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Abstract. An effective moment of inertia is developed for a rectangular, prismatic elastoplastic beam
with elastic, linear-hardening material behavior. The particular solution for a beam with elastic,
perfectly plastic material behavior is also presented with applications for beam bending in closed-form.
Equations are presented for the direct application of the virtual work method for elastoplastic beams
with concentrated and distributed loads. Comparisons are made between the virtual work method
deflections and the deflections obtained by using an average effective moment of inertia over two
lengths of the beam in the elastoplastic region.
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1. Introduction

Over the years, the analysis of prismatic and non-prismatic beams with elastoplastic behavior
has been studied extensively and investigated by many researchers. Explicit procedures, often
referred to as plastic zone or distributed plasticity, have followed the gradual spread of yielding
throughout the member. Plastification of members was modeled by discretization of members into
several elements that included the effects of residual stresses, geometric imperfections, and strain-
hardening. However, these procedures can be cumbersome and computationally intensive for
general use. Consequently, engineers have often used simplified plastic-hinge models where the
plasticity is concentrated at the hinge.

Inelastic analysis procedures are necessary for predicting the behavior of structural members
stressed above the yield limit of the material and for determining displacements in both the elastic
and plastic zones of the member. Most of the current inelastic procedures have addressed the
reduced rigidity of the member by making use of a reduced modulus of elasticity, commonly
referred to as the tangent modulus of elasticity, E,.

Fertis, Taneja, and Lee (1991) and Fertis and Taneja (1991) showed that elastic and inelastic
analysis of members with both constant and variable rigidity could be approximated using
equivalent linear systems and applying known methods of linear elementary mechanics. For
inelastic members, an expression was developed for a reduced modulus of elasticity, which was
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later solved for by using substitution of variables and trial-and-error procedures. The authors
concluded that members could be analyzed for both elastic and inelastic response, all the way to
failure, thus permitting the observation of progressive deterioration of a member's ability to resist
load and deformation.

Fertis and Lee (1991) extended the method of equivalent linear systems to include the analysis
of elastic and inelastic members with axial restraints resulting from both compressive and tensile
forces, and the solution of statically indeterminate problems was also presented. Fertis and
Schubert (1994) later showed that the method of equivalent linear systems for the analysis of
elastic and inelastic members could be applied to aluminum members as well.

Liew, White, and Chen (1993) refined an existing plastic-hinge approach for the second-order
analysis of beam-to-column connections to include the degradation of the element stiffness as the
second-order forces at critical locations approach the cross-section plastic strength. In addition, a
column-tangent modulus expression was used to represent the effective stiffness of the element
with large axial loads. This procedure, without considering the effects of strain-hardening,
approximated the effects of distributed plasticity along the element length caused by residual
stresses as well as large bending moments and axial forces.

Romano, Ganduscio, and Zingone (1993) provided analytical solutions for beam deflections
beyond the elastic limit for both prismatic and nonprismatic beams and for various support and
loading conditions. The analytical solutions provide by differentiation the rotation, curvature,
moment, and shear force. This procedure requires the determination of several constants of
integration using the boundary conditions on the solution and its derivatives.

This paper describes a new procedure that reduces the rigidity of a beam stressed beyond the
elastic limit of the material by using an effective moment of inertia in the elastoplastic regions.
Closed-form equations are given for determining the effective moment of inertia for rectangular,
prismatic beams having elastic, linear-hardening material behavior. The particular condition of a
rectangular beam with elastic, perfectly plastic material behavior is further developed for
predicting deflections that are “exact’ and closed-form. This relationship to reduce the rigidity in
the elastoplastic regions provides the means by which a solution can be found using classical
methods of linear analysis that do not require the use of equivalent systems as presented by Fertis
et al. (1991, 1994) or complex integrations as shown by Romano et al. (1993). Example problems
are provided that illustrate the ease with which the effective moment of inertia can be used to
predict elastoplastic beam deflections. This paper also presents a means by which the linear direct
stiffness method can be used to approximate beam deflections by using an average moment of
inertia over the element lengths in the elastoplastic regions.

2. Beam bending
2.1. Rectangular prismatic elastoplastic beams

The second-order differential equation that is routinely used for the determination of the
curvature and deflection of elastic beams can be used for the same purpose for elastoplastic beams
provided the proper reduction in rigidity is made for moments beyond the specified yield moment.
This can be done by modifying the modulus of elasticity with the use of a tangent modulus, E,, or
by using a reduced moment of inertia, which in this paper will be referred to as the effective
moment of inertia, Lz Eq. (1) shows the moment-curvature relationship with the effective moment
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of inertia for elastoplastic moments, M,,, above the yield moment, M,.

dy _ My )
dx>  EL,,

It is assumed that the elastoplastic beam has small slopes and deflections with respect to the
beam depth, and that shear deformations are negligible, the longitudinal beam dimensions are
large compared to the dimensions of the cross-section resulting in small shear stresses compared
to longitudinal stresses, and that plane sections remain plane after bending.

