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Convergence of the C* family of finite elements
and problems associated with forcing continuity
of the derivatives at the nodes

B. Bigdelit and D.W. Kellyt

School of Mechanical and Manwfacturing Engineering,
The University of New South Wales, Sydney, NSW 2052, Australia

Abstract. A C*-convergence algorithm for finite element analysis has been proposed by Bigdeli and
Kelly (1997) and elements for the first three levels applied to planar elasticity have been defined. The
fourth level element for the new family is described in this paper and the rate of convergence for the C*-
convergence algorithm is investigated numerically. The new family adds derivatives of displacements
as nodal variables and the number of nodes and elements can therefore be kept constant during
refinement. A problem exists on interfaces where the derivatives are required to be discontinuous. This
problem is addressed for curved boundaries and a procedure is suggested to resolve the excessive inter-
element continuity which occurs.
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1. Introduction

A new family of finite elements has been introduced by Bigdeli and Kelly (1996 and 1997).
This family of higher-order quadrilaterals is primarily developed for the finite element analysis of
plane elasticity problems, using the displacement method formulation. In this family the number
of nodes and the number of elements are fixed, and refinement is achieved by adding derivatives
of the nodal displacements as degrees of freedom at the nodes. The family has been called the C*
family of elements in which a superscript refers to the level of continuity of displacement and
derivatives of displacement at the nodes. In the previous papers the first three elements of this
family (i.e., the C°, C'* and C** elements) have been described and typical applications of the
family have also been presented. The C° element enforces continuity only of displacements and is
the standard 4-node finite element for planar elasticity. The C'* element is the first new element
and enforces continuity of the first derivatives of displacement at the nodes, etc.

In the previous work it was shown that the C* family has elements equivalent to every second
element in the p-family with the first four elements being linear, cubic, pentic and seventh order.
However, the C* family has degrees of freedom only at corner nodes where the sharing of
degrees of freedom between elements is maximised. The C* algorithm is therefore guaranteed to
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exhibit a faster rate of convergence than a p-convergence algorithm based, for example, on the
serendipity family of elements if the necessary degree of discontinuity of derivatives is
incorporated into the assembled finite element model.

In this paper the fourth element of the new family (i.e., the C** element) is described and the
higher rate of convergence of the new approach is demonstrated.

A problem associated with these elements is that continuity of derivaties is enforced at the
nodes, and this might not be correct if the node lies on an interface between regions with different
thickness or material properties, or if the node is at a point of strain singularity. Bigdeli and Kelly
(1997) have proposed a solution in which multiple nodes are defined at these points and Lagrange
multipliers used to enforce continuity of only those parameters which are required to be
continuous at the nodes. In this paper we generalise the formulation for curved boundaries and
apply the procedures to a reinforced hole. Convergence for Mode I loading on a crack is also
considered to demonstrate the flexibility of the approach.

2. Derivation of the C** element shape functions

Fig. 1 shows first four members of the family of C* elements. The derivation of elements 1 to 3
and an associated isoparametric mapping is discussed by Bigdeli and Kelly (1996, 1997), Bigdeli
(1996). The fourth element of the C* family is a four-node quadrilateral element with 80 degrees
of freedom. According to Fig. 1 there are ten degrees of freedom in each coordinate direction per
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A polynomial which could be used to accommodate 40 d.o.f.'s in each coordinate direction for
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where & and 1) are the intrinsic coordinates — 1< &, n< -1 on the square which is to be mapped
to the real element geometry.

For this element the displacement field is a complete polynomial of degree seven with four

extra terms of degree eight. In order to calculate the 40 constants in Eq. (1), first the derivatives
oU U U U U U &FU FU  FU -
—, =, , , , , , , should be taken. Then substitutin
3 o’ BB i Bn’ o8 28an’ IEm o &
for £ and 1 with their corresponding nodal values (ie, —1 or 1), a system of 40 equations with
40 unknown constants (i.e., a, to ay) is constructed. On solving for the unknowns (using, for

example MATLAB 1992), appropriate shape functions in local coordinates (&, n) are derived




Convergence of the C* family of elements and problems --- 563
which have been reported in Bigdeli (1996).
In general, ‘
N; = .fl(é’ m (=1 .., 40) (2)
and,
40
U=YNU, 3)
i=1
where the nodal degree of freedom set in the first coordinate direction is given by,
U | dU| FU| U U
1o L on |, 0& |, o |, oon |,
U U U U
UT=< 853 1 aézan 1 aéanz 1 arl3 1, ' ;. 4
aUu| oU| JFU| U U @
P AE |, om |, 08 |, o |, aéom |,
U PU U U
9&* |, 9&%m |, a&on’ |, o’ |,

A similar expression can be written in the other coordinate direction (i.e., V).
The element stiffness matrix [£] in its local coordinate system (&, 1) is defined by,

1=] B [D][B]d (area) ®)

in which [D] is an elasticity matrix containing the appropriate material properties, and matrix [B]
contains the derivatives of shape functions with respect to X and Y, and would be a 3 x 80 matrix.

