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Effects of elastic foundation on the dynamic
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Abstract. A formulation for the dynamic stability analysis of cylindrical shells resting on elastic
foundations is presented. In this previously not studied problem, a normal-mode expansion of the
partial differential equations of motion, which includes the effects of the foundation as well as a
harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed
using Bolotin's method. The present study examines the effects of the elastic foundation on the
instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.
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1. Introduction

Especially in recent years, static and dynamic analysis of beams and columns on elastic
foundations has been extensively studied. The influence of a partially tangential force and elastic
foundation on the elastic instability of a uniform beam was investigated for clamped boundary
conditions (Lee ef al. 1996). A general solution to vibrations of beams on variable Winkler elastic
foundation was presented where the exact solution of the dynamic response of the beam was
obtained by considering the reaction force of the foundation on the beam as the external force
acting on the beam (Zhou 1993). The dynamic stability of a tapered cantilever beam on an elastic
foundation subjected to a follower force was analyzed using the Lagrangian approach and the
assumed mode method (Lee 1996). Circular beams with variable cross-sections on Winkler-like
elastic foundations under arbitrary loading were analyzed using the finite element method (Akoz
and Kadioglu 1996). To simulate bridges, runways, rails, roadways, pipelines, etc., a method
was presented to perform the deterministic and random vibration analysis of a Rayleigh-
Timoshenko beam on an elastic foundation (Chang 1994). The transfer matrix method was
used to investigate the influence of a Winkler elastic foundation on the non-conservative
instability of uniform Timoshenko beams (Lee and Yang 1993). Also investigated was the
influence of a Winkler elastic foundation and the slenderness ratio on the non-conservative
instability of cantilever non-uniform Timoshenko beams of rectangular cross-section (Lee and
Yang 1994).

The free vibration analysis of beams on a two-parameter elastic foundation has also been
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studied. The vibrational behavior of uniform beams on a two-parameter elastic foundation with
initial stress was examined using the finite element formulation (Naidu and Rao 1995). The free
vibrations of Timoshenko beams on two-parameter elastic foundations in which two variants of
the equation of motion are deduced, where the second foundation parameter is a function of either
the total rotation of the beam or a function of the rotation due to bending has also been examined
(De Rosa 1995). The effects of non-linear elastic foundations on the dynamic responses of beams
has also been studied. One study looks into the effects of a non-linear elastic foundation on the
mode shapes of buckling and free vibration of uniform beams (Raju and Rao 1993a). By the
method of perturbation, the static deflection analysis was carried out for a general elastically end
restrained non-uniform beam resting on a non-linear elastic foundation subjected to axial and
transverse forces, governed by a non-linear fourth order non-homogeneous ordinary differential
equation with variable coefficients (Kuo and Lee 1994). The buckling and free vibration of
uniform beams on non-linear elastic foundations was also evaluated using the finite element
method (Naidu and Rao 1996).

To a far lesser extent than beams and columns, the dynamic analyses of plates and shells on
elastic foundations have also been studied. The Rayleigh-Ritz approach has been used to study the
free vibration characteristics of uniform simply supported beams and rectangular plates of constant
thickness resting on a uniform elastic foundation with externally applied loads (Raju and Rao
1993b). The non-linear static and dynamic response analyses of a clamped, rectangular composite
plate resting on a two-parameter elastic foundation was also studied by applying Galerkin's
method (Chandrasekharappa 1992). The fundamental solutions and the boundary element method
for obtaining numerical solutions of non-linear Reissner plates on an elastic foundation have been
presented (Qin 1993). Also presented was a modified variational principle based on a hybrid
Trefftz finite element model for analysis of Reissner plates on an elastic foundation (Qin 1995).
The static and dynamic responses of a thin circular plate on an elastic foundation of Winkler-type
that reacts in compression only has also been analyzed using Galerkin's method (Guler and Celep
1995). A systematic way for the derivation of Kirchhoff plate-elastic foundation interaction by
mixed-type formulation using the Gateaux differential has been presented (Omurtag et al. 1997).

