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Abstract. This paper presents exact close form solutions of plastic limit loads of a clamped circular
plate under uniformly distributed load with different loading radii. A unified yield criterion, which
includes a family of piccewise linear yield criteria and the commonly adopted yicld criteria such as the
Tresca criterion and the maximum principal deviatoric stress criterion or the twin shear stress critcrion
that are its special cascs, and the Mises criterion can be approximated by it, is cmployed in the analysis.
The plastic limit loads, moment fields and velocity fields of the clamped circular plate are calculated
based on the unified yield criterion. The influences of the yield criteria, the edge effects and the
loading radius on the plastic limits of the clamped circular plate arc investigated. Analytical results are
calculated and compared. The exact close form solutions presented in this paper provide efficicnt
approaches for obtaining plastic limit loads and the corresponding moments and velocities of the
clamped circular plates. The previously derived solutions based on the Tresca and the Mises criteria are
its special cases.
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1. Introduction

Clamped circular plates form important structural elements in many branches of engineering.
Efficient and accurate prediction for the load-carrying capacity of a clamped circular plate is very
important to ensure that the structural design is as economical as possible. Limit analysis method
has been recognized as an effective method for analysis of circular plates in the plastic limit state.
Generally, the Maximum shear stress criterion or Tresca criterion, the octahedral shear stress
criterion or Mises criterion and the maximum deviatoric stress criterion or twin shear stress
criterion are applied to derive the plastic solutions (Hill 1950, Yu 1983, Yan and Bu 1996).
Because the expression of the Tresca criterion is linear so that it is relatively easy to derive
analytical plastic solutions, most of the plastic limit solutions for circular plates were obtained
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based on it (Hopkins and Prager 1953, Zaid 1958, Gamer 1983). Guven (1992) and Ghorashi
(1994) extended the range of investigation of plastic limit load by using limit analysis theorems
based on the Tresca criterion. Hopkins and Wang (1954) investigated the load carrying capacities
of a circular plate with the Mises criterion and a parabolic criterion by numerical iterative method.
They found that the plastic limit loads on the basis of the Mises criterion and that on the basis of
the Tresca criterion differ by approximately 8% for a simply supported circular plate and
approximately 10% for a clamped plate, respectively. These observations indicate that the plastic
limit loads in terms of different yield criteria are different and the difference depends on the edge
effects of the plate. Unfortunately, an analytical plastic limit solution based on the Mises criterion
for a circular plate under various loading conditions is not readily derived because of its nonlinear
formula. Ma et al. (1995) investigated the plastic limit solution of a simply supported circular
plate and a rotating disk with the twin shear stress criterion and found that the plastic limit loads
could differ by more than 14% with those obtained by the Tresca criterion. Although plastic
solutions of circular plate based on the Tresca criterion have been intensively performed in the
past years, the investigation of influence of yield criteria on the plastic behavior of circular plates
with various loading conditions is still not sufficient, especially solutions based on the twin shear
stress criterion is limited. This is probably because that the other criteria are not convenient to use
owing to their nonlinear nature.

Yu (1991) suggested an unified yield criterion (UYC) which assumes that plastic flow is
controlled by the two larger principal shear stresses. It is called unified yield criterion because the
Tresca criterion and the twin shear stress criterion are its special cases and the Mises criterion can
be approximated by it. Because considering the two larger principal shear stresses, the unified
yield criterion actually includes all the three principal stresses into consideration when determining
a material yielding property. The unified yield criterion has piecewise linear formulae and can be
used to model material yielding properties in a broad spectrum of engineering application.

In this paper, close form solutions of the plastic limit loads, moment fields and velocity fields
of clamped plates are derived based on the UYC. Numerical results based on the Tresca criterion,
the Mises criterion and the twin shear stress criterion are calculated and compared. The differences
between the results obtained according to different criteria are discussed. Although numerical
analysis of a clamped circular plate is quite straightforward nowadays with powerful computers,
the close form solutions derived in this paper are more easier to be applied. Besides, with author’s
knowledge, there is no computer code based on the UYC available yet. The theoretical solutions
derived from this study can be used as benchmark for the future computer code development.

