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Shape optimization by the boundary element
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Abstract. This paper is concerned with shape optimization problems by the boundary element
method (BEM) emphasizing the use of a reduced basis reanalysis technique proposed recently by the
author. Problems of this class are conventionally carried out iteratively through an optimizer; a
sequential quadratic programming-based optimizer is used in this study. The iterative process produces
a succession of intermediate designs. Repeated analyses for the systems associated with these
intermediate designs using an exact approach such as the LU decomposition method are time
consuming if the order of the systems is large. The newly developed reanalysis technique devised for
boundary element systems is utilized to enhance the computational efficiency in the repeated system
solvings. Presented numerical cxamples on optimal shapc design problems in electric potential
distribution and elasticity show that the new reanalysis technique is capable of speeding up the design
process without sacrificing the accuracy of the optimal solutions.
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1. Introduction

The BEM has become a popular tool in solving problems in both science and engineering. Its
main advantage is that for linear problems only discretization of the boundary is required. Thus,
meshes can be easily generated and the number of degrees of freedom is often much less than that
using a domain-discretized method such as the finite element method or the finite difference
method. However, systems discretized by the BEM are usually dense and unsymmetric, whose
solvings are time consuming.

Recently, Leu and Mukherjee (1993), Leu (1994), and Wei er al. (1994) have carried out
optimal shape design for elastic and inelastic problems by the BEM. During an optimization
process, the optimal solution is achieved iteratively, where repeated analyses for the intermediate
designs are required. Hence, an accurate and efficient reanalysis method is very desirable in that it
can speed up the whole design process. The objective of this paper is to employ a boundary
element reanalysis technique recently proposed by Leu and Tsai (1995) to enhance the
computational efficiency in the repeated systems solvings during the optimization process.

The newly developed reanalysis method for boundary element systems adopted in this study is

¥ Associate Professor



74 Liang-Jenq Leu

based on a reduced basis formulation. Its efficiency and accuracy in reanalysis problems have
been verified in Leu and Tsai (1995). A brief review of the method will be given later. There are
few other reanalysis techniques being proposed for boundary element systems as discussed in Leu
and Tsai (1995). It is fair to say that the most important goal of any reanalysis technique is its use
in design optimization problems to enhance the computational efficiency without sacrificing the
accuracy of the optimal solutions. Unfortunately, to the best knowledge of the author, there is no
such kind of application being reported in the literature. The present paper is an attempt to bridge
this gap.

2. Reduced basis reanalysis method for boundary element systems

This section will briefly review the reduced basis reanalysis method for boundary element
systems proposed by Leu and Tsai (1995). For further details and numerical application of the
method, the reader is referred to the above reference.

2.1. Statement of reanalysis problem

As described before, an optimal design is obtained through an iterative process. Let's assume
that the boundary element system corresponding to the initial design be written as (e.g., Brebbia
and Dominguez 1992)

Agxy=b, (1)

where the system matrix A, is unsymmetric and is of nXn (order n); the system unknowns x, is
an n X1 vector; and the right-hand side b, is an n X 1 vector. The above system will be referred to
as the reference system hereafter.

Direct methods commonly used for solving Eq. (1) include the Gaussian elimination method
and the LU decomposition method (e.g., Schwarz 1989). Suppose that the latter method is used,
and the system matrix has the following factored form:

A():L()Uo (2)

where L, is a lower triangular matrix and U, is an upper triangular matrix. Having obtained
Eq. (2), the unknowns x, can then be found by a backward followed by a forward substitutions.

During an optimal design process, repeated analyses for the intermediate designs are required.
Let the boundary element system for a typical intermediate design be expressed as

Ax =b (3)

This system can also be solved by the Gaussian elimination method or the LU decomposition
method, but such a solving is inefficient when the number of unknowns #n is large. An
approximate but efficient method for solving Eq. (3) will be reviewed in the next subsection.

