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Abstract. The purpose of this paper is to show how the Evolutionary Structural Optimization (ESO)
algorithm developed by Xie and Steven can be extended to optimal design problems of thin shells
subjected to thermal loading. This extension simply incorporates an evolutionary iterative process of
thermoelastic thin shell finite element analysis. During the evolution process, lowly stressed material is
gradually eliminated from the structure. This paper presents a number of examples to demonstrate the
capabilities of the ESO algorithm for solving topology optimization and thickness distribution problems
of thermoelastic thin shells.
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1. Introduction

Shell structures are extensively used in the fields of aeronautical, civil, mechanical and marine
engineering (Farshad 1992, Ramm and Mehlhorn 1991). Although there have been man-made
shell structures since ancient times, the significant progress in research for topology and shape
optimization has only been made recently in conjunction with the rapid development of powerful
computers and numerical techniques such as finite element methods. In today's engineering world,
shell structures, often under strict design regulations, must exhibit optimum or near optimum
performance characteristics in an economical fashion.

There have been only few papers devoted to the optimization problems of thin shells. Marcelin
(1988) presented a sensitive analysis algorithm by selecting appropriate design variables of
axisymmetric shells, where the maximum stress was minimized. Rao and Hinton (1993) extended

¥ Research Student

1 Professor

It Lecturer

1t Associate Professor



402 Qing Li, Grant P. Steven, O.M. Querin and Y.M. Xie

the shape design sensitivity analysis (SDSA) method to shell problems, where optimal geometric
forms and thickness distributions were sought by monitoring either strain energy or structural
weight. Tenek and Hagiwara (1994) developed a scheme for determining thickness distribution or
the density of a repetitious microstructure using homogenization theory. Maute and Ramm (1996)
solved the maximum stiffness problems for shell structures by combining the adaptive optimization
technique with the homogenization concept. ‘

All the above presented methods have involved complicated mathematical formulations.
Furthermore, none of these have considered the effects of thermal stresses. The recent
development of the Evolutionary Structural Optimization (ESO) method by Xie and Steven (1993,
1994, 1996 and 1997) has established a new and considerably simpler method for structural
optimization. It has been successfully applied to many optimization problems, which include
linear static (Xie and Steven 1993), multiple loads (Xie and Steven 1994), natural frequency (Xie
and Steven 1996), stiffness (Chu et al. 1997), buckling (Manickarajah et al. 1995) and heat
transfer (Li et al. 1997), etc. This paper aims at extending the versatile ESO algorithm to thin
shell problems subjected to both mechanical and thermal loading. The extension incorporates an
evolutionary iterative process of thermoelastic thin shell finite element analysis (FEA). It is able to
easily deal with both uniform and non-uniform distributions of temperature change by carrying
out a heat conduction FEA prior to the thermoelastic thin shell FEA and element elimination
cycles. A number of examples presented in this paper verify this extension.

2. Evolutionary optimisation procedure for thin shells

Like most other structural optimization methods, the evolutionary structural optimization (ESO)
method is iterative because of the highly nonlinear nature of structural optimization itself. The
ESO method follows a very simple and robust concept of repeatedly modifying structural shape
and topology on the basis of finite element analysis. In this method, a dense finite element mesh
which fully covers the maximum design domain is set up. A heat conduction finite element
analysis is firstly carried out to determine the temperature field. Subsequently, thermal and
mechanical stress distribution throughout this domain can be found by a thermoelastic finite
element analysis. It often happens that part of the material is not effectively used. The ESO
method introduces a simple strategy of element. By gradually removing inefficient material from
the structure, the resulting shape evolves towards an optimum. For example, those elements are
removed whose von Mises stresses 0,™ are less than Rejection Ratio (RR) times the maximum (or
mean) von Mises stress on (i.e., 0" <RRgss X Ong). Such a thermoelastic shell finite element
analysis and element elimination cycle is repeated using the same value of RR, until there are no
more elements being removed at current iteration. This means that a Steady State (SS) has been
reached and the lowest stress within the structure has been greater than a certain percentage of
maximum (or mean) stress value. For the optimization process to continue at this stage, an
Evolution Rate (ER) is introduced and added to RR (ie., RRy=RRg,+ER). The iteration takes
place again until a new steady state is attained.

The detailed description of this method can be found in references (Xie and Steven 1993, 1994,
1996, 1997). The principles and fundamental procedures that define the ESO algorithm for
solving thermoelastic thin shell problems are given as follows:

Step 1. Set up a dense finite element mesh that fully covers the maximum design domain. Apply
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all thermal and mechanical boundary constraints, loads and material properties;

Step 2. Select the optimization criterion, e.g., maximum or mean von Mises stress (Omi oOr
G6'""); Set the number of initial Steady State: SS=0 and specify the ESO driving
parameters such as initial Rejection Ratio: RR,=RRs=0 and Evolutionary Rate: ER
(usually RR,=0% and ER=0.1-1%);

Step 3. Carry out a finite element heat analysis to determine the temperature distribution,
thereby, obtain the temperature change at each node;

Step 4. Carry out a thermoelastic finite element analysis for the current thin shell structure;

Step 5. Compare the von Mises stress 0,™ of each element with the oy or 6™ of the entire
structure, then eliminate those elements which satisfy: 6™ <RRgs X Gith;

Step 6. If there are elements eliminated in Step 5, repeat Steps 4-6 (for uniform temperature) or
repeat Steps 3-6 (for non-uniform temperature);

If there is no element eliminated in Step 5, this means a steady state has been reached; set
S$$=SS+1 and increase RR by ER, i.e., RR=RR,+ER X SS. Repeat Steps 5-6.

