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Abstract. The work presented here focuses on the development of suitable discretised formulations,
for large-displacement shape and non-shape design sensitivity analysis (DSA), which enable the
straightforward incorporation of structural optimisation into established finite element analysis (FEA)
codes. For the generalised displacement-based functional the design sensitivity vector has been
expressed in terms of displacement sensitivity. The Total Lagrangian formulation is utilised for
modelling of large deformation of truss structures. The variational formulation of the sensitivity
analysis procedure is discretised by using “pseudo’- finite elements. Results are presented for the
sensitivity analysis and optimisation of standard truss structures. For the purposes of this work, the
analysis and optimisation procedures outlined below are incorporated into the FEA code ABAQUS.
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1. Introduction

The purpose of structural optimisation is to minimise a generalised cost functional

f=fu,b)=f(u®)b)

for shape or non-shape design parameters b, subject to a set of generalised equality and inequality
constraints

8 =8 u,b)=g;(ud),b)

where u is the generalized displacement.

Commonly f represents the volume of material employed in a structure, or the financial cost
proportional to the volume of material, whereas the constraints g; generally reflect displacement,
strain or stress limits imposed on the structural behaviour.
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The object of DSA is to obtain a vector, V,¥= %, which expresses the perturbation of a

functional ¥ subject to variation of the design parameters b. These sensitivities are crucial in
implementing structural optimisation; i.e., DSA is utilised to evaluate

Vo £,V g i €l, e={active constraints}

The design parameters b for problems in engineering mechanics fall broadly into four categories:'
(Mréz 1994)

1. parameters which influence the elasticity (or elastic-predictor) matrix (i.e., the material model),

2. shape or configuration variables (i.e., the geometric design of a structure),

3. support and loading conditions,

4. topological support parameters, e.g., number of joints, elements or connections.

Recent increases in computing power have enabled the application of sophisticated
computational optimisation procedures to a range of engineering problems in design and
manufacturing. Theoretical advances in structural optimisation and sensitivity analysis now allow
for the investigation of problems variously involving time- and path-dependent material behaviour,
dynamic response characteristics, kinematic nonlinearity and higher-order element formulations
(Tsay and Arora 1990, Kleiber et al. 1994, and Kleiber 1993). The increasing complexity of such
sensitivity and optimisation procedures translates directly into increased design effort. Much time
and effort can be saved by incorporating optimisation procedures directly into an established FEA
code, thereby taking advantage of the facilities already available in the particular code (Arora and
Cardosa 1989, and Haririan et al. 1987).

Incorporating design optimisation in an established finite element analysis (FEA) code, care has
to be taken to ensure that the sensitivity analysis procedures are formulated and discretised in a
FEA compatible manner: the ensuing sections elaborate on the development and implementation
of such ‘pseudo’-FE discretisations for the shape or non-shape sensitivity analysis of displacement-
and stress-based functionals.

The total Lagrangian (TL) kinematic formulation is utilised to allow for the accurate modelling
of large displacement behaviour during both the structural and sensitivity analysis phases. The
Direct Differentiation Method (DDM) was selected for the purposes of performing DSA. The .
DDM was chosen due primarily to its straightforward formulation and comparatively better
behaviour for complex material models. The general robustness and efficiency of the recursive
quadratic programming (RQP) method motivated the preference of the PLBA approach as an
optimisation procedure (Belegundu and Arora 1985, Lim and Arora 1986, Thanedar et al. 1986).
Results are generated for two standard benchmark truss structures, respectively illustrated in Fig. 2
and Fig. 5.

2. Sensitivity analysis formulation

The design sensitivity vector V,, ¥ for the generalised displacement-based functional
Y=¥Yu,b)=¥Yu(b)b) 1)

"In this work only category 1 and 2 parameter sensitivities are investigated, generally referred to as non-
shape and shape sensitivity, respectively. Fig. 6 provides a graphical definition of the design parameters
emplyoed in one of the applications considered here.
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is expressed in terms of displacement sensitivity, Z—:, as

d¥ ¥ du ¥
_d¥ _0¥ du 0¥ 2
Yo = " b b @

where %—IP, as well as the explicit dependency of ¥ on b, %z:, are analytically derived.
u
du

The DDM is used to evaluate B
Representing the state of equilibrium of a system, at time ¢+A¢, by
AF(u, b)=0

the DDM proceeds by separating the design sensitivity operator 3=V, into implicit and explicit
parts:

B(*4F)=(5+08)"*4F =0 3)
where, from (Tsay and Arora 1990),
“_du 9 %_ 0
6=— —, O=—
db Ju db
For a mechanical system
“AF(u,b)=Q(u,b)-""4R=0 4)
with
Qu,b)=1"4Q = jOV(;Mtsij §+48e, v for TL
Q(u,b)=t+AtQE J' . t+AtTij t+At&ij ¥ 14 for UL
t+Ay
and’

t+At%= 0V(§+Atp(;+m6uT' (;+Atf0dV +IOTt (;+At Suf- 6+Att Oth
Considering only the 7L formulation, Eq. (3) is restated as
S(IOV6+AtS 6+A16£0dV - t+At%) + B(J'OV6+A1S 6+At& OdV _ I+At%) =0 (5)

by substituting Eq. (4).
The expression in Eq. (5) is reformulated in the ‘natural frame’ C, and expanded as

er?S(OHAfasT L iras Iy 'av +I,V3(5+A'5€T &g gy av }

? Assuming deformation independence of the traction load and material incompressibility, the expression
"*“R is utilised for both TL and UL kinematic formulations.

*Fig. 1 details the isoparametric mapping from the ‘parent’ frame C, to the ‘global frame C,. C,' refers to an
intermediate local frame.
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1, BGsp s a1y av [ Bsp s a1y av |

_{J'rr 3((;+At6uT,(;+Att JD rdl_; +-[r1" 3(6+At6u7_5+mt Jr) rdl_;}zo 6)

which is simplified by the introduction of several standard conditions. The slight reduction in
generality of the DSA formulation is more than offset by the considerable simplification of Eq. (6):

» Material incompressibility implies
Oy — Ly t+ar
P=oP=¢y""P
so that effectively
5(5 +apy=0

» The Jacobian integration factors J and J- depend exclusively on the isoparametric mapping C,—
Co, and as such are deformation independent:

8] =0, 8J;=0
* !*%Qu is arbitrary and, therefore, design parameter independent:
Bt 4Su) = §(\USu)+ 6( 4 Su)=0

« Assuming non-follower forces, i.e., the traction /*4¢ and body force !*4f are not deformation
dependent:

3(;*4)=0, 8(*4f)=0
Imposing the conditions above, Eq. (6) reduces to

erS((;+m6£T . (;+AtS)J”dV+J‘rVE(6+At6£T . (t)+Ats J) rdV

0

_J‘rvg(mmpémt&lT Liraf ) v _J'rrt S((;+At6uT e "6 =0 7)

The following specific assumptions are introduced in order to simplify Eq. (7) for the particular
applications considered here:

« Body force is negligible compared to traction, thus
FAf -0

* Traction force ;*“¢ has no shape or non-shape design parameter dependence
3(*41)=0
* Traction ;¢ is a concentrated nodal force, so that

er?s(gwau A ¢

=[5 28U Y] e o1+ [0 )] =2 =0

Introducing these further assumptions into Eq. (7), the variational form of the DSA formulation
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may then simply be stated as

erZS([;waeT A\ +f,V3(6+A’58T L HAS JYAV =0 ®)

which applies generally to problems involving shape or non-shape design parameters, subject to
the constraints and assumptions imposed above.

3. Discretising the DSA formulation

As a precondition to implementing DSA in ABAQUS, the variational formulation for the
sensitivity analysis procedure Eq. (8) is discretised in a ‘pseudo -finite element fashion. For shape
and non-shape DSA, the discretised variational formulation is expressed in terms of a ‘pseudo -

stiffness K', ‘pseudo’-load R' and ‘pseudo’-displacement V, ! *4u:
’ Ay D7
K-V, i**u =R
A kinematically nonlinear truss/bar element discretisation is utilised throughout.

3.1. Non-shape DSA

Adopting truss cross-sectional area b;=A as a non-shape design parameter, as illustrated in Fig.
6, the ‘pseudo -stiffness takes on the form:

K'=T"-M .°T ©)
where
M=(ELA)R T - ;"% - Ogt OR- %" 0T - (3) e+ R °R ]
for
L =truss length
E =Young’s modulus
0%,
opr’T _r10 = i
4
n o
T ‘xZ'yi'l)
translation rotation y
_ —_—
) @ ®
‘(? > & ’ f>x’ x,¥,2)
1 “ xy Xy .
NaturaWParent Frame  C, Local/Principal Initial Frame C; Global Initial Frame € g

Fig. 1 The isoparametric mapping
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T+ _ 1
Wex=5-[-100100]
T 1
0 —
N'yx=5-[0-10010]
T 1
0 — _ .
N ex=5-100-1001]
%R=ON,, ®N, . +N, . ®N, . +°N, ®°N,,
O}E:ONx,x +0x‘ or . 6+Atu
0§=0Nx,x + _;_ ON, o7 . 5+A’u
The ‘pseudo -load is expressed as
R =- [oTT ) E Lo 6+Atu]
where
K=V, K =(LE)RR
3.2. Shape DSA