Eq. (5) is numerically integrated, by means of a Gaussian quadrature formula, over the entire
element area in the element intrinsic coordinate system (£, 7). The derivatives in the nodal
variable set remain defined in terms of the intrinsic coordinates. Prior to assembly the stiffness
matrix and load vector are transformed so that derivatives are taken with respect to the global
coordinates X and Y.

3. The rate of convergence

Establishing the superior rate of convergence of the C*-convergence algorithm for a uniform
refinement requires only establishing the reduced number of degrees of freedom compared to the
uniform p-refinement. This has been done in Bigdeli and Kelly (1997) where reductions in the
number of degrees of freedom by factors of 0.6 and 0.57 are determined for simple rectangular
regions in two and three dimensions. The nodes in the new procedure exist only at the corners of
the elements and therefore the sharing of degrees of freedom between neighboring elements is
maximised. Because the new family is equivalent to each second member in a p-convergence
family, convergence can be established from the p-convergence results. Superiority over the h-
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Fig. 1 Four levels of the C* family of elements

convergence method is also established in the p-convergence literature.

To demonstrate the result, consider the stress singularity at the corner of an L-shaped domain.
This problem has become a standard problem to investigate the rate of convergence of different
schemes in the finite element method. It was considered in Bigdeli and Kelly (1997) where the
results reported here for the first three elements in the new family were reported. Gago (1982)
also worked on this problem to develop an ag-posteriori error analysis and a part of his results will
be used in this study. He used an irregular mesh to demonstrate the efficiency of the adaptive p-
convergence algorithm based on the a-posteriori error estimate developed in his work. In this
study, however, we are not concerned about the adaptivity technique in the finite element method.
Therefore, a regular mesh will be analysed only, and the adaptivity in the C*-convergence
procedure is left for future investigations.

The geometry and loading condition for this problem are shown in Fig. 2. The plane stress
condition is assumed with a Poisson's ratio of 0.3. Starting from a uniform mesh consisting of 27
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elements and refining the mesh uniformly for an A-convergence scheme, a set of meshes
containing 27, 108 and 432 elements is constructed. To build a series of solutions for a p-
convergence scheme, the number of elements is fixed to 27 and a sequence of meshes consisting
of linear, quadratic, cubic and finally quartic elements is produced. In a similar fashion a series of
meshes consisting of C° linear, the C'* cubic the C** pentic and C** seventh order elements of
the C* family is constructed.

If it is possible to assume that,

n

error=C ( n;o fj ©6)

in which ndof is the total number of d.o.f.'s in the mesh, and C and # are two constants. Then on
a logarithmic scale we have,

log(error) =log C +n log ( dl f) )
ndo

Therefore, the slope (i.e., n) of a curve plotted as log(error) versus log(1/ndof) will provide the
rate of convergence for different refinement schemes. The most common parameter to use in this
study is the error in strain energy. This norm is defined as,

log [lell 2=log (llull 2~ [lull &) ®)

in which || u ||/ is ‘exact solution” for twice the strain energy for the L-shaped domain in Fig. 2
obtained through very refined mesh and Richardson's extrapolation, and || u ||z is twice the
strain energy of the finite element solution.

Gago (1982) reported || u || =5.58. However a figure with two decimal digits accuracy was
found to be unsatisfactory for the high accuracy solutions being achieved here. A series of meshes
consisting of 8-node quadratic elements using the STRANDG6 (1993) finite element package was
constructed with up to 12000 elements. Results for the Richardson's extrapolation for the exact
solution gave | u || z=5.58015, and consequently | u || ;°=31.13807 has been chosen as the ‘exact
solution'’. At the end of each finite element solution the transpose of the computed nodal
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Fig. 2 Geometry, loading and boundary conditions for the L-shaped domain (E=1000, v=0.3, ¢=0.1)
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displacement vector is multiplied by the nodal load vector to produce the solution strain energy.
The convergence behavior of different refinement schemes, for a 27 element initial mesh, is
depicted in Fig. 3. The superiority of the C*-convergence over the A- and p-convergence schemes
is revealed.