This paper is concerned with the development of I,; for elastoplastic beams with elastic, linear-
hardening and elastic, perfectly plastic material behavior. The stress-strain behavior of the elastic,
linear-hardening material is illustrated in Fig. 1(a), where the o, is the stress at yield, &, is the
strain at yield, o,, is the stress at some level above yield, and &, is the strain corresponding to o,
The increase in stress above yield is based on the strain-hardening coefficient, o, where 0 << 1.
The elastic, perfectly plastic material behavior is represented by letting =0 in Fig. 1(a).

When a beam is in flexure with an elastic-plastic material, the bending can be classified into
two general cases. Case I involves elastic bending of a beam where stresses remain below or
equal to the elastic limit of the material. For rectangular sections, the maximum elastic bending
moment, M,, is expressed by Eq. (2) where & is the depth and I is the moment of inertia of the
rectangular cross-section.

M, = (2%)1 @

Case II involves elastoplastic bending of a beam, or bending in which the normal stresses
throughout the beam depth are above and below the elastic limit of the material, as shown in Fig.
1(b). The elastoplastic bending moment, M,,, is the moment that causes the rectangular beam
section to have normal stresses that go beyond the yield stress of the material. The elastoplastic
bending moment is determined by considering the internal couple consisting of forces C,, C,, T,
and T, multiplied by their respective distance from the neutral axis. Since C,=T, and C,=T, for the
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Fig. 1 (a) Elastic, linear-hardening material behavior, (b) Elastoplastic stress distribution
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rectangular cross-section, then

— h_c(h_Y1
Mep_zlclg cz[z 3]] 3

where y, is the distance from the extreme fiber to the yield stress, o, Eq. (3) can be expanded and
rewritten into the form

Mo =2|:(% b %0'1]%— (-%—bh(o'l—o'ep)] [g—%ﬂ )}

where b is the width of the beam. The elastoplastic normal stress, o, is given by Eq. (5), where €
o 1 the normal strain as shown in Fig. 1(a).

Oep =0y + OE (€ — &) ®)
The normal stress o; is the stress that would develop at the strain &, if the material remained
elastic and is given by the expression
h
o= 6
1 ( h—2y, ]Gy (6)
Using ¢,,=0,/E and &=0, /E, and substituting Eq. (6) into Eq. (5), then
2y,
ep — 1+ 7
oo oy[ ah—ZyI} Q)

The substitution of Egs. (6) and (7) into Eq. (4) allows the expression for M,, to be further

developed as
h2 h 2 1-a h Y1 :
Mp=bo, | 2| —2 —|-2p2| —=% |2 -ZL 8
=00 6[h—2y1J yl[h—Zyl][Z 3] ®

2.2. Effective moment of inertia
Eq. (8) is written in the form given in Eq. (9) so that the new, effective moment of inertia can

be determined. This equation is written in a form similar to that found in Eq. (2) so that the term
in brackets is shown to be I; as given in Eq. (10).

20, \| bh? h 1-a h Y1
M. = _y2bh LIPS 9
g [ h ] 12 (h—-Zyl] Yi [h—zle[z 3] 2

bh? h 1-o h Yi
L, =2 —y 2bh L2 10
=12 {h—Zyl] Yi {h—2y1](2 3) (10)
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The bending moment, M,, that would develop if the material remained elastic up to the stress
level o, is given as

2
M1=%01 (11)

and can be written in terms of ¢, and the unknown y, using Eq. (6) as
M 1= Lgy
6(h —2yy)
Eq. (12) can also be written in a form similar to that found in Eq. (9) and, again, it is evident that
the term in brackets is simply I, because by the definition of M, the material is elastic at o, and

(12)

y1=0.
20, | bh®  h
M= 13
! [ h ] 12 (h-zyl)} (13)
bh3 h
ILi=l=— ——— 14
! 12 (h-2y) (14
Egs. (2) and (8) are used to form Eq. (15), and Eqs. (10) and (14) are used to create Eq. (16).
2 2 _
Mfz’_=% R h | Yi| 1-a Gh -2y, (15)
My h 6 h _2y1 3 h _2y1
Ly 6 h? h yi| 1-a
Ll =2 (h-2p) | 2= -ZL 30 -2 16
I h3( Y1) 6 [h—Zyl] 3 | h—2y, ( Y1) (16)

Since the terms in brackets in Egs. (15) and (16) are identical, a relationship between M,,/M,
and 14/l can be found to be

Mp R Lss

M, (h-2pp) 1

It is noticed that the relationship between M,,/M, and I;/I is independent of ¢, and the form of

the equation is similar to that found in Eq. (6). Eq. (17) is used to develop an expression for y, in
terms of the known quantities &, I, M,, and M,, with I; being the only other unknown.

y1=%[1_lei&] (18)

(17)

I M,

When y,=0 in Eq. (18), then M,,/M,=I /I as expected for a completely elastic condition. When y,=
h/2, then either the ratio IL;/I=0 or M,/M,,=0 (which is a trivial solution for non-zero M,). For the
case when I,;/I=0, the beam is fully plastic and, as shown in Fig. 2, can only occur for an elastic,
perfectly plastic material (o=0).

