512 N/A
Theory 0.3558
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Fig. 15 The tip displacement of cantilever beam

4. Numerical Test Il
4.1. Hemispherical shell with 18° hole

This is a problem in the set proposed by MacNeal and Harder (1985). This doubly curved shell
problem is characterized by inextensible bending modes and large rigid body rotations. Thus the
element with a membrane locking problem can not solve this example correctly. MacNeal and
Harder suggests a value of 0.094 as a correct solution for the comparison of results for the
displacement in the direction of applied load, and the more recent analyses suggest 0.093.
Therefore, the exact value should be somewhere between these two values.

To show the effect of numerical integration scheme, both results by the 5-point integration
scheme and the normal 3X3 gauss quardrature with present element are presented for the

48

16 TI.O

_‘_
Y

Young’s Modulus =1.0
Poisson’s Ratio = 1/3

Thickness = 1.0
44 N

A0

Fig. 16 Tapered panel
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Table 10 The tip displacements of tapered panel

Meshes
Elements

2X2 4x4 8Xx8
NMS-4Mo 11.85 18.32 22.08
NMS-4Ma 20.14 22.56 23.55
NMS-4Mb 20.33 22.88 23.65
NMS-4Mc 21.52 22.96 23.69
Frey (1989) 20.09 22.61 23.55
Allman (1988) 20.27 22.78 23.56
Simo et al. (1989) 21.12 23.02 23.68
Cook (1986) 21.46 23.15 N/A

Reference 2391

Table 11 Summary of numerical test results of plates and membranes

Plate Elements Membrane Elements
Tests NMS-4Pa NMS-4Pb NMS-4Pc Tests NMS-4Ma NMS-4Mb NMS-4Mc
Test #B1 O O X Test #B1 @] (@] (@]
Test #B2 O O X Test #B2 O O O
Test #P1 *x *kk X Test #M1 *Ak *AE X
Test #P2 ** *Ak * Test #M2 * *k *od
Test #P3 *x *EE * Test #M3 * *¥ *hk
Test #P4 * *k ok
Test #P 5 * %k kk k% ok
The best element O The best element O

O: Pass, X: Fail, ***: very good, **: good, *:poor

membrane part. It is recognized that the 5-point integration scheme is very effective for the
elimination of membrane locking (Table 12).

4.2. Thick and thin pre-twisted beams

A pre-twisted beam example shown in Fig. 18 is tested in order to evaluate the behavior of the
new flat shell element for warped geometry. Two different thicknesses are considered, namely t=
0.32(thick) and t=0.05(thin). The thick beam is a standard problem in the set proposed by
MacNeal and Harder (1985), while the thin beam is taken from Jetteur (1986). The thin beam is
tested to evaluate the locking phenomena. The pre-twisted geometry of this problem implies out-
of-plane warp for quadrilateral shell elements. For the thick beam the analytical solutions are
5.424%107° and 1.754x 10"’ for the displacements in direction of the in-plane force and the out-
of-plane force, respectively. For the thin beam solutions obtained by Jetteur with isoparametric
solid elements are used for comparison, which are 1.3857 and 0.3427 for in-plane and out-of-plane
force, respectively.

The test results of the present element with rigid link correction are presented in Table 13 and 14.
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Zt 18°

[] Young’s Modulus = 6.825x10’
Sym Poisson’s Ratio = 0.3
Thickness = 0.04
Radius = 10.0
Sym
L Y
-—
F F=1.0

X /F=1.0

Fig. 17 Hemishperical shell

4.3. Scordelis-Lo roof

This is a problem in the set proposed by MacNeal and Harder (1985). The Scordelis-Lo roof is
the singly curved shell problem in the proposed standard problem set. The theoretical value for
the vertical displacement at the midpoint of the free edge is 0.3086, but most elements converge
to a slightly lower value 0.3024. The results obtained are compared with some of the results
available in the literature.

4.4. Curved box girder

A curved box girder shown in Fig. 20 is analyzed in order to investigate the usefulness of the
proposed clement for the analysis of the folded plate structure. The entire structural elements
including flanges, curved webs, and diaphragms at supports are modeled by 444 elements. The
dimensions of model and material characteristics are shown in Fig. 21. The solutions computed by
the present element are compared with the experimental results reported by Fam and Turkstra
(1976). The displacements shown in Fig. 22 exhibits good behaviors of this element.