2.2. Reduced basis reanalysis method
The reduced basis method proposed by Leu and Tsai (1995) for reanalyzing boundary element

systems is briefly reviewed in the following,.
Let the unknown vector x in Eq. (3) be approximated by
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x=x;, =@c or xa=2ci¢i 4)
i=1
In the above, the subscript “a” indicates that the solution is only approximate, @ is an nXs
matrix composed of s basis vectors, and ¢ is a column vector composed of the generalized
coefficients ¢, (i=1, 2, ---, s).
The basis vectors ¢,s are generated as follows. First, premultiply Eq. (3) by A, ' to yield

I +Bx=x )
where B=A, 'AA, AA=A - A,, x=A, 'b. Then, it can be obtained from Eq. (5) that
x=(I+B)'x =I-B+B*-B*+-)x (6)
Finally, the terms in the series neglecting the signs are adopted as the basis vectors; namely
P=[¢, ¢ 05 ]=lx .Bx ,Bx , ] ™

Note that the generation of ¢;s according to Eq. (7) is computation-inexpensive as explained
below. Using the relation ¢=B¢, , derived from Eq. (7) and the definition of B, one can show
that

¢, =A;'AAG_, or Ay =AAP, (@i>1) )

As the decomposed form of A, has been obtained in Eq. (2), the calculation of ¢, (i>1) only
involves the multiplication of AA by ¢, , followed by a backward and a forward substitutions.
Note that ¢, is simply defined as A,'h, which requires only a forward and a backward
substitutions.

By making use of the approximation given in Eq. (4), the reduced system corresponding to
Eq. (3) can be derived as follows. Substituting Egs. (4) into (3) yields the residual vector,

R=Adc —b 9)

If simply let R=0, the resulting system, Adc=b, is overdetermined, which cannot be solved
directly. In general, the reduced system can be formed by letting the projection of R onto a set of
independent vectors y; (i=1, 2, ---, s) equal zero. This results in

YTAdc =¥Th (10)

which is equivalent to premultiplying the aforementioned overdetermined system by ¥’. Note that
Eqg. (10) is a system of order s, being usually much smaller than the original one given in Eq. (3).
They can be solved by the LU decomposition method. After solving for ¢ from Eq. (10), the
approximate solution can be obtained using Eq. (4).

Leu and Tsai (1995) went one step further concerning the above procedure. They proposed a
Gram-Schmidt orthonormalization procedure as listed in Table 1 to modify the set of basis vectors
¢,s defined by Eq. (7) and to generate another set of vectors ;s such that the new ¢;s and ;s
satisfy

PIAD=1 (11)

where ¥ is an n X s matrix composed of y; (i=1, 2, ---, s) and I is the identity matrix of order s.
Note that in step 2, || || represents the L, norm. The L, norm of a vector is defined as the sum
of the absolute value of its components. The normalization performed in step 2 is to make ||¢,=1.
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Table 1 Gram-Schmidt orthonormalization
procedure with respect to A

’ i—1 .
1. ¢,=¢, ~ Z,;lak ¢, with o, =yfA¢,

2. ¢,=9/116ll,

3.y, =¢, '

4 =y, _z;:lﬁk ¥, with B =ylAg,
5. v =y/[yA¢]

Other norms can be used also; the L, norm, however, is cheaper to calculate.
With the use of the new ¢;s and ;s generated according to Table 1 in forming the reduced
system, Eq. (10) becomes the following uncoupled form:

c=¥Th or ¢=ylb (i=1,25) (12)

where use has been made of Eq. (11). Notice that when one more basis vector, say ¢, is added,
only its coefficient ¢; needs to be calculated; the previous calculated coefficients ¢, (k=1, ---, i — 1)
remain unchanged.

In applying the above reduced basis method, a common question to be asked is that how many
basis vectors should be used to obtain accurate solutions. A computation-inexpensive convergence
criterion is:

e |

Ec B < €c (]3)
Ef lc: |
i=1
where e, is the error tolerance of E,. Convergence can be checked by monitoring the value of E,
each time when the number of basis vectors is increased by one. This criterion can be derived as
follows. Let's begin with the s-term approximation: x,=c,¢,+c,¢+ ---c,@.. It is expected that as x,

converges the contribution of the last term ¢, to x, would be very small. Therefore, the number
of basis vectors, s, can be chosen such that

E. = lesos |l
X = N
“Z/::]Ck¢k“1

where e, is the error tolerance of E,. Since all the ¢;s have the same L, norm of 1 as imposed in
step 2 of Table 1, Eq. (14) can be simplified approximately to Eq. (13). Note that according to
Leu and Tsai (1995), accurate solutions can be obtained if the tolerance e, is taken to be 0.01.
Therefore, this value will be adopted in all the numerical examples presented later.