Since thin shell structures may experience transverse and membrane loads, the combination of
bending and membrane load will produce varying stresses through the thickness (—#2<z<+#/2)
of shell elements. In general, a standard FEA program can directly provide or easily calculate the
stresses at three particular locations along the shell thickness direction, i.e., z=—#2 (lower surface),
z=0 (mid-surface) and z=+#/2 (upper surface). It can be shown the maximum magnitude of the
stresses must occur in one of the three locations (Querin 1997). When determining the criterion
for element elimination (e.g., von Mises stress), the one with the largest magnitude should be
selected. In other words, the maximum magnitude of the varying stresses is viewed to as the
reference value of the element elimination.

Due to the progressive elimination of under-utilized material, the structure gradually approaches
a nearly uniform stressed design. The technique can minimize the structural volume while
maintaining the stresses in the structure within an allowable limit. In practice, the evolutionary
process may be terminated when a prescribed stress limit (e.g., 6*™) or volume constraint (e.g.,
V/Vo) has been reached.
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Fig. 1 FE model with mechanical load P=100N and thermal load AT=100°C
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3. Example problems

There are two types of problems frequently involved in shell optimization: topology design and
thickness re-distribution. Using the above extended evolutionary structural optimization procedure
which contains the effects of thermal loads, a number of examples are presented to illustrate the
capabilities of ESO method for solving the two types of problems. Linear quadrilateral finite
element meshes are used, and both thermal and mechanical loads are considered for all examples.

3.1. Examples of topology design

Cylindrical regions, as shown in Fig. 1, with different boundary conditions are taken as
examples for topology optimization. The two kinematic boundary conditions studied are: (1) fully
clamped along the straight longitudinal edges; (2) fully clamped at all four comers. A
concentrated mechanical load of P=100N and a uniform temperature variation of AT=100°C are
set for both cases. The evolution processes start with initial rejection ratio RR,=0% and
evolutionary rate ER=0.1%.

3.1.1. Fixed at longitudinal edges
Figs. 2a)-d) show four steady state results of evolutionary optimization process for the first set

of kinematic boundary conditions. As the rejection ratio RR increases, more and more relatively
inefficient material is removed from the region. The evolution histories of mean and maximum

a) SS=30, RR=7.6%, V/Vo=85.0% b) S5=50, RR=12.6%, V/Vo=45.8%
oy =51.69, GV =8.42 oun =57.89, 3" =15.90

¢) §5=60, RR=16.6%, V/V0=38.5% d) $5=70, RR=22.4%, V/V0=24.8%
oy =58.76, 6V =18.54 o =61.31, V" =28.15

Fig. 2 Evolutionary process of a cylindrical shell fixed at the longitudinal edges
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Fig. 3 Evolution histories for the shell clamped at longitudinal edges
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Fig. 4 Comparison of von Mises stress spectrums

von Mises stresses are plotted in Fig. 3a), and the history of volume reduction is shown in Fig.
3b). It can be observed that although there has been significant volume reduction, the increase in
maximum von Mises stress is relatively small. For example, comparing S§=50 and $5=70 with the
initial state, the volume reductions are about 55% and 75%, whereas the increases in maximum
von Mises stresses are only 12% and 19% respectively.

Fig. 4 illustrates the comparison of von Mises stress spectrums in the initial design model with
that at steady state 70. It clearly demonstrates the improvement of the structural efficiency. At
initial state, approximately 97% of material is very lowly stressed in a range between 0 and
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a) $S=20, RR=8.6%, V/Vo=87.3% b) §5=35, RR=11.6%, V/Vo=72.3%
oym =54.81, 6" =10.52 o =56.90, 6" =12.48

F)

¢) $5=55, RR=17.8%, V/Vo=40.5% d) $5=60, RR=23.3%, V/V0=20.8%
o =80.44, 67" =22.40 o =134.84, " =64.30

Fig. 5 Evolution process of a shell clamped at four corners

15KPa. When the structure has evolved to steady state 70, nearly 96% of the material is stressed
to a level higher than 15KPa.

3.1.2. Fixed at four corners

Figs. 5a)-d) show four steady state results under fully clamped at four corners of the cylindrical
thin shell. Similarly to the previous case, the fact that the percentage decrease in weight
considerably overweighs the percentage increase in maximum von Mises stress can be again
observed in Figs. 6a) and b).