2. Unified yield criterion

Based on orthogonal octahedron of the twin shear element model (Yu 1983), a unified strength
criterion was developed which specifies that a material fails when a certain function of the two
larger principal shear stresses and their corresponding normal stresses reach the limit values. The
mathematical expression of the unified strength criterion is (Yu 1991, 1992)

T3 +b T+ (O3 +h o) =C  when Ty, + 01, 2 Ty + BT (1a)
T3+ b Ty +(03+b 0y)=C  when  T5+ 0, < T3+ B3 (1b)

where 75, T, and T, are principal shear stresses and 7,,=(0, — 03)/2, T,=(0,— ,)/2 and Tn=
(0,— 0y/2; 015, O, and O, are normal stresses corresponding to the three principal shear stresses
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and 6,;=(0,+03)/2, 0,=(0:+0,)/2, 0»=(0,+03)/2, in which o,, 0, and o, are the principal stresses
and 6,20,20; B and C are material constants; b is a weighted coefficient that reflects the
influence of the intermediate principal shear stress and corresponding normal stress on plastic
behavior of the material. When the constant b varies from 0 to 1, a family of convex yield criteria
that are suitable for different kinds of materials are deduced. In particular, the unified strength
criterion yields to the Mohr-Coulomb criterion when b=0.

The unified yield criterion (UYC) which is specifically suitable for metal materials is degraded

from the unified strength criterion, when =0 in Eq. (1). The expression in principal stress state of
the UYC is

1 O;+ G
O;— m (b (o) + 03) =0y when (&) < % (23.)
1 O, + 0,
m (O-l +b 62) - 0'3 =0y when 0-2 > %{‘ (2b)

where o, is yield strength of a material. Obviously, the Tresca criterion and the maximum
principal deviatoric stress criterion or the twin shear stress criterion are special cases of the UYC
when b=0 and b=1, respectively. The two criteria lead to the minimum (interior) and the
maximum (exterior) bounds of all the yield surfaces for stable materials. Moreover, the nonlinear
mises criterion can also be approximated by the UYC by letting b=0.5. Fig. 1 and Fig. 2 show the
projections in deviatoric plane of the unified strength criterion and the unified yield criterion,
respectively.

It is known that the Tresca criterion predicts the pure shear strength 7, of a material as 7,=
0.50,. Experimental results show that the pure shear strength of most metal materials satisfy the
estimation by the Mises criterion, namely 7,=0.577¢,, however, for some materials such as mild
steel and aluminum, it is closer to the prediction of 7,=0.6670, by the twin shear stress criterion
(Hill 1950, Yu 1983). The pure shear strength derived by the UYC is 7,=(1+b)/(2+b)o, which
covers all the predictions between the lower bound given by the Tresca criterion and the upper
bound given by the twin shear stress criterion. In turn, the weighting coefficient b in the UYC is

Fig. 1 Unified strength criterion Fig. 2 Unified yield criterion =0
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equal to (27,— 0,)/(0, — Tp) corresponding to various metal materials. Thus, the application of the
UYC in plastic analysis becomes very versatile because of its generality that commonly used yield
criteria are its special cases, and, moreover, because it is relatively easy to be implemented due to
its piecewise linear expression. It will also make a computer code more versatile by using the
UYC such that users can select the yield criteria in analyses by simply choosing a few parameters.

3. Basic equations of circular plate

When a fully clamped circular plate of radius a and thickness & which is made of a rigid
perfectly plastic material is subjected to a partial uniformly distributed transverse load P, the only
non-zero stresses are o,, o, and 7,=7, for the plate. In plastic limit state, the generalized stress
components are expressed as

h2

h72 ) wn
Mr = .[—h/ZO-r ZdZ 5 MQZ .'-h/2 0-9 ZdZ 5 Qrz = J;h/l TrdeZ and M(): _[,h/z oy zdz= 0—() h 2/4 (3)

