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Analytical methodology for solving anisotropic
materials of antiplane problems
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Abstract. An analytical methodology for solving antiplane problem of anisotropic materials is
proposed and discussed in detail in this study. The material considered in this study possesses a
symmetry plane at z=0. The relationship between the problems of anisotropic materials and the
corresponding isotropic problems are established by Ma (1996) on the basis of the general solutions for
the shear stresses and displacement in both the polar and Cartesian coordinate systems. This implies
that any solution of an anisotropic problem can be obtained by solving a corresponding isotropic
problem. In this study some examples and numerical results are presented as an explanation of how the
complicated anisotropic problem could be solved by the associated simpler isotropic problem.
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1. Introduction

The problem of finding the stress singularities at the apex of an isotropic elastic wedge was
considered by Williams (1952) by using the eigenfunction-expansion method. Tranter (1948) used
the Mellin transform in conjunction with the Airy stress function representation of plane elasticity
to solve for the isotropic wedge problem. An eigenfunction approach was used by Williams (1959)
for establishing the asymptotic nature of the dominant singular stresses of dissimilar materials with
a semi-infinite crack. He found that the stresses share the inverse square root singularity of the
crack in a homogeneous material and, in addition, exhibit an oscillatory behavior as the crack tip is
approached. Following William's study on the bimaterial interfacial crack problems, Erdogan (1963),
England (1965), Rice and Sih (1965), have attempted to obtain the solutions with the
Muskhelishili's complex function theory in elasticity. The Mellin transform has been previously
used by Bogy (1971) and Ma and Wu (1990) in treating the problem of two materially dissimilar
isotropic elastic wedges of arbitrary angles. The stress field at the vertex of the edge or the corner
of the elastic bimaterial wedge possesses a singularity, the nature of which is dependent on the
composite parameters of the material combination. Two composite parameters have been derived
from the elastic constants of the materials by Dundurs (1967). The stress field of a composite in a
state of plane deformation has been shown by him to be dependent only on these two parameters.

Investigation of the associated wedge problems for anisotropic materials has initiated due to the
fact that anisotropic materials have increasingly wider applications in modern technology. In real
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composite materials, each layer is a fiber reinforced laminated material and hence should be
regarded as an anisotropic material. Stroh (1958) has obtained an analytical solution to the
problem for the case of a plane crack in an anisotropic material of infinite extent. Following the
approach of Stroh, Ting (1986) studied the stress distribution near the composite wedge of
anisotropic materials. A complex function representation of a generalized Mellin transform has been
previously employed by Bogy (1972) for analyzing stress singularities in an anisotropic wedge. The
anisotropic media has been demonstrated by all of these studies to retain all those troublesome
features of oscillation of the singular stress field observed in isotropic media. The antiplane
problem of two dissimilar anisotropic wedges of arbitrary angles that are bonded together perfectly
along a common edge has been recently considered by Ma and Hour (1989). The order of the
stress singularity has been found to be always real for the antiplane dissimilar anisotropic wedge
problems. That is quite a different characteristic from the in-plane case in which the complex type
of stress singularity might exist.

A previous analysis of the dissimilar anisotropic antiplane wedge problem by Ma (1992) has
shown that if an effective angle and effective material constant are introduced for the anisotropic
case, then the order of singularity for the anisotropic material can be obtained from the result of
the isotropic case. The results obtained in Ma (1992) have been extended by Ma (1996) and the
correspondence relations of the full field solutions of stresses and displacement have been
established for the anisotropic problem and that for the isotropic problem in antiplane deformation.
The reduction in the number of elastic constants considerably simplifies the description of the
stress and displacement state. The material is assumed to possess the material symmetry such that
the inplane and the antiplane deformations are uncoupled. Through such a correspondence, the
relationship of the stresses and displacement for anisotropic and the corresponding isotropic
problem is established for both polar and Cartesian coordinate systems. Any solution of
anisotropic material for antiplane problem can be obtained by solving a corresponding isotropic
problem. Some examples of anisotropic material with defects of hole and crack in finite bodies
are solved for providing the proof of the relationship established by Ma (1996).