The postbuckling and vibration behavior of flat and shallow curved panels resting on a Winkler
foundation has been examined using a higher-order shear deformable theory which encompassed a
number of effects such as transverse shear, geometric non-linearities and initial geometric
imperfections (Librescu and Lin 1997). The static and dynamic analyses of shells of revolution on
an elastic foundation was analyzed by employing a finite element method based on variational
formulation (Eslami and Ayatollahi 1993). The bending analysis of a thin isotropic ellipsoidal
shell of small ellipticity, resting on a Winkler-type elastic foundation and subjected to uniform
internal pressure has been carried out (Paliwal et al. 1993). A simple approximate large deflection
analysis of shallow spherical shells on Pasternak-type elastic foundations subjected to a
concentrated load at its centre was developed (Paliwal 1994). The free vibration analysis of
circular cylindrical shells on Winkler and Pasternak foundations was examined for shells of
simply-supported boundary conditions (Paliwal et al. 1996).

A fair amount of work into the dynamic stability of cylindrical shells have been carried out
recently including some by the present authors (Lam and Ng 1998, Ng and Lam 1998) and (Ng et
al. 1998a, 1998b). However, a literature search showed that a study on the dynamic stability of
circular cylindrical shells resting on elastic foundations is not available. A study that includes an
elastic foundation would be interesting as it would shed light on the effects of the elastic
foundations on the instability regions.
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2. Theory and formulation

The cylindrical shell on an elastic foundation is in the coordinate system as shown in Fig. 1.
The periodic extensional axial load per unit length is given by

Na(x,t)=No +Ns cos Pt 0]

where P is the frequency of excitation in radians per unit time.
The equations of motion in terms of force and moment resultants for a cylindrical shell on an
elastic foundation of zero damping can be written as

2
Li(u,v,w)—ku =ph %
2,
Ly(u,v,w)—ky =ph %
0 ow | _ o*w
Lz(u,V,W) k3W +a_x ( a —a;)— h —atz

where k,, k, and k; (N/m’) are the spring rates of the elastic foundation that act in the u, v and w
directions respectively and according to Donnell's theory for thin shells. The mass density is p and
E is the elastic modulus.

It is important to note here that the forces from the elastic foundation act on the neutral plane
of the shell. This is a fair assumption as far as the transverse motion w is concerned. Strictly
speaking, the u in the ku term of Eq. (2a) should be replaced by (#/2) du/ox and the v in the kv
term of Eq. (2b) should be replaced by (%/2R) 9v/d6. This is not usually done as it would create
an illusion of accuracy not warranted by the elastic foundation concept as a whole.

Fig. 1 Coordinate system of the cylindrical shell
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The differential operators L, L, and L, are defined here according to Donnell's theory as
described in the Appendix.

Assuming the shell to be simply-supported, there exists a solution for the equations of motion
in the form

Umn = Amn €9 COS$Amx COS HO €))
Vimn = Bmn €19'sinA, x sin n6 4)
Wimn = Crn €191 sinAm x COS 16 ®)

where n represents the number of circumferential waves, m the number of axial half-waves in the
corresponding standing wave pattern and A,=mm/L. @ represents the natural frequency of the
cylindrical shell under constant axial loading N,

The equations of motion can be solved using an eigenfunction expansion of the normal modes
of free vibration of a cylindrical shell under a constant axial load N, with the oscillating
component N=0. Substitution of the above three equations into the equations of motion which are
also a set of three coupled homogeneous equations yields a cubic frequancy equation when the
determinant is equated to zero.

Cy Cyp Coizf [Amn 0
C21 C22 C23 an =40 (6)
Cs3 Cp Cxy Con 0

where the C;/s are defined in the Appendix. Thus, for each m and n, there exists three roots
corresponding to the transverse, axial and circumferential modes.

To solve the equations of motion that include the oscillating component N,, a solution is sought
in the form shown below where all the modes are superimposed.