Table 12 The displacement in direction of load

Elements
Meshes NMS-4F NMS-4F SAP Taylor QC5D-SA (Groenwold Simo et al.
(5-point) (3x3) (C&S inc.) (1987) and Stander 1995) (1989)
2x2 0.03026 0.00726 0.02721 N/A N/A N/A
4x4 0.08793 0.01137 0.08753 0.08652 0.03631 0.09337
8x8 0.09297 0.05967 0.09372 0.09415 0.08935 0.09281
16X 16 0.09315 0.08994 0.09349 0.09350 0.09312 0.09291

Reference 0.093-0.094
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Young’s Modulus = 0.29x10?

y Poisson’s Ratio = 0.22

Thickness = 0.32(thick) or 0.05(thin)
Length = 12.0

Width = 1.1

Angle of Twist = 90°

P (in-plane)

P (out-of-plane)

Fig. 18 Twisted beam

5. Conclusions

In this study, the development of a defect-free 4-node flat shell element with the drilling degree
of freedom (designated as NMS-4F) has been presented. The element is established basically by
the linear combination of the Mindlin plate element and the membrane element with drilling
degrees of freedom. To improve the basic behavior of the element, several combinations of the
improvement methods, i.e., the addition of non-conforming modes, the modified integration and
the construction of assumed shear strain fields, have been performed independently in the
formulation of element stiffness of plate and membrane part. For the improvement of Mindlin
plate behavior, the quadratic nonconforming displacement modes (N) are added to the rotational
degrees of freedom in addition to the use of the substitute shear strain fields (S). Similarly, in the
membrane element with drilling degrees of freedom, nonconforming modes are added to the
translations and tangential components of the drilling degree of freedom, and the modified
numerical integration (M) is adopted to overcome membrane locking. From the results of standard

Table 13 The displacements in direction of load for thick beam (X 107

Elements
Loads Meshes -
NMS-4F SAP (C&S inc) Taylor (1987) Frey (1989)
1x6 5.391 5.408 5.402 5.335
In-plane 2x12 5.407 5413 5.410 5.385
4x24 5.413 5.405 5.403 5.397
Analytical value 5424
1X6 1.762 1.783 1.763 1.719
Out-of-plane 2x12 1.758 1.770 1.763 1.742
4x24 1.754 1.754 1.751 1.747

Analytical value 1.754
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Table 14 The displacements in direction of load for thin beam (x 1077)

Elements
Loads Meshes -
NMS-4F SAP (C&S inc.) Taylor (1987) Frey (1989)

1x6 1.384 1.388 1.388 1.383
In-plane 2x12 1.385 1.389 1.389 1.384
4x24 1.386 1.388 1.388 1.386

Reference value 1.3857
1X6 0.3443 0.3503 0.3502 0.3443
Out-of-plane 2X12 0.3434 0.3467 0.3466 0.3432
4x24 0.3430 0.3435 0.3435 0.3429

Reference value 0.3427

Young’s Modulus = 4.32 X 10°
Poisson’s Ratio = 0.0

Thickness = 0.25

Gravity Load = 90 (uniform on
surface area )

Fig. 19 Scordelis-Lo roof

benchmark analyses it has been found that the proposed flat shell element (NMS-4F) is highly
efficient and robust. The element can be effectively used for not only the plate bending problems
but also most shell problems with a reasonably refined mesh. The element is also defect-free, ie.,
the element produces no shear and membrane locking, no spurious zero energy modes, and
converges to the exact solutions fast even for the distorted meshes. This is the first work in NMS-

Table 15 The deflections at the midpoint of the free edge (point A)

Elements
Meshes NMS-4F . Ibrahimbegovic Choi and Paik
(This study) ~ SAF (C&SNC) i Frey (1994)  Taylor (1987) (1994)
2x2 0.4190 0.4207 0.4190 0.4207 N/A
4x4 0.3165 0.3169 0.3166 0.3169 0.3157
8x8 0.3039 0.3038 0.3039 0.3039 0.3030
16X 16 0.3016 0.3013 0.3016 N/A 0.3009

Theory 0.3086 (0.3024)
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Point Load (P = 20 Ib)
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series flat shell elements and provides the basis for the development of some variable node
elements to follow in the future, such as NMS-5F, NMS-6F, etc.
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