Although it is possible to predict a convergence rate for the C* family of elements as an
average slope of the corresponding curve in Fig. 3, the C**-element is included in this test in Fig.
4. This figure shows the results obtained for a series of meshes based on a starting configuration
of three elements. In Szabo and Babuska (1991) the asymptotic convergence rate for the p-version
applied to this problem is given, and it is reported that the method does not enter the asymptotic
convergence mode until p=7. The final convergence rate for the p-convergence is reported to be

0.4
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Fig. 3 Rate of convergence for the L-shaped domain (27 elements)
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Fig. 4 Rate of convergence for the L-shaped domain (3 elements)
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0.558.

Gago (1982) reported a rate of convergence for low order elements in the h-version, in a
regular mesh, equal to 0.7, and a rate of convergence for the p-version, as an average slope of the
corresponding curve, equal to 1.3. In other words he has shown that the initial rate of
convergence of the p-version is twice that of the A-version.

An average slope for the C*-convergence scheme, as shown in Fig. 4, is about 2.89. In other
words the initial rate of convergence of the C*-refinement scheme is more than four times that of
the h-version, and twice that of the p-version.

4. Application to mode | loading of a crack

This problem was also reported in Bigdeli and Kelly (1997) for the first three elements in the
new family. A difficulty which must be addressed for problems with singularities is that strains
can be discontinuous at the crack tip and therefore forcing continuity will reduce convergence of
the algorithm. We consider here an example of Mode I loading on a cracked specimen.

Table 1 compares the error in the strain energy for meshes of 4 elements. The “exact’ strain
energy has been generated by extrapolation from a sequence of refined meshes of C° 4-node
elements (using up to 25600 elements). In the first column the derivatives are forced to be
continuous at the crack tip and an artificial smoothing of the strain field occurs. In the second
column 4 nodes are defined at the crack tip and continuity of displacements u, v alone is enforced
at that point.

5. Discontinuous derivatives on curved boundaries

To extend the procedure described in the previous work by Bigdeli and Kelly to include an
interface between curved regions with different thickness, a quarter of a reinforced hole, as shown
in Fig. 6, is considered.
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Fig. 5 Mode I loading of a crack (F=1000, v=0.3, #=0.1)
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Table 1 Remedy for strain smoothing at the crack tip (Lagrange multiplier approach). (Exact solution for
strain energy=0.46235)

Element type % crror.in 'strain energy % error in' strail} energy
(comner derivatives continuous) (corner derivatives discontinuous)
C’ 4-node 4534 45.34
C** 4-node 35.98 7.77
C* 4-node 13.54 0.9
C* 4-node 4.48 0.06

The initial finite element mesh which consists of 6 elements is shown in Fig. 7. A series of
meshes consisting of 6, 24, 96 and 384 C° 8-node elements, using the STRAND6 (1993) finite
element system, has been constructed and stress results for point A are presented in Table 2.
Stresses for point A for a mesh consisting of 6 C'* elements are also shown in this table. We
notice that the stresses recovered at point A are, in fact, average values obtained from neighboring
elements.

It is expected that a mesh consisting of C'* elements, when modified to release the excessive
continuity, will produce discontinuous stresses at point A. It is also to be noted that recovery of
stresses using the standard C° elements requires post-processing of element results. In the new
procedure strains are available directly at the nodes and stresses are recovered with minimal post-
processing.

To allow discontinuous values of derivatives to occur at the interface where the thickness
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Fig. 7 Finite element model of a reinforced hole under constant tenson (#,=0.2 and £=0.1)
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Table 2 Stress results for point A shown in Fig. 7

Element type No. of elements  No. of do.f Oxx (MPa) Oy (MPa) Oxy (MPa)
C® 8-node 6 62 87.526 -2.082 -7.452
C’° 8-node 24 194 104.975 -19.807 -7.386
C° 8-node 96 674 108.329 -23.124 -7.722
C° 8-node 384 2498 109.554 -24.358 -7.837
C'* 4-node 6 78 96.182 -21.614 -7.184

varies, a procedure was devised (Bigdeli and Kelly 1996, Bigdeli 1996) in which two nodes
are defined on the interface, and Lagrange multipliers are used to constrain those nodal degrees
of freedom which should be continuous across the interface. The relations between derivatives
of displacements at the interface exist only when they are considered in the normal and
tangential (n, #) coordinate system. For this reason, first, a coordinate transformation should be
established

According to Fig. 8 the following relationships between two coordinate systems exist (Tsai and
Hahn 1980),