Selecting the base area index £ of the pylon, illustrated in Fig. 6, as a shape design parameter,
the ‘pseudo -stiffness K' is unaffected and remains as defined in Eq. (9). The ‘pseudo’-load R’ is
obtained after substantial analytical manipulation®:

~

R’:—S((’/]\'T.K-Oi'-{'mu) (11)
where

K=(CA'LE)'R R

RotR, +OR IT g

~

27 ST 1 . o~
OR =N,  +G) " Yu” T R

Evaluating ?‘5( I/EZ) in Eq. (11) produces
S(K)=50R)- CA "L EY'R +9R-"4 6(L)E'R
+OR- (A "L E)SCR ),
where

3({)§)= __01? ON v, of _ % oﬁ_vb ()i_0%,6+Atu+O&,3(l)'}‘),‘t)+mu’

X, x

*T indicates a dependency of T on the shape design parameter h.
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3CRT)= [_ OLAJ N, Vs L+ [%) T SOTT)OR
= |V,

1 T =T 2\ 7
_[?J(;*.Atu 0T 'ON'Vb o7

Now, applying the explicit sensitivity operator ?5(. ..) to the shape parameter dependent TL
transformation matrix *T="T(h) in Eq. (10) results in

= A ~ T 03><3
0 = 0P —
3(N=V,T=|y

where

{oc cos O+cos 9B} —{Bs} —{a cosO+sin ¢f.}
T =| {0 sin 6+ cos ¢f;} {B:} —{os sin O+sin ¢}

{os} 0 {oc}

for
o = 3(005 P), o= B‘(Sin ), B = 3(005 0), B = 3(sin 0)

It remains to derive and calculate the specific form of the expressions

T . dsing I _dcosf
6(sin ) = T O(cos 6) = FTARE
Z,. ~_dsing % _dcos¢
S(sin ¢) = " d(cos ¢) —h (12)

as well as &'L), for each element / of the FE discretisation. The expressions in Eq. (12), as well
as &L), vary with design geometry and are therefore application dependent. For the pylon truss
structure in Fig. 5, where the positions of nodes 7-10 are dependent on a single shape design
parameter h, these expressions take on the form summarised below:

* node: 7 Elements affected: 15, 18, 23
a _x-y
dh L
dsinf _ -1 _( y X -y deosf _ 1 _( x X -y
dh PL PL? PL dh PL PL? PL

dsing __(z \[x-y deos¢ _ (x—y \(1)_(PL)(x—y
dh L? L dh PL L L’ L
* node: 8 Elements affected: 17, 19, 25

dL _ —(x +y)
dh L
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dsinb _ -1 _(_y —(x +y) dcos6 _ -1 [ x —{x+y)
dh PL PL? PL dh PL PL? PL

dsing __( z_ -(x +y) deos¢p _ (—(x+y) (1) _(PL -(x +y)
dh L? L dh PL L L? L
* node: 9 Elements affected: 16, 21, 24
dL _y-x
dh L
dsin _ 1 ([ y y—x deosf _ -1 [ x y-—x
dh PL PL? PL dh PL PL? PL

dsing (z \[y—x deos¢p _(y—x (1) _|PL
dh (LZJ L dn | PL ||L L2

» node: 10 Elements affected: 14, 20, 22
dL _x+y
dh L

dsin _ 1 _(_y x4y deosf _ 1 _( x xX+y
dh PL PL? || PL dh PL PL? || PL

dsing _ _(z \[x+y dsing _(x+y \[1)_(PL)(x+y
dh L? L dh PL || L L? L

where the symbols x, y and z all pertain to node 1 in the parent frame, i.e., x=x;, y=y, and z=
Zqy, and

PL =\x2+y2 L =Vxl+y2+22
3.3. DSA of stress-based response functionals

Implementing the discretised ‘pseudo -FE DSA formulation in ABAQUS is further complicated
by generalising the formulation of the response functional ¥ in Eq. (1) to include a stress T (or
strain €) dependency:

¥=¥(t,u,b)= ¥t(b),u(b),b)

The expression in Eq. (2) for the sensitivity vector of the functional ¥ becomes

ﬂ(ﬁv 87]4.8_‘{/ (13)
ot

vV, ¥=
b ob

ouw "%

which reduces to a problem of obtaining the expression %, where V, u is evaluated during the
u

oF ot and k4 are obtained analytically.