2. Correspondence relations for anisotropic and isotropic problems

It is well-known that the only nonvanishing displacement component w' is along z-axis for the
antiplane deformation. For the absence of body force, the equilibrium equation for a homogeneous
isotropic material is given by the following partial differential equation
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For the anisotropic case, if the plane of elastic symmetry is assumed to be normal to the z-axis,
then there are only three relevant coefficients c,, c,s and css to be considered. The stress
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components are related to the displacement as follows:
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In the absence of body forces, the corresponding displacement equations of equilibrium for a
homogeneous anisotropic material is given by
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The Eq. (1) governing the anti-plane problems in linear, isotropic, elastic materials is the
standard second order partial differential equation of elliptic type. The Eq. (6) is a general second
order partial differential equation of elliptic type with constant coefficients. Such linear partial
differential equation of elliptic type with constant coefficients can be changed into the standard
partial differential equation of elliptic type by linear coordinate transformations.

For convenient, let the coordinate system associated with the anisotropic problem be denoted by
r and 8 (or x and y), and the isotropic problem be denoted by R and ¢ (or X and Y) in the
following content. A very simple relationship for the anisotropic problem and the corresponding
isotropic problem in the polar coordinate was established from Ma (1996) as follows
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The solution for an anisotropic problem can be obtained by replacing the angle by ¢ and r by
R in the isotropic solution. The geometrical changes of the boundary for the associated isotropic
problem can be constructed from Eqgs. (11) and (12). Hence, a material point in the anisotropic
problem located at (r, 0) is then to be changed to (R, ¢) in the corresponding isotropic problem. It
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is worthy to note that if 6=0° (or 6=180°), we have ¥=1 and ¢=0° (or ¢=180°). The material
points at 6=0 (or 6=180°) therefore do not change when transforming to the corresponding
isotropic problem. From the relationship of the transformation from anisotropic to isotropic
problem in polar coordinate system as shown in Eqs. (11) and (12), this relationship in Cartesian
coordinate system can also be obtained here as follows

X =x —-ﬁy (16)
Caa
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where x-y and X-Y are the respective Cartesian coordinate systems in anisotropic and isotropic
problems. The linear coordinate transformation as expressed in Eqs. (16) and (17) that transform
the general second order partial differential equation of elliptic type with constant coefficients into
the standard second order partial differential equation is not unique. It has some interesting
features in the Cartesian coordinate transformation. For a straight line (x,, y,), (x,, y,) parallel to
the x-axis will still be a straight line (X;, Y,), (X,, Y,) parallel to the X-axis and with the same
length after transformation, i.e., X, — X,=x, —x,. For a vertical line (x,, y,), (x,, y,) parallel to the y-
axis will be a straight line (X, Y}), (X;, Y>) but with a rotation angle y with respect to the Y-axis,
ie., tan y=—X; - X )(Y,-Yy)=c,s/C. Since C>0, hence c,s will control the character of the
rotation. There will be no rotation if ¢,s=0 and will rotate counterclockwise for c,s>0, clockwise
for ¢,5<0.

The solutions for anisotropic material can be obtained from the corresponding isotropic problem
in Cartesian coordinate as follows (Ma 1996)

wa(x,y)=%wi X,Y) (18)
e, y)=T; X,Y) (19)
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3. Some examples

In this section, five examples are presented to show the validation of the published relationship
established by Ma (1996) and explained in detail how the complicated anisotropic problem can be
solved by the associated simpler isotropic problem. A pair of point loadings being applied on a
semi-infinite anisotropic crack faces with distance d from the crack tip is the first problem
considered here. The traction boundary conditions are given as follows