where M,, M, and M, are radial, tangential and ultimate (fully plastic) bending moments,
respectively, and Q,. is the transverse shear force which is assumed not to influence the plastic
yielding. By defining dimensionless variables, r=R/a, m,=M,/M,, m=M /M, and p=Pda*/M,, and
because of axial symmetry, the equilibrium equations are

d(rm.)/dr —my=—pr2/2 0<r <r, 4
d(rm.)/dr —mg=—pr//2 1, <r<1 (5)

where r,=R /a is the normalized loading radius of circular plate, in which R, is the loading radius;
r,=1 implies the entire plate is uniformly loaded, whereas 7,=0 indicates a point load at the center
only. When the unified yield criterion expressed by generalized stresses (shown in Fig. 3) is used,
limit condition can be written as

-1

Fig. 3 Unified yield criterion in mgm, space
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Table 1 Constants g; and b,

lines AB (i=1) BC (i=2) CD (i=3) DE (i=4) EF (i=5)
a, b b/(1+b) 1/(1+b) 1+b (1+h)/b
b, 1+b 1 1 1+b (1+b)b

Table 2 Constant d,

points A (i=0) B (i=1) C (i=2) D (i=3) E (i=4) EF (i=5)
d, 1 (1+b)/(2+b) 0 (1+b)/(2+b) 1 -(1+b)/(1+b-v,b)
me=a,m,+b;, (i=1~12) (6)

where, a; and b, are constants related to the material coefficient b. Table 1 lists a, and b, for the
five lines AB, BC, CD, DE and EF.

In elastic state, the moment fields satisfy that ms=m, at the plate center (r=0), ms=vm, at the
clamped edge and m,>m, on the whole plate, in which v is the elastic Poisson's ratio. In plastic
limit state, the condition m,=m,=1 at the plate center is also satisfied. Based on the kinematically
admissible requirement, one still can expect the transverse velocity W to be a decreasing function
of r which implies the tangential curvature rate k,>0. Solutions based on the Tresca criterion
and the Mises criterion assume that my=0 and m,=0.5 at the clamped edge, respectively,
corresponding to the condition of k=0 at the edge (Hodge 1963). In plastic state, one can
assume mq=v, m, at the outer edge, where v, is an equivalent Poisson’s ratio in plastic limit state
and 0<v,<0.5 due to the positive tangential curvature rate k,, hence the moment fields of the
entire clamped plate lie on the five sides corresponding to AB, BC, CD, DE and EF shown in
Fig. 3 based on the UYC. The points A, B, C, D and E in Fig. 3 correspond to dimensionless
radii ry, ry, 5, 75 and r, on the plate, respectively, which divide the plate into five parts with O=r,
Sri<r<r;<r;<rs=1. At the outer edge (r=1), the moments m, and m, are located on the line
EF, and they are exactly on point F when v, is 0.5 and on point E when v, is zero.

The continuity conditions and boundary conditions of radial moment m, in Egs. (4) and (5) are:

m, (r=r;)=d;, (i=0~5) 7

where the values of d; (i=0~5) corresponding to the yield points A, B, C, D, E, and a point on
line EF are listed in Table 2.

4. Plastic limit load and internal moment fields

For a certain loading radius r,, r; (j=1~4) corresponding to the yield points B, C, D, and E in
Fig. 3 divides the plate into five parts. The loading radius may lic in either part, r,,<r,<r, (j=1~
5). Considering the particular cases with r,=r,, j=1~5, and defining the critical radius , or 7, as r,,
(j=1, 5), the differential Eqs. (4) and (5) of radial moment m, are integrated directly with respect
to r with the aid of the linear yield criterion expressed by Eq. (6),

— bi _ prZ ~1+a; [ ]
m, = e 20-2) +ortta 1<i<j or 0<r<r, (8)
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b, 2'
i Dy +ertta j<i<5 or r, <r<l 9)
1-a;, 2(1-a)