itivit lvsi h d =_ =g
sensitivity analysis phase an ot ob ob
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Considering only the 7L truss element discretisation, the required expression reduces to

at+At aT

—T”, so that the term | — |- V, u Eq. (13) takes on the form
ou ou

2 ~ Oy
a((p),vbu 'ON -OT-t+Atu+@2 a N ,Vbu .OT.""Atu
du 0 Ju 0

0 *4u

U

+@2F 0T

-V, u

- (m%? v, u) R OT sy 4 [%) ®2(V, u) OT OROT. +4y
U

+ @2OR’ T -V, u

where
b= <D(O¢, t+At¢’ 09’ t+At9)
=cos*# ¢ cos %9 (cos ‘ *% @ cos "¢+ sin  *4 G sin °0)
A + At fa t+ AL
The form of P is found from the incremental values deos' "¢ " dcos' "8 , d sin 4 ,
du ou ou ou

dcos® dcos?0 and dsin %0
ou ' Ou ou
expressions is specific to the particular application. The particular form of these expressions for
d d d

and

- - b
ou,, Ou,, duy,

represent the x- and y-direction nodal displacement sensitivities for, respectively, node 1

. As was the case for shape DSA, the formulation of these

the 200-bar truss structure, illustrated in Fig. 2, are presented below:

Ouy,
and 2, so that:

dcos'*49 1 a_2_1 osin'*40 __ af
ouy, 7|7 ou 7’
deos’*¥6 __1fa® dsin‘**0 _ aff
dus, W4 duy, 7’
dcos'*40 _  af dsin‘*46 _1( p? 1
Y o, Sl 2T
auly Y auly y y
dcos'*40 _ af dsin‘*4@  1(p? 1
S =E e e
au2y }, auZy y y

for
o=(x;="x)+Cuy, ="us), B=Cy1="y)+(uy, —"uy)

where y=vVa?+ B2 and (x,, vy, z)), (x5 'y, 2,) are the global coordinates for nodes 1 and 2,
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respectively.

4. Results

Results are presented for the benchmark 200-bar and pylon truss structures respectively
illustrated in Fig. 2 and Fig. 5: Non-shape sensitivity analysis is performed for stress-based
functionals in the case of the 200-bar truss; both shape and non-shape DSA is applied to the
pylon structure. Data generated for the sensitivity analyses is verified by comparison with the
Finite Difference Method (FDM). This section concludes with a presentation of data generated for
the design optimisation of the pylon truss.

4.1. The 200-bar truss

The material and structural characteristics for the 200-bar truss are: Young's modulus E = 10000

Fig. 2 The 200-bar truss
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Table 1 Grouping information for the two-hundred bar truss

Group number Elements
1 1-4
2 5, 8,11, 14, 17
3 19-24
4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177
5 26, 29, 32, 35, 38
6 6,7,9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37
7 39-42
8 43, 46, 49, 52, 55
9 57-62
10 64, 67, 70, 73, 76
11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75
12 77-80
13 81, 84, 87, 90, 93
14 95-100
15 102, 105, 108, 111, 114
16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113
17 115-118
18 119, 122, 125, 128, 131
19 133-138
20 140, 143, 146 149, 152
21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151
22 153-156
23 157, 160, 163, 166, 169
24 171-176
25 178, 181, 184, 187, 190
26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183 185, 186, 188, 189
27 191-194
28 195, 197, 198, 200
29 196, 199

ksi; initial bar cross-section b, = A =2.24 in® (for groups’ i=1-12, 14, 16, 17, 19, 21, 22, 24, 26),
A=7.07in’ (i=13, 15, 18, 20, 23, 25) and A = 14.14 in’ (for i = 27-29}). Applied nodal forces, of
uniform magnitude P, act in the positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62,
71, and in the negative y-direction at nodes 1-6, 8, 10, 12, 14-20, 22, 24, ..., 71-75. The
functionals ¥ are all of the form [(5,,""/200)* — 1], where j=element number.

Figs. 3-4 present results for the sensitivity expression (@,q9/b,qy), for variation in load
magnitude P and cross-section by, respectively.

4.2, The 25-bar pylon truss

The truss constituent material has modulus E = 6.9 x 10’kPa and the initial bar cross-section b, =
3.225%10* m* for i=1 ... 25. The applied nodal forces, P® and P, are defined as (1.92, 19.2,
—P) and (-1.92, —19.2, — P), respectively, where P, =240 kN. The functionals ¥’ are all of

* Refer to Table 1.
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the form [(u”)’ - 1], where j=node number.