% (r,m)=6(r—d), 1&(r,-m)=0(—d) (21)

We now transform the anisotropic problem to the corresponding isotropic case. Since ‘¥(7)=¥
(- m)=1, &m)=r and ¢ - m)=—m, the boundary conditions for the associated isotropic case can
therefore be obtained by using (8)

%R, m=0R-d), 1,R, -m)=6R-d) (22)

The well known full field solutions of shear stresses and displacement for isotropic material
with boundary condition, Eq. (22) are



Analytical methodology for solving anisotropic materials of antiplane problems 151
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The full field solutions for the anisotropic material subjected to the boundary conditions Eq. (21)
can finally be obtained from Egs. (7)-(9) as follows
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The results shown in Eqgs. (26)-(28) are found to be the same as those obtained by Ma (1992).
The second problem to be discussed here is a finite crack with crack length 2a in an infinite
anisotropic medium and subjected to uniform distributed loading 7 at crack faces. Since the crack
faces are located in the x-axis and the traction is expressed by 7,, the crack length and the
traction do not change when we transform the anisotropic problem to the corresponding isotropic
problem. The solutions for shear stresses of the associated isotropic problem are

. 1 1 .
i = - S — 29
15 (R, 9)=—Tcos¢+1T {Re[ R )2:| cos¢—Im [ =y :| sm¢} (29)

; . 1 . 1
=R, ¢)=— —_—_— _ 30
T2(R, p)=—Tsing+ T{ Re |: = )2:| sm¢+Im[ Ty :| cos¢} (30)

The solutions of the anisotropic problem can be constructed by using the results (29) and (30)
for the isotropic solutions. The results are
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The results shown in Egs. (31) and (32) are in agreement with those previously obtained by Sih
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and Chen (1980). Next, we consider a cylinder which is made of isotropic material and with inner
radius a and outer radius b as shown in Fig. 1a. The boundary conditions are chosen to be

wi(b, 9)=0 (33)
T(a, ¢)=—sing (34)
The solutions for stresses and displacement are very easy to obtain as follows
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The corresponding boundary in an anisotropic case can be obtained by Eq. (11) and the circular
boundary becomes an ellipse as shown in Fig. 1b, with boundary conditions given as follows

b
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Fig. 1 (a) An isotropic cylinder with an inner ~ (b) The elliptic boundary in an anisotropic problem
radius ¢=10 and an outer radius b=20
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The solutions for anisotropic material subjected to boundary condition Eqgs. (38) and (39) are
obtained from Egs. (7)-(9)
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The analytical solutions shown in Egs. (40)-(42) are verified by using the numerical boundary
element method. The results for displacement and stresses are displaced in Figs. 2-4. A perfect
agreement of the analytical and numerical solutions are indicated in the figures.

A finite square with a circular hole made of anisotropic material (css/c.=4, c4s/c4,=0.8) as shown
in Fig. 5 is investigated by numerical boundary element method. A uniformly distributed antiplane
loading of unit magnitude is applied at the boundary y==+20 and the circular hole of radius 10 is
fixed. After transformation to the corresponding isotropic problem, the square boundary becomes
a parallelogram and the circular hole becomes an elliptic hole as shown in Fig. 5. The boundary
conditions for the associated isotropic problem are uniformly distributed unit loading applied at Y=
+36.66 and the elliptic hole is held fixed. The data points at x=15 for anisotropic problem is
evaluated by the boundary elememt method in two different ways. One directly solves the
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Fig. 2 Numerical results of displacement w for an  Fig. 3 Numerical results of shear stress 7, for an
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Fig. 5 A finite square with a circular hole for an

anisotropic problem and the configuration
for the corresponding isotropic problem

anisotropic problem, the other one calculates the solutions for the corresponding isotropic problem
first and then uses the relationships presented in Egs. (7)-(9) to obtain the solutions for the
original anisotropic problem. The results of displacement and stresses obtained by these two ways
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Fig. 6 Numerical results of displacement w for
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Fig. 7 Numerical results of shear stress 7, for an
anisotropic material for a finite square
with a circular hole
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1.5 Css=6.0 Cis=1.2 Cu=1.5
C:i=4.0 Cix=0.8 CL=1.0