1

m, =
where ¢, (i=1~5) are integral constants. Eq. (8) gives the moment distribution in the loading area,
while Eq. (9) is the moment distribution in the area outside the loading radius. Using the
boundary conditions and continuity conditions expressed by Eq. (7), it has

b, 2
i _ prl—l +Cir':l1+ai — d[—]
l—a;, 20G-a) '
1<i<j, (j=1-5) (10)
b. pr?
- b=
l—-a, 2Q3-a)
and
b; 2
i _ prﬂj +Cl_r:ll+ui — dj-]
l—a, 2(0-a) !
) jHI<i <5, (j=1~4) (11)
b; Prpj
- Pl terra=d,
l-a; 2(1-a)
Since moment at the plate center has a finite value, it has

The plastic limit load is derived from Eq. (10) as

2(3-a))

b
p=2B-a)|-d,+—— |r? or p= Fi2 (13)
1-a, 2—a,
For the case of j=1, it can be derived from Eq. (11} that
d —d.
¢ =t (i=2~5) (14)
r_—1+al- —_ r_:11+al-
: b, 3-a
-t -1 (d —d._ d—-————+ 1 , | =2~5 15
n,,l ( i i l) /[ i 1—(,11- (1“0[)(2—61]):] (l ) ( )
where 7, (i=1~4) are defined as:
M =ria/r (16)

The values of n; for this case can be calculated from Eq. (15) directly.
For the case of 2<j<5, it can be derived from Eq. (10) that,

b, 2
¢ =|diqg———+ Pl |y tom (2<i<)) (17)
1 —a; 2(3"‘611) -1
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and 7, (2<i<)) satisfy

2 -2 -2 -2
b G-a)n N5 2+ d - b, N BG-a)n” 15 n=d  Q2<i<))
I-a, B-a)(2-ay I-aq (B-a)(2-ay
(18)
The other integral constants are derived from Eq. (11) as
di—d; 4 . .
Ci:m, ]+1Sl <5 (19)
i i-1
and n;_,(j+1<i<5) satisty
d; —d,
n=1- @ ~d-y) , j+l<i<s (20)

d - b; n (3_01)77;2 77;‘_31
l-a; (1-a)(2-ay)

Thus, for the two cases, it has
Fi=M MMMy 1= MMy, F3=ThMy, Fy=7, and rs=1 (21)

Substituting 7; (i=1~5) and all the integral constants into Eqs. (8), (9) and (13), moment fields and
the plastic limit load for the critical cases are then determined. The critical loading radii r,, (j=1~5)
are also obtained from Eq. (21).

For arbitrary loading radius r,, the moment fields can be obtained by examining which part of
the plate the loading radius lies in. When r, satisfies r,,<r,<r, (j=1~5), the moment fields
become

b, _ pr?

T e 2G-a) Fore 0sr<ry, (222)
m = bj __pr? +ej FienST T (22b)
" 1-a; 2B-a;) !
m,.,= b __pr +cor 1 pSr <y (22¢)
T 1-a; 2(1-a) '
b, pry tva
" Ta Ai—ay T RN (224)
—a; -4

As compared to the previous integration results, Eq. (22) introduces one more integral constant
with one more continuity condition that m,;(r=r,)=m,(r=r,). Therefore, the integral constants and
the division radius in the above equations can be calculated with the aids of the boundary
conditions and the continuity conditions in a similar manner to the particular cases discussed
above.

5. Velocity fields

According to the associated flow rule, there exist
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kr = MF/amr, i(ez MF/amg (23)

where A is a plastic flow factor and F is the plastic potential which is the same as the yield
function. The relations between the curvature rate and the rate of deflection are as follows:

ke =—d/dr?,  ky=—dw/(rdr) (24)

Substituting Eq. (24) into Eq. (23) and using the yield conditions defined by Eq. (6), velocity
fields corresponding to the five parts of the plate satisfy
d*w dw

a;, ——
dr? rdr

=0 (i=1-5) (25)

The velocity fields are then obtained by integrating the above equation
w=cprii+cy, (i=1-5) (26)

where, ¢, ¢, (i=1~5) are integral constants. The continuity and boundary conditions of velocity
are (1) w, (r=0)=w,, (2) w, and dw/dr (r=r, i=1~4) are continuous and (3) w (r=1)=0.
Considering these conditions, the constants ¢,, and ¢, in Eq. (26) then can be determined