3 e oo

Upnj =D D> ApnjGuunj (t) COSAmx COS 1O @)
j=l m=1 n=1
3 e o

Voni = 3, 3. Y BiunjGoun () sinAmx sin n@ 8)
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3 w0 e
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j=1
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where q,.,(?) is a generalized coordinate.
Substituting the above three equations into the equations of motion and simplifying yields
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where

A

i s an] =

Connj

anj

—L 13
Con 13)

amnj =

Making use of the orthogonality condition, we multiply Eq. (10) by «,,cosA,x cos s6, Eq. (11) by
B.sinA,x sin 56, and Eq. (12) by sinA,x cos s6. This yields a set of equations

M;; q; + (Ky —cosPtQ;)q; =0 (14)
where M, K, and Q,, are diagonal matrices and ¢, and ¢, are column vectors consisting of the
q my's and g,,,'s respectively.

The subscripts 7, s, i, m, n, j, I and J have the following ranges
r,s,m,n=1,2,3,4,--- N
i,j=12,3

I1,J=1,2,3,4,--,(N XN x3) (15)
where I and J contain all possible combinations of r, s, i and m, n, j respectively.

The diagonal matrices M, K;; and @), are given as

L 2” . . . .
M, = Q; Oy cosA,x oS sO cos Amx cos n@+ sin A, x sin 50 sin A, xsin n6
I o o /i 17

+sinA-x cos s sindnx cos n6) d6dx = | T 2T (16)
Ky =ofMy (17)
Oy = 1 Am JL jzn 9 (N5 cosAmx cos nb) sinA, x cos s6 dO dx
[ 0% ox
1 1 .
—Eﬂtp—ﬂramNs if I=J
t
=lo it 1] (18)

3. Stability analysis

Eq. (14) is in the form of a second order differential equation with periodic coefficients of the
Mathieu-Hill type. The regions of unstable solutions are separated by periodic solutions having
period T and 2T with T=27/P. The solutions with period 2T are of greater practical importance as
the widths of these unstable regions are usually larger than those associated with solutions having
period 7. Applying Bolotin's method (see Bolotin 1964), a first approximation of the periodic
solutions with period 2T can be sought in the form

F=asin £+ bcos £ (19)
2 2
where a and b are arbitrary vectors.

Substituting Eq. (19) into Eq. (14) and equating the coefficients of the sin Pt/2 and cos Pt/2
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terms, a set of linear homogeneous algebraic equations in terms of a and b can be obtained. The
conditions for non-trivial solutions are given by

1 1
KIJ _EQU _ZPZMIJ 0
det 1 1 =0 (20)
0 KIJ+E'QU_IP2M”

Rearranging the above equation, the standard form of a generalized eigenvalue problem is
obtained

1 1
-p? . =0 (21)

det 1

where 0 is a N XN null matrix. As the matrices K, Q and M are diagonal, the eigenvalues of Eq.
(21) can be immediately deduced.

4. Numerical results and discussion

A shell resting on an elastic foundation can be viewed as resting on elastic springs having
spring constants k;, k, and k; acting in the u, v and w directions respectively. For an elastic
foundation of homogeneous material and uniform thickness that is defined by a modulus of
elasticity E; and a Poisson's ratio v, an approximate first-order estimate is such that k, and k, are
proportional to the foundation shear modulus G; and ; is proportional to the foundation elastic
modulus E;. In the present analysis, the special situation is adopted where k,=k,=k,=k, which is not
an unreasonable approximation if one wishes to explore the overall influence of an elastic
foundation on a shell. The non-dimensional excitation frequency parameter p is defined as

p :p[ﬂ(}g_‘ﬁ)m 22)

The values of 7, are chosen to be in terms of 7, which is the critical buckling load of a simply-
supported circular cylindrical shell subjected to static compressive axial load. For cylindrical shells
of short to intermediate length, as are the cases used here, the buckling load as given by
Timoshenko and Gere (1961) is

Eh?