< e (14)

3. Reanalysis-based optimal design

In the literature, therc are some publications on reanalysis techniques for boundary element
systems. However, there is no work on the implementation of such techniques in optimization
problems. It is reminded that one important objective of any reanalysis method is to enhance the
efficiency of optimal design processes. Thus, the performance of any reanalysis method should
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not only be evaluated using reanalysis problems, but, more important, also be evaluated using
optimization problems. This section discusses how to implement the reduced basis reanalysis
method in optimal design problems.

3.1. Optimal design problem and optimizer

A typical nonlinear optimization problem can be posed as follows:

min f(z), z€R" (15)
subject to
hi(z)=0 fori=1, -, n (16)
gi(z)<0 for j=1,-,n a7
z; <z <z, forl=1,m (18)

where f(z) is the objective function; z is the design variable vector with m components; &, and g;
are, respectively, the equality and inequality constraint functions; z, and z, are the lower and
upper bounds for the design variable z; and n,, and n, are, respectively, the numbers of equality
constraints and inequality constraints.

In general, an optimal design is achieved in an iterative manner through an optimizer. Typically,
an optimizer uses nonlinear programming to propose a new design by providing a better value of
the objective function without violating the constraints of a problem. In each design cycle, say the
kth step, the input to an optimizer includes z,, zy, 2., fizy), 2(z0), g(z0), and possibly the gradients
of the objective function and constraint functions with respect to z: Vf, Vh, Vg, also evaluated at
7. The optimizer then gives a new set of design variables z,., and also indicates whether the
gradients of f, g, and h; are needed in the next design cycle. If the new design is acceptable, the
process stops. Otherwise, the iterative process is continued, producing a succession of designs,
until an optimal design is obtained.

The optimizer used in this work is called FSQP, which was developed by Zhou and Tits (1994).
A brief description of FSQP is given below; further details are available in the above reference.
FSQP is a Fortran code for solving constrained nonlinear optimization problems on the basis of
sequential quadratic programming. There are two line search algorithms that are implemented in
FSQP, among which the Armijo type arch search is chosen in the present work.

3.2..Use of reanalysis technique in an optimal design process

The reanalysis technique reviewed in section 2 finds two applications in the optimal design
process discussed above. First, it can be applied to reanalyze the systems corresponding to the
intermediate designs. In the whole optimization process, only the analysis for the initial design is
performed by the LU decomposition method. Namely, the reference system defined by Eq. (1) is
that associated with the initial design. System solvings for all the intermediate designs are carried
out by the reanalysis method.

Second, the reanalysis technique can be used to calculate the gradients of the objective function
and constraint functions. Typically, the objective function and constraints depend on quantities
such as displacements or stresses for elastic problems and are, therefore, implicit as well as
explicit functions of the design variables. The gradients of these functions thus cannot be obtained
by direct differentiation of these functions with respect to the design variables. In the literature,
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three approaches have been commonly used for calculating the above gradients: the finite
difference approach (FDA), the adjoint structure approach (ASA), and the direct differentiation
approach (DDA). For more details on the three methods, the reader is referred to Haug et al.
(1986). The FDA is convenient to use in conjunction with the reduced basis reanalysis technique
to obtain the above gradients, as will be explained below.

The FDA is employed in this study to calculate the gradients of the objective and constraint
functions. To this end, m perturbed systems for each intermediate design need to be defined first.
Each perturbed system corresponds to the design variables where only one design variable is
increased by 0.1 percent of its value from the intermediate design variables, and the other (m — 1)
design variables remain unchanged. Next, analyses for these m perturbed systems are carried out
by the reanalysis method, again with reference to the system associated with the initial design
since this is the only system that has been factored. The obtained quantities such as displacements
or stresses for each perturbed system can then used to evaluate the objective function and
constraints for each perturbed design. Finally, the forward FDA is used to calculate the gradients
of the objective function and constraints with respect to each design variable.

4. Numerical examples and discussions

The accuracy and efficiency of the reduced basis reanalysis method have been verified by Leu
and Tsai (1995) through several reanalysis problems. Its accuracy and efficiency in shape
optimization problems are evaluated here using two example problems; one is an electric potential
distribution problem and the other is a thin elastic plate with a cutout subject to biaxial tensions.
For all examples, quadratic elements are used. Therefore, the order of boundary clement systems,
n, equals 2N, for the electric potential distribution problem and 4N, for the elastic plate problem,
where N, is the total number of quadratic elements used. Note that all the computations reported
below are carried out on a 486-DX66 personal computer.