W
Cii=—
" (dys+dy)dizdpdy+dydydy+dypd+dy,
€y =Wq (27v)

C i dy; 0]lcy '
Coiany| — dy, 1||Cx (i=1-4) (28)

in which d,; and d,; (i=1~5) are constants related to the continuity conditions, and they are:

(27a)

and

1-a

_ i ditta; _
dli_ﬁril b, dy=
—8in

a1 —4a; ,

S i=1-4) (29)

1_ai+1

Substituting these integral constants into Eq. (26), velocity field of the clamped circular plate is
then obtained.

6. Analytical results and discussion

Using the above derived close form plastic limit solutions based on the UYC for clamped
circular plates under uniformly distributed loads with arbitrary loading radius, analytical results of
plastic limit loads, moment fields and velocity fields are calculated. The influences of loading
radius, edge effect and yield criteria on the plastic limit solutions are discussed in the following.
Table 3 lists the plastic limit loads p, with the load uniformly distributed over the entire plate (r,=
1), obtained based on the three yield criteria, namely the Tresca criterion, the Mises criterion and
the twin shear stress criterion. The results obtained based on the Tresca and the Mises criteria by
Hopkins and Wang (1954) are also given in the table for comparison purpose. As can be noted,
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Table 3 Plastic limit loads for the three common yield criterion

Tresca (v,=0) Mises (v,=0.5) Hill (1950), Yu (1983)
Yield
criterion Hopkins _ _ Hopkins B _ _ _ _
(1954) b=0.0001 b=0.001 (1954) b=0.5 b=1, v,=0 b=1, v,=0.5
V4 11.26 11.259 11.260 12.5 12.720 12.176 13.708

the UYC can indeed approximate the Mises criterion, the twin shear criterion, and the Tresca
criterion result in upper bound and lower bound plastic limit solutions. The edge effect, which
depends on the plastic Possion's ratio v, also affects the plastic limit load.

It was proved in a previous paper (Hodge 1963) that the equilibrium Egs. (4) and (5) are
invalid if the Tresca criterion is used when the m ,~m, trajectory is on line EF (shown in Fig. 3).
They are valid to the Tresca criterion only when the point E corresponds to the clamped edge (r=
1), which leads to v,=0, or m =0 and m,=—1 at the plate edge. On the other hand, m =0.5m, or
v,=0.5 at the plate edge is assumed by using the Mises criterion according to the plastic flow
requirement. Thus, the Tresca and the Mises criteria lead to two special plastic solutions in view
of the edge effect. Using the UYC, it is convenient and straightforward to extend the yield
trajectory to the line EF shown in Fig. 3, the plastic Poisson's ratio can vary between 0 and 0.5,
which covers the general edge effect on plastic limit solutions. Nevertheless, it should be noted
that a small value of b, e.g., b=0.0001, instead of b=0 should be used when specifying the Tresca
criterion to avoid the singularity problem.

Fig. 4 illustrates the moment fields of the plate in plastic limit state under different load radii
for v,=0 and v,=0.5, respectively obtained according to the three yield criteria, that is by using
b=0, b=0.5 and b=1 in the UYC. For v,=0, it can be scen, the influences of yield criteria on the
radial moment distributions are insignificant, while they are prominent on the tangential moment
distributions. The same moment values at the plate center and the plate edge are obtained by the
three criteria. The twin shear stress criterion (b=1) results in the larger values for both m, and m,,
while the Tresca criterion (b=0) gives smallest estimations. The maximum tangential moment m,
based on the UYC of b#0 is not equal to 1 as predicted by the Tresca criterion, indicating the
largest m, does not occur at the plate center if other yield criteria are applied. The largest m,, is
equal to 2(1+b)/(2+b) and occurs at r=r,. For v,=0.5, however, the three yield criteria affect the
moment distributions near the edge significantly. The twin shear stress criterion results in the
largest positive and negative values of m, and m,, while the Tresca criterion results in the smallest
ones. "