" Ba- AR *)

cr

and can be nondimensionalized as

L (1-¥
Ner =P, (_Eh ] (24)
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If v is taken to be 0.3,

e = 0.5507 % (25)

Each unstable region is bounded by two curves originating from a common point from the p
axis with 1,=0. The two curves appear at first glance to be straight lines but are in fact two very
slightly “outward” curving plots. For the sake of tabular presentation, the angle subtended, @, is
introduced. It is calculated based on the arctangent of the right-angled triangle, abc, obtained by
halving the whole unstable region as shown in Fig. 2. This angle gives a good measure of the size
of the unstable region as calculations done with the smaller similar triangle, ab'c’ (see Fig. 2), are
within 0.2%.

As there are presently no results in open literature for the dynamic stability of cylindrical shells
resting on elastic foundations, comparison of results in this study is made with those of Paliwal et
al. (1996) for free vibration analysis of cylindrical shells resting on Winkler foundations. This
comparison is to ensure that elastic foundation effects have been correctly integrated into the
present formulation. The comparison is shown in Table 1. Present results in this free vibration
study are obtained by finding the roots of the C; matrix of Eq. (6). The results of Paliwal et al.
(1996) used for comparison are obtained by solving the frequency determinant defined in that
paper. It is observed from Table 1 that good agreement is achieved. Present results are generally
slightly higher than those of Paliwal et al. (1996) and is due to the different manner in which k is
considered in the formulation. This will be discussed subsequently.

The results for the dynamic stability in the transverse, longitudinal and circumferential modes
are presented in Tables 2 to 4 for an isotropic cylindrical shell of Poisson's ratio, v=0.3, and linear
parameters L/R=2 and h/R=0.01 with the axial loading being 1n,=0.5 7. Table 2 presents the
results for modes (1,1), (1,2) and (1,3). Table 3 presents the results for modes (2,1), (2,2) and (2,3)
and Table 4 presents the results for modes (3,1), (3,2) and (3,3). Fig. 3 gives a graphical
illustration for the case of mode (1,1). In Fig. 3, the three diagrams are of the same scale so as to

NJ/N,

MNo

0.50

0.25

> p
Fig. 2 An unstable region in the N/N,-p plane
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%)
Table 1 Comparison of frequency parameter w{pR%(1-V?)/E| for a cylindrical shell resting on an

elastic foundation and having linear parameters of #/R=0.01, L/R=2 under no external loading

Present Paliwal et al. (1996)
(mn)=(1,1) transverse 0.57285303 0.57283785
longitudinal 1.24794099 1.24792574
circumferential 1.94826188 1.94825045
(m,n)=(1,2) transverse 0.32764303 0.32762793
k=5%107 longitudinal 1.60244035 1.60242642
circumferential 2.65637441 2.65636585
(m,n)=(1,3) transverse 0.19635443 0.19634044
longitudinal 2.05685248 2.05684089
circumferential 3.49471603 3.49470933
(m,n)=(1,1) transverse 0.57289667 0.57286631
longitudinal 1.24796103 1.24793052
circumferential 1.94827471 1.94825185
(mn)=(1,2) transverse 0.32771932 0.32768913
k=1x10" longitudinal 1.60245595 1.60242810
circumferential 2.65638382 2.65636670
(m,n)=(1,3) transverse 0.19648171 0.19645375
longitudinal 2.05686463 2.05684146
circumferential 3.49472319 3.49470978

Table 2 Unstable regions for a cylindrical shell resting on an elastic foundation and having linear
parameters of #/R=0.01, L/R=2 and loading 1,=1/27,,. Axial half-wave number m=1

(mn)=(1,1) Transverse Longitudinal Circumferential
k=0 Pt. of origin p 1.1533206 2.4971456 3.8968799
Angle subtended ©x10™ 38.289150 6.5378380 1.9126257
k=5%x107° Pt. of origin p 1.1611840 2.5007872 3.8992144
Angle subtended ©x10™ 38.030287 6.5283192 1.9114806
k=1x10" Pt. of origin p 1.1689946 2.5044234 3.9015475
Angle subtended ©x 107~ 37.776604 6.5188419 1.9103376