The improvement of structural efficiency can also be shown by plotting the stress spectrum curves
as Fig. 7. For example, at initial state (SS=0), only 6% material is stressed between 15KPa and 50KPa,
while at steady state SS=55, nearly 94% material stressed in the same range.

3.2. Examples of thickness design
Recently, mass minimization problems by varying the thickness distribution are attracting

attention in shell optimization using the homogenization method (Rao and Hinton 1993, Tenek and
Hagiwara 1994). If a continuous shell is required, for aesthetic reasons or simply to keep the rain
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Fig. 6 Evolution histories for the shell clamped at four corners
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Fig. 7 Comparison of von Mises stress spectrums

out, then the only possibility to improve the structural efficiency is to vary the shell thickness
distribution. In the ESO procedure, removing material from the region can be done by gradually
reducing its thickness, which is called Morphing. In practice, the thickness of each element is
assigned a value from a given set of thickness #, with a step size Af, which may be either uniform
or non-uniform. When the lowly stressed elements are sorted out in Step 5 as mentioned in the
previous section, their thickness will be reduced to the next lower value from the given set of
thicknesses. When the thickness of an element has reached the minimum one, it will no longer
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0.1 05 10
Fig. 8 Cylindrical shell FE model and the thickness distribution legend

change.
The cylindrical shell region, shown in Fig. 8, with different boundary conditions and

temperature variations is studied to investigate the morphing capabilities of the ESO. The

o

a) AT=0°C and P=25N b) AT=2°C and P=25N

s 4

i

¢) AT=10°C and P=25N d) AT=10°C and P=0N
Fig. 9 Optimal thickness distribution of the shell fixed at longitudinal edges (V/Vo=51%)
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RN

¢} AT=10°C and P=25N d) AT=10°C and P=0N
Fig. 10 Optimal thickness distribution of the shell fixed at cross-section ends (V/Vo=52%)

thicknesses are set in an equal interval: £={1.0, 0.9, 0.8, ---, 0.1}. Initially, all elements are
assigned the maximum thickness #=1.0. The initial rejection ratio RR,=0% and evolutionary rate
ER=1% are adopted. In Figures 9, 10, 11 and 12, the curved shell surfaces are developed to flat
ones in order to show thickness variations.

3.2.1. Examples of uniform temperature changes

Figs. 9, 10 and 11 show the thickness distributions for different boundary conditions subjected
to pure mechanical, lower thermal, higher thermal and pure thermal loading respectively. In these
examples, the prescribed volume constrains are nearly equal (V/V,=51%-52%). The effects of
thermal loading on optimal thickness distributions can be clearly observed. The distinct trends to
distribute the material for applying thermal or mechanical loading are revealed by comparing a)
with d) in these figures. The thermal loading distributes the material in the vicinity of the clamped
boundary in a continuous fashion, while mechanical loading distributes it in a classical frame like
manner, similar to normal topology optimization. These figures reveal the potential improvement
of shell thickness in terms of its weight and strength.
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Fig. 11 Optimal thickness distribution of the shell fixed at comer points (V/Vo=52%)
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Fig. 12 Pure thermal loading subjected to non-uniform temperature variation (V/Vo=52%)

3.2.2. Examples of non-uniform temperature change

The thermal boundary conditions are set T,;=T,,=2°C and T,,=Tgc=0 °C for the non-uniform
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temperature field. The pure thermal loads are applied to these examples. It is worth noting that,
when the non-uniform temperature is experienced in the region to be optimized, a heat FEA must
be carried out prior to the thermoelastic thin shell FEA at every iteration step, whereby the
removal of material may change the temperature distributions. Comparing Figs. 12a) and b) with
Figs. 10d) and 11d) respectively, the obvious difference in the solutions can be seen between
uniform and non-uniform temperature variations.

4. Concluding remarks

This paper has demonstrated that the ESO algorithm can be easily extended to thermoelastic
shell problems by combining the shell FEA with an evolution iteration. The generated FEA mesh
can be used for both heat and thermoelastic shell solutions for all iterative steps. The method can
deal with the topology and thickness optimization problems by a simply modification of the ESO
procedure. The evolution process can yield a series of solutions with distinct improvement in
structural efficiency. It offers the designers with many optimal feasible solutions, since the
structure at each steady state may be chosen as an improved design.

The significant effects of thermal loading, heat boundary and structural boundary on shell
design have been investigated in detail. The results show a strong solution dependence on the
temperature changes and structural boundaries. This may be explained by the difference of
thermal load contributing to the total structural response resulting from both thermal and
mechanical loads.

Besides the basic capabilities presented here, the ESO method is readily amenable to other
features and enhancements. For example, one development currently under investigation is the
incorporation of the heat flux-based criterion and stress-based one into the ESO element
elimination. As a result, the resulting topology will be of higher efficiency in both thermal and
mechanical behavior.

The new features for ESO developed in this paper have been incorporated into the general ESO
computer code EVOLVE (Querin et al. 1996).
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