Cs5=4.0 Cy5=0.8 Cus=1.0

1.2 1 c/C'=1.5
___ Anisotropic .
..... Before Mapping ----- Data Point
°°°°° After Mapping from
0.9 1 Isotropic
e
0.6
0.3 l=— 10.0 ——’ -
0.0 T T T T T
-15 =10 -5 0 5 10 15
Yy |———— 20.0 ———>|
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are shown in Figs. 6-8. We can see the perfect agreement of these two methods, the solutions for
the isotropic problem before transformation are also indicated in the figures.

Finally, a composite structure made of two different anisotropic materials with material
constants c,=1.5, c;s=1.2 and c¢ss=6.0 in the upper part and with c,*=1.0, c,;s*=0.8 and cs5*=
4.0 in the lower part. An interfacial crack with a crack length of 10 is present in the interface of
the composite as shown in Fig. 9. A uniformly distributed loading with unit magnitude is applied
at y==+10 of the boundary. The corresponding isotropic problem after transformation is shown in
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| 20.0 xr
Fig. 10 The associated boundary in the Fig. 11 Numerical results of displacement w for an

corresponding isotropic problem anisotropic interfacial crack problem
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Fig. 12 Numerical results of shear stress t,, for Fig. 13 Numerical results of shear stress 7, for
an anisotropic interfacial crack problem an anisotropic interfacial crack problem

Fig. 10. We have u=3 in the upper part and p*=2 in the lower part with uniformly distributed
unit loading applied at the boundary of ¥Y=18.33. As we have indicated previously that the linear
coordinate transformation (i.e., Eq. (16) and (17)) is not unique and this study just choose one of
those. The linear coordinate transformation provided in this study has a good feature that field
quantities (i.e., displacement and stress) of two materials still continuous at the interface as shown
in Fig. 10. This problem is solved here by two methods: one solves the problem directly by
boundary element method and the other one solves the corresponding isotropic problem first and
then obtains the original anisotropic problem by using the solutions for an isotropic case. The
results in the upper material for these two methods are in excellent agreement and are shown in
Figs. 11-13.

4. Conclusions

Solving an isotropic problem has always been easier than the corresponding  anisotropic
problem in both the analytical analysis and the numrical investigation. The antiplane problem of
anisotropic materials has been investigated in detail in this study. The relationship for the stress
and displacement between the anisotropic materials and the corresponding isotropic problems have
been established by Ma (1996). These relations suggest an easier way to solve the anisotropic
problem by the corresponding isotropic solutions. With this correspondence at hand, investigating
the complicated antiplane anisotropic problem has become very convenient. The attention needs,
therefore, only be focused on the problem of isotropic materials.

The anisotropic problem has been shown here to be able to be converted into the one involving
isotropic material by properly changing the geometry of the body and the tractions on the
boundary. Some examples have been provided for indicating how to solve the anisotropic
problems by using the corresponding isotropic solutions. Each example has shown that this
method has become a good way for solving anisotropic antiplane problems. However the
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coordinate transformation associated with the relationship will change the geometry and boundary
conditions of an anti-plane problem in anisotropic materials. Such coordinate transformation may
result in complicated geometry and boundary conditions for the corresponding problem in
isotropic materials. For problems with simple geometry (i.e., first and second examples), analytical
solutions for anisotropic materials are especially suitable by using the proposed transformation
method. For the finite boundary case (i.e., fourth and fifth examples), the geometry of the
corresponding anti-plane problem in isotropic materials is a little bit complexity than that in
anisotropic materials, but it is still in the same order of complexity if the numerical method is
used to solve the problem.
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