(m,n)=(1,2) Transverse Longitudinal Circumferential
=0 Pt. of origin p 0.6715663 3.2053060 5.3129618
B Angle subtended @x 107 80.882591 2.2872763 1.1599082
k=5% 10" Pt. of origin p 0.6849827 3.2081438 5.3146743
B Angle subtended ©x10™ 79.307661 2.2852532 1.1595344
k=1x10~ Pt. of origin p 0.6981414 3.2109791 5.3163863
B Angle subtended @x 10™ 77.821289 2.2832354 1.1591610

(mn)=(1,3) Transverse Longitudinal Circumferential
=0 Pt. of origin p 0.4221632 4.1138360 6.9895402
- Angle subtended ©x107° 1420.9714 7.7761903 6.1245746
k=5% 10 Pt. of origin p 0.4431950 4.1160474 6.9908420
B Angle subtended ©x 107 1354.5873 7.7720124 6.1234341
k=1x 10~ Pt. of origin p 0.4632729 4.1182577 6.9921436

Angle subtended ©Xx 107 12967.152 7.7678412 6.1222942
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Table 3 Unstable regions for a cylindrical shell resting on an elastic foundation and having linear
parameters of #/R=0.01, L/R=2 and loading 71,=1/27,,. Axial half-wave number m=2

(m,n)=(2,1) Transverse Longitudinal Circumferential
=0 Pt. of origin p 1.7210080 3.9732339 6.6377789
B Angle subtended ©x 107 1485.1342  29.744932 5.9145634
k=5% 10~ Pt. of origin p ; 1.7262875 3.9755235 6.6391497
Angle subtended ©x 10" 1480.6123 29.727801 5.9133422
k=1x 107 Pt. of origin p . 1.7315509 3.9778119 6.6405203
Angle subtended ©@X 10" 1476.1315 29.710700 5.9121218

(m,n)=(2,2) Transverse Longitudinal Circumferential
k=0 Pt. of origin p 1.3440866 4.5439867 7.5204159
B Angle subtended ©x 107 1847.0903 37.901876 7.3644303
k=5 10~ Pt. of origin p ; 1.3508400 4.5459889 7.5216258
Angle subtended ©x 10~ 1837.9206 37.885183 7.3632456
k=1x 107 Pt. of origin p ] 13575599 4.5479903 7.5228355
Angle subtended ©x 10° 1828.8860 37.868513 7.3620615

(mn)=(2,3) Transverse Longitudinal Circumferential
=0 Pt. of origin p 1.0183185 5.2747960 8.7838517
- Angle subtended ©x 107 2458.8999 26.137372 7.0168727
k=5% 10~ Pt. of origin p ; 1.0272160 5.2765209 8.7848876
Angle subtended @10~ 2437.8609 26.128828 7.0160453
k=1x 10~ Pt. of origin p ; 1.0360370 5.2782452 8.7859234
Angle subtended ©X 10~ 2417.3529 26.120292 7.0152181

Table 4 Unstable regioﬁs for a cylindrical shell resting on an elastic foundation and having linear
parameters of #/R=0.01, L/R=2 and loading 1,=1/27,,. Axial half-wave number m=3

(m,n)=(3,1) Transverse Longitudinal Circumferential
k=0 Pt. of origin p 1.8841598 5.7224602 9.6582479
B Angle subtended ©x 107 3187.5130 9.3507182 3.2278347
k=5% 10~ Pt. of origin p . 1.8889834 5.7240502 9.6591901
Angle subtended ©x 10" 3179.4471 9.3481208 3.2275199
k=1x 107 Pt. of origin p . 1.8937946 5.7256398 9.6601321
Angle subtended ©x 10~ 3171.4421 9.3455256 3.2272051