X =(cosO) n —(sinb) ¢
y =(sin6) n + (cos6) ¢ €]
and a similar expression can be written for displacements as,
u = (cosO) u, — (sinf) vn
v = (sin6) un + (cos6) vx (10)

in which u and v are displacement components in the Cartesian (x, y) coordinate system, and u,
and v, are displacement components in the (n, ) coordinate system. Differentiating Eq. (10) with
respect to the (x, y) coordinate system, and using the chain rule will produce appropriate relations
between derivatives of displacement in the two coordinate systems as follows,

%zaaL’:cz_ a(,;: SC - 85‘;' sc +-a-5t"—52 (112)
%= aa’i:’ SC+%C2—%’—S2—%”—CS (11b)
%‘;_= aa”’: SC - aav;: S2+ ag: Cc2- a;;: sc (1ic)
%:aa‘:su%‘::sc+agt" sc+%v:—c2 (11)

in which S=sin@ and C=cos6.
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Fig. 8 The Cartesian (v, y) and the normal and tangential (n, ¢) coordinate systems

Egs. (11a) to (11d) can be written in a matrix form as follows,

or,
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in which {u} and {u,} are nodal degree of freedom sets in the (x, y) and (s, £) coordinate systems
respectively, and [T is the transformation matrix.

Having produced the transformation matrix [7], the following two step procedure can be used
to solve the stress smoothing problem for curved boundaries using the C'* element.

First, nodal degrees of freedom corresponding to the points lying on the curve boundary (e.g.,
point A in Fig. 7) should be transformed to the (n, ) coordinate system by means of the
transformation matrix [7]. We notice that there are two nodes corresponding to point A in the
finite element mesh. One belongs to elements with thickness #, and one belongs to elements with

thickness £,.

In the second step, the following constraints are applied to those degrees of freedom by means

of Lagrange multipliers described by Bigdeli and Kelly (1996), Bigdeli (1996).

Un |,1—u,, |t2=0
Vn Itl_v”|t2=0
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The procedure has been applied to the problem shown in Fig. 7 with a mesh consisting of 6 C'*
elements. As expected, discontinuous global stresses at point A are produced as: global stress at
point A on element with thickness #,=0.2 mm, (Oxy,),=61.280 (MPa), and global stress at point A
on element with thickness #,=0.1 mm, (Oi),=120.190 (MPa).

The average of these two stresses is not exactly the average reported in Table 2. The result in
Table 2 corresponds to strains calculated at the nodes when elements are assembled with common
nodal degrees of freedom.

It can be seen that the ratio between these values is inversely proportional to the thickness ratio
in neighboring elements.

In order to generalised the result for any arbitrary point on the curved boundaries, a refined
mesh consisting of 96 elements is produced. Discontinuous X-stresses (i.e., global stresses) for a
mesh consisting of C’-8 node elements are produced by extrapolation of Gauss point stresses to
the common nodes and averaging those belonging to the elements with the same thickness. For
the mesh consisting of C'*-elements however, the two step procedure established in this study is
employed. Results of this study for nodes on the curved boundary at angles 0°, 45° and 90° are
depicted in Figs. 9 to 11 respectively. We note that at 90° the X-stress becomes the tangent stress. The
discontinuity then only results from interaction with the normal strains factored by Poisson's ratio.
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Fig. 9 Variation of X-stresses at 6=0°
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Fig. 10 Variation of X-stresses at 6=45°
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Fig. 11 Variation of X-stresses at 6=90°
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6. Conclusions

The C** element, as the fourth level of the C* family of elements, has been developed and an
average rate of convergence for this family established for coarse meshes on an L-shaped domain.
The rate of convergence has been shown to be higher than that of the A- and p- convergence
schemes. The results are also consistent with those reported in (Bigdeli and Kelly 1996, Bigdeli
1996, Bigdeli and Kelly 1997). The reasons for these higher rates of convergence are discussed in
the introduction to this paper. A second important feature is that derivatives, and hence strains, are
evaluated in the solution process and are available at nodes and therefore on the boundary of the
domain. This is the location where they are often of most interest in engineering analysis.

The solution to the problem of excessive inter-element continuity between neighboring elements
with different thickness discussed in the previous publications (Bigdeli and Kelly 1996, Bigdeli
1996, Bigdeli and Kelly 1997) is extended to include any arbitrary point on curved boundaries.
The problem of Mode I loading on an edge crack for which strains are discontinuous at the
singular point has also been considered.

Derivatives are also included as degrees of freedom in the Hermitian family of elements. The C*
family differs from these elements in the application to planar elasticity and the fact that
continuity of the derivatives is enforced only at the nodes.
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