4.1. Example 1: electric potential distribution

As depicted in Fig. 1, the problem here concerns electric potential distribution in a circular disk
of radius R=1 m with a cutout inside the disk. As is known, such a potential problem is governed
by the Laplace equation. The potentials are 100 V (Volts) and 0 V for the inner (cutout) and outer
surfaces respectively. Due to symmetry, only half of the disk is shown and analyzed here. With
the x and y axes centered at the center of the cutout, a variety of smooth curves (e.g., a circle, an
ellipse or a rectangle with rounded corners) can be represented by the equations (Lekhnitski 1968,
Sadegh 1988):

x'=a(cos 8+ 1cos36) (19)
y'=a(Bsin - nsin36) (20)

where a controls the size, 1 the shape and f3 the aspect ratio of the cutout. For example, with B=1
the shapes of the cutout for various 7's are shown in Fig. 2.

The analytical solution is easy to obtain for the case where the shape of the cutout is a circle,
Le., when =1 and n=0. Assuming that 4=0.4 m, then in this case the exact potential distribution
along line AB has the form:
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Fig. 1 Electric potential distribution problem
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Fig. 2 Shapes of cutout for various ns with =1
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which maps the unit disk |z]=1 onto the unit disk |w|=1, and maps the cutout |z — 0.4]=0.4 onto to
a concentric disk |w|=0.5. The solution in the w-plane can then be obtained easily, which in turn
can be used to determine the solution in the z-plane.

Let us take 8 and 7 as the design variables. Since the exact solution for the design variables of
B=1 and n=0 has been given in Eq. (21), an optimal shape design problem can be posed as
follows:

min f(x) = [ (U (x, 0) - U* (x, 0))dx (23)
XA
with the side constraints,
05<B<15 (24)
~0.15<n<0.1 (25)

The ranges for f and n arc large enough to allow the shape of the cutout to vary to a large extent.
For example, with B=1, the shapes of the cutout for various ns have been shown in Fig. 2.
Concering Eq. (23), the question being asked here is: For what values of 8 and 7 (i.e., shape of
the cutout) is the potential distribution along line AB as close as possible to the potential
distribution given in Eq. (21)? Obviously, the optimal solutions for this problem are =1 and n=0),
which correspond to U°. This optimal design problem is somewhat artificial. However, it is still
useful for evaluating the accuracy and efficiency of the discussed reanalysis-based optimal design
procedure.

Table 2 presents results obtained based on the reduced basis reanalysis method and the LU
decomposition method. For the latter results, it means that all the systems for each intermediate
design including the one corresponding to that intermediate design and those corresponding to its
m perturbed designs are solved by the LU decomposition method. The numbers of elements used
for n=200 and n=400 are 100 and 200, respectively. For the 200-element mesh, there are 38 on
AB, 50 on BC, 12 on CD, and 100 on DA. For the 100-element mesh, half of the above elements
are used for each side. The elements are uniformly distributed on AB, CD, and DA, and are
distributed with an equal 6 on BC for both meshes.

The efficiency of the proposed method is clearly seen from Table 2, in which the speed-up is
defined as the CPU time using the LU decomposition method divided by that using the reanalysis
method. Its accuracy is also acceptable although slightly lower than that using the LU
decomposition method. Note that the initial design variables are chosen to be their upper bounds: j3
=1.5 and n=0.1. Let's define N, as the number of calculating both the objective function and its
gradients and N, as the number of calculating only the objective function for the whole
optimization process. Then, from Table 2, the proposed method seems to converge faster than the
LU decomposition method. This may not be true in general because solutions obtained by the
reanalysis method are only approximate. The phenomenon may depend on the optimizer chosen.
Since there are two design variables in this problem, the total number of analysis would be 3N+
N,. Therefore, for the proposed procedure, only one analysis is carried out by the LU
decomposition method and the other (3N,+N,— 1) by the reduced basis method. The number of
basis vectors, s, required to satisfy the specified error tolerance e=0.01 of Eq. (13) may be
different for the (3N,+N, — 1) reanalyses. Their average is calculated and also given in Table 2. As
can be seen, the averages of s are small for both =200 and 400. This indicates that the basis
vectors used are of good quality for approximating the solution for every reanalysis during the
whole optimal design process.
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Table 2. Optimal solutions for electric potential distribution

Present LU Speed-up

CPU (sec) 405.57 588.97 1.45
Order Optimal (B, 1) (1.0226, —0.0234) (0.9992, 0.0004)
n=200 A @8, 9) (10, 10)