(m,n)=(3,2) Transverse Longitudinal Circumferential
k=0 Pt. of origin p 1.6742565 6.1209159 10.272028
B Angle subtended @x 107 3528.2675 22.160097 4.0356894
k=5% 10" Pt. of origin p . 1.6796830 6.1224024 10.272914
Angle subtended @x10” 3516.9966 22.154716 4.0353414
k=1x10" Pt. of origin p . 1.6850920 6.1238886 10.273800
Angle subtended ©x 10” 3505.8330 22.149340 4.0349935

(m,n)=(3,3) Transverse Longitudinal Circumferential
k=0 Pt. of origin p 1.4307637 6.6992358 11.219003
- Angle subtended ©x 107 4090.6765 25.056484 4.6458033
k=5% 10~ Pt. of origin p ) 1.4371098 6.7005940 11.219814
Angle subtended ©x 10 4072.8852 25.051405 4.6454674
=1x 107 Pt. of origin p 1.4434281 6.7019520 11.220625

Angle subtended ©X 107 4055.3240 25.046329 4.6451317
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Fig. 3 Unstable regions for a cylindrical shell resting on an elastic foundation and with linear parameters
of A/R=0.01, L/R=2 and loading n,=1/2n,,. (m, n)=(1, 1). © ——’, k=0, ‘- * k=5%1077, ‘- >k
=1x107*

give a better gage to the relative shifts in the unstable regions between the three modes. The
higher modes of n>3 are not considered due to limitations of Donnell's theory for high
circumferential wave numbers in short to moderate length cylindrical shells.

The results show that the sizes of the unstable regions associated with the transverse mode are
much larger than those associated with the longitudinal and circumferential modes. It is observed
from the results that the unstable regions associated with the three modes generally shift to the
right with reduction in sizes as the value of k is increased. This is to be expected as the elastic
foundation causes the overall shell stiffness to be increased. It is also observed that for any
particular mode, the percentage shift in the point of origin corresponds to the percentage decrease
in the size of the unstable region. Also, the right shift in the points of origin and the decrease in
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the sizes of the unstable regions are found to be proportional to the increase in the k values.

The results show that the value of k influences the transverse mode considerably. The
longitudinal and circumferential modes are also influenced but to a much lesser extent. This
observation is in line with the conclusions of Paliwal e al. (1996) for the free vibration analysis
of stationary circular cylindrical shells on a Winkler foundation. To relate the present work to
vibration analysis, one only has to look at the points of origin of the unstable regions which
correspond to twice the natural frequency of that mode. The present work shows that the dynamic
stability results associated with longitudinal and circumferential modes are also influenced to a
larger extent by k when compared with the free vibration results presented by Paliwal ez al. (1996)
in which the longitudinal and circumferential modes remained almost unaffected. This can easily
be traced to the formulation of Paliwal et al. (1996) which neglected the effects of £ in the u and
v directions thus isolating the longitudinal and circumferential modes to the effects of the elastic
foundation to a certain degree.

An interesting observation from the results of Tables 2 to 4 is the influence of increasing &
values on the results of the transverse mode of vibration for different values of the circumferential
wave number n. It is observed that for a particular axial wave number m, increase in points of
origin and decrease in the sizes of the unstable regions due to increased k values are more
pronounced for modes with higher n values. This observation also applies for the longitudinal and
circumferential modes but the phenomenon is not as pronounced. The converse of the previous
observation is true for increasing values of axial wave number m. In this instance, the effects of
increased k values (for a fixed n) is diminished for higher axial wave numbers m. As in the
previous observation, this observation applies for all three modes of vibration but is most
pronounced for the transverse mode.

5. Conclusions

The dynamic stability of simply-supported cylindrical shells resting on elastic foundation has
been examined. For a particular combination of m and n, the effects of the foundation is always
more pronounced on the transverse mode than on the longitudinal and circumferential modes. The
effects of the foundation on the dynamic instability regions are also different for different
combinations of m and n. For a fixed m, higher n values will be more affected by changes in the
foundation stiffness. For a fixed n, lower m values will be more affected by changes in the
foundation stiffness.
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