4.2.1. Sensitivity analysis of the pylon truss

Fig. 7 tabulates the sensitivity of the displacement-based functional ¥, at node 3, for discrete
variations in the pylon structure base area index design parameter A.

Fig. 8 and Fig. 9 present graphical results for the y- and z-displacement functional sensitivities

for variation in the shape design parameter / and load P,, respectively.

4.2.2. Structural optimisation of the pylon truss

Structural optimisation of the pylon truss in Fig. 5 is performed for both shape and non-shape
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S.O%

Fig. 5 25-bar pylon configuration

Shape design parameter ‘W’ Non-shape  design parameter b
Fig. 6 Shape and non-shape design parameters

design parameters. The design parameters, respectively base area index, A, and the bar cross-
sectional area of element 4, b,, are graphically defined in Fig. 6.

NEL . A
For the non-shape optimisation problem, total material volume is minimised, i.., f = Y LOA®
i=1

subject to the (side) constraints , ,
u 3 u.3)
=" | —1<0, g,=|—2——|-1<0
8171 25% 102 8271 20%x 107

Table 2 presents the results for the pylon design optimisation, where NI and NF respectively
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Fig. 7 Structural configuration and shape sensitivity

o BTE-TE o
e € * 6.9E+7 kPa, Pz = 240 kN 12.0E-3 2
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2 e7E-7 3
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3 §
S 57E-7 3.0E-3 @
4.TE-7 0.0E-3
~-1.0 0.0 1.0 2.0
Shape design parameter b
—— DSA for (Paily ‘- FDM for {Pai)l.y
—=— DSA for (Pai).z %- FDM for (Pai).z

d \}1;3) d %3)

Fig. 8 Shape sensitivities o an design prameter A

represent the total number of iterations and function calls during the optimisation process.
For the shape optimisation problem, the objective (cost) function f to be minimized (in the form

of a scaled characteristic displacement squared) and displacement constraint g are respectively
defined as

uy(5) u®

F=1Toxi07 |° 87| 50x100

-1<0

Results for the shape optimisation procedure are provided in Table 3.
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Fig. 9 Shape sensitivities PRI vs. load P,
Table 2 Optimising the pylon truss w.r.t. cross-section b,
Results
Initial design Initial cost Final design Final cost NI NF
1 1.000x10* m*  3.00x10°m’  6239x10° m’  4.68x10° m’ 64 159
2 3.225x10° m*  3.06x10° m’  5914x10° m’  4.59x10° m’ 51 127
3 1.000x10° m*  3.25x10°m’  5.830x10°m’  4.56x10” m’ 27 71
Table 3 Optimising the pylon truss w.r.t. base area index A
Results
Initial design Initial cost Final design Final cost NI NF
1 -0.025 233x10° m’ 0.482 9.72x10° m’ 22 39
2 0.000 731x10* m’ 0.493 9.86x10° m’ 20 33
3 0.025 1.92x10* m’ 0.485 1.14x10* m’ 17 26

5. Conclusions

The results presented for the sensitivity analysis and optimisation of the truss structures verify
the ‘pseudo -finite element discretisations developed for various categories of sensitivity analysis.
The form of these discretisations are sufficiently general to allow for implementation into any

established FEA code.

Comparisons between the results produced with these discretisations, the FDM and those arising
from DSA formulations involving back substitution of the tangent modulus, underscores the
increased accuracy of the DSA formulation outlined in this work, especially in the large strain

domain.

The results for sensitivity and optimisation lead to the following conclusions:

+ The sensitivity data for the 200-bar truss in Figs. 3-4 underlines the accuracy of the DSA
formulation in the large strain domain. Divergence between the FDM and DSA results for large
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strain (4%) is attributable to the progressive worsening of the FDM estimates for the
increasingly non-linear stress response, combined with the decreased accuracy of the UL
kinematic formulation for large strain. For more realistic loading scenarios the close correlation
between the DSA and FDM sensitivities are apparent in Figs. 8-9.

* High sensitivity accuracies were obtained for sizeable variations in applied loads, shape and non-
shape design parameters. The shape sensitivity data, 0¥, /0h vs. h, allows for the most stable
base area configuration for the particular loading scenerio to be found by inspection.

* The results for the optimisation of the pylon structure with respect to shape and non-shape
design parameters, presented in Tables 2-3, attests to the robustness and efficiency of the PLBA
optimisation procedure implementation. A convergence occurs for iteration counts comparable
to that reported in the literature for optimal design problems with similar characteristics. The
implementation of the PLBA procedure was verified with the benchmark spring problem in
Lim and Arora (1986).
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