Average st 4.03

CPU (sec) 2225.69 4326.48 1.94
Order Optimal (8, n) (0.9942, —0.0110) (0.9964, 0.0003)
n=400 (N1, Ny (10, 12) (11, 16)

Average s 4.49

TN1=number of calculating both the objective function and its gradients
'N,=number of calculating only the objective function
*s=number of basis vectors used

4.2. Example 2: Elastic plate with cutout

Consider a thin square plate with a cutout in the center. Due to symmetry, only one quarter of
the plate needs to be modeled, which is shown is Fig. 3. The shape of the cutout is again
described by Eqgs. (19) and (20), and B and 1 are again treated as the design variables. The plate
is subjected to biaxial tensions z,=5MPa and #,=6MPa under plane stress condition. Other data are
as follows: a=1 m, L=10 m, Young's modulus £=200 GPa, and Poisson's ratio v=0.25.

Two meshes are considered, one with 50 elements and the other with 100 elements; their orders
are 200 and 400, respectively. For the 50- and 100-element meshes, there are, respectively, 10 and
20 elements on each of the five sides, including the cutout. The elements along each straight side
are uniformly distributed and the elements along the cutout are distributed with an equal 6 angle.

a(B+n)

fe————
Symmetry a(l+n)

Fig. 3 Elastic plate with cutout
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Two optimal design problems are investigated for the thin plate example. Both aims to
minimize the objective function,

f=

Ll J,, (@) -0 .yds 26)

where 0B, is the cutout boundary, o, is the tangential stress on 0B,, o, is the mean value of o, and
L. is the length of dB,. The meaning of minimizing f is to require the tangential stress on the
cutout to be as uniform as possible.

In the first design problem, 8 is chosen as the single design variable with 0.5<f8<2 and for a
fixed n=0. In the second design problem, 7 is chosen as the single design variable with —0.15<n
<0.1 and for a fixed B=1.2. The theoretical optimal solution for both design problems is (8, n)=(1.
2, 0). In this case, the shape of the cutout is an ellipse, i.e., n=0, with the lengths of the axes being
1 m and 1.2 m along the x and y axes, respectively. The above solution can be found in
Timoshenko and Goodier (1970). Assuming an infinite plate, they showed that for an elliptical
cutout with @ and b being the lengths of the axes along the x and y axes, if

ty _ b

% =2 (27)
then the tangential stress o, will be uniform and its value equal ¢,+t,. As £=5MPa, t,=6MPa, and a=
1 m are used, the optimal value of b will be 1.2 m; therefore the optimal S=a/b=1.2. Tables 3 and

Table 3. Optimal solutions for elastic plate: Initial §=0.5

Present LU Speed-up

CPU (sec) 92.98 166.15 1.79
Order Optimal (B) 1.186 1.178
n=200 N, V) @, 2) 4, 4)

Avcrage s 3.56

CPU (sec) 420.02 1111.42 2.65
Order Optimal (B) 1.176 1.183
n=400 (Ny, N5) 4, 2) 4, 4

Average s 3.56

Theoretical optimal =12

Table 4 Optimal solutions for elastic plate: Initial n=0.1

Present LU Speed-up

CPU (sec) 46.57 68.71 1.48
Order Optimal (1) —-0.025 0.025
n=200 Ny, NY) 2, 1 2 1

Average s 2.75

CPU (sec) 223.16 459.84 2.06
Order Optimal (n) —-0.025 0.025
n=400 (N, Ny) 2,1 2, 1

Average s 25

Theoretical optimal n=0
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4 present results for these two design problems. Again, the efficiency and accuracy of the reduced
basis reanalysis method in optimal design problems is verified.

5. Conclusions

This paper has attempted shape optimization problems by the BEM using a newly developed
reanalysis technique. The reanalysis method is based on a reduced basis formulation. There are
several merits with the method. In particular, the reduced system has been uncoupled through an
orthonormalization procedure; this results in a computation-inexpensive convergence criterion for
deciding adaptively the required number of basis vectors. Such an automatic determination is very
desirable since the required number of basis vectors will vary according to how much the design
changes during an optimal design process.

Implementation of the reduced basis reanalysis method in an optimal design process has been
discussed in detail in this paper. In such a process, the reanalysis method is mainly used for
solving efficiently the boundary element systems encountered. Presented example problems on
shape optimization demonstrate that the new reanalysis technique does enhance the efficiency of
an optimal design process without losing the accuracy of the optimal solutions.
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