Fig. 5(a) compares the velocity fields corresponding to different loading radii for the three
criteria when v,=0.5. It can be seen, the influences of the criteria on the velocity fields are larger
when the transverse load is uniformly distributed over the whole plate or concentrated at the plate
center. The velocity distribution is more concentrated at the center area of the plate as the loading
radius reduces. It should be noted that the velocity field is singular at the plate center for Tresca
criterion because it is expressed as a linear function near the plate center. Fig. 5(b) and Fig. 5(c)
illustrates the edge effects for criteria b=1 and b=0.5 respectively. The influence of v, on velocity
distribution is small when the loading radius is large, and increases with the decrease of 7,.
However, the effects become small with the decrease of the value of b, there is no influence if
b=0. The velocity distribution for v,=0 is always larger than that for v,=0.5.

Besides the moment and velocity distributions, the plastic limit load of the clamped circular
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Fig. 4 Moment fields corresponding to different loading radii and edge effects
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Fig. 5 Velocity fields for clamped circular plate

plate with various loading radii is also an important factor for design. Defining the total plastic
limit load Py as P=mr,p, Fig. 6 illustrates the influences of yield criteria, edge effect and loading
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radius on P;. As it can be seen, the total plastic load P; increases as either b, r, or v, increases.
The twin shear stress criterion results in the largest plastic limit loads, while the Tresca criterion
gives the smallest estimations. Defining a difference ratio of plastic limit loads as

_ Py —Pr (Tresca)

r= x 100% (30)
Py (Tresca)
45 45
40 | 40 |
)
35Q
L
ol T e
25 L r =05 v;=0.5

0
0 02 04 06 08 1
b Vo Tp
(a) varying b (b) varying v, (c) varying rp> v, =05

Fig. 6 Influences of yield criteria, edge effect and loading radius on the plastic limit load
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Fig. 7 Difference ratios of the plastic limit loads
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where P, (Tresca) is the plastic limit load derived based on the Tresca criterion. Fig. 7 illustrates
the difference ratios corresponding to the Mises criterion and the twin shear stress criterion by
specifying the weighting coefficient b as 0.5 and 1, respectively in the UYC. As can been seen,
the difference ratio varies from 10.6% to 13.0% and from 17.8% to 21.7% with respect to the two
criteria with different loading radii. The maximum difference ratio between the total plastic limit
loads based on the Tresca criterion and the twin shear stress criterion is 21.7% when r,=1 and v,=
0.5. These observations imply the Tresca criterion might significantly underestimate the plastic
limit load carrying capacities of a clamped circular plate. The Tresca criterion (b=0) can not
propetrly reflect the edge effects (v,) on the plastic limit load either.

7. Conclusions

The unified yield criterion (UYC) contains a family of piecewise and convex yield criteria by
varying the parameter b from O to 1, and it is applicable to all the isotropic metal materials used
in engineering practice. In particular, b=1 of the UYC corresponds to the twin shear stress
criterion and b=0 corresponds to the Tresca criterion. It also approximates the Mises criterion by
using b=0.5. For this reason, the UYC will be extremely useful in numerical analysis when it is
implemented into a computer code. It allows user to specify which yield criterion to be used by
simply changing the parameter b. In this paper, close form solutions of a clamped circular plate
subjected to uniformly distributed load with different loading radii are derived based on the UYC.
The influences of different yield criteria, edge effects and different loading radii on the plastic
limit load and the corresponding moment and velocity fields are investigated. It has been
demonstrated that the plastic limit load can differ by 21.7% if different yield criteria are employed
in analysis.

Although the derived formulae are valid for small deformation problem only, they provide
efficient estimations of the plastic limit load, the corresponding moments and velocities for a
clamped circular plate with different loading radii and edge effects. Their results can be used as
benchmark for general computer code developed, based on the UYC. It should be noted that
when the plastic solution of a thick circular plate is analysed, the effects of shear force on the
plastic behavior should also be included. These will be investigated in later studies with the aid of
numerical analysis method.
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