When Eq. (18) is substituted into either Eq. (15) or (16) to yield Eq. (19) a cubic equation is
found in terms of the dependent variable I.;/I and the independent variables M,,/M, and c.
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1 3

1 -0 [’e;f] - (1-0)-1 [%J-a:(} (19)
i i
M M |
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Plots of this equation are shown in Fig. 2 where it is noticed that for any o>0, and as M,,/M,
approaches infinity, the ratio of Iz/I approaches o. Also, the traditionally used tangent modulus of
elasticity, E,, can be substituted into Eq. (19), because it is recognized that E/E=I;/I.

Eq. (19) can be shown to have two solutions that have real roots and are given by Egs. (20)
and (21). Eq. (21) is used to find I; when o<1-(2/3M,,/M, for 1<M,,/M,<1.5; for all other
conditions of o and M,,/M, Eq. (20) is used to calculate I

3 3
b b2 a3 b b? a3
L, = '\/——+'\/—+———'\/—+'\/—+— I 20
eff { 2 4 27 2 4 27 (20)
V-2 -
1..=1\[_P, _+a_+\/___ AN 21
eff 2 4 27 2 4 27 @)

where a and b are given as

2 (My A(My

T [7] 3[—M,) =
20 (MY
b= (1—05)[My) 3)

A particular solution is found for =0 in Eq. (19), which represents an elastic, perfectly plastic
material behavior. Eq. (24) is the solution for this case and, because of its relative simplicity, it is
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Fig. 2 Relationship between I ;/I and M, /M, for various o



Effective moment of inertia for rectangular elastoplastic beams 101

particularly well suited to solutions in closed-form of elasto-perfectly plastic beam flexure.

Moy [ M
Ly=|=2[3-272 ] 24
I [My M} @)

y

This equation will now be used with the moment-curvature relationship in Eq. (1) to determine
the deflections in closed-form of rectangular, prismatic beams with elastic, perfectly plastic
material behavior.

3. Virtual work applications

With the I; equation for the elastic, perfectly plastic case being of a simple form, its use with
the customary methods of linear structural analysis can be achieved with relative ease. The
effective moment of inertia can be used with any commonly used elastic beam deflection method;
however, the virtual work method was selected to illustrate the use of I,; in this paper. The virtual
work expression in the elastoplastic range is given as

sw=[" Mgy g (25)
0 EIeff
where L,, is the length of the elastoplastic zone, M,, is the bending moment in the elastoplastic
range due to the real loading and M is the virtual moment due to the virtual load. Eq. (25) can
also be expressed as Eq. (26) where the displacement is equal to the summation of the M,,/El; area,
given as A,,, and the virtual moment, oM, at the centroid of each A,

W =1()= A, M, (26)
i=1

The area A,, is found by integrating M,,/EI,; between the limits of 0 and L,, given by the
expression

L, M
Ap=|" =L dx 27
=l @7

The centroid of A,, referred to as X, is found by integrating the product of M, /El; and x
between 0 and L,, and dividing by A, given as

JL“’ My x dx
0 EIeff

Xep = " (28)
ep

In order for the virtual work method to be practical and convenient when determining
elastoplastic beam deflections, the solutions to Egs. (27) and (28) have been developed for
concentrated and distributed loading conditions. Three conditions of moment variation must be
considered for these two loading conditions; the concentrated loads produce linear moments, and
the distributed loads produce negative and positive quadratic moments. The three moment
variation conditions are presented in Table 1.
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Table 1 Area and centroid formulas for linear and quadratic moments in the elastoplastic region

M N
Moment Bl Area Aep Centroid x,,
eff
M
Moment Elegy
o Ly, MP(1-K ) 5 L, M,-KM,)
W & o | e TTen e 7T 3U-K) (M, M)
Fep
Linear Moment Region Lep
M,:{_ My MAK.-K 2 NG
, . P - 9 - _V2 M(K,-K) - N2 L3[2K M,(K,— 1) +V2V,(K,-K )]
N By “?7 2 K,EI T4 M, -M, +V,L,)YK,-K),)
| ¢
Quadratic Moment Region: Case I Ly
/ M
. _— T - @ T, _ V2 MK, - N2 Lp[F2L, MK (1-K ) +V2K (M, —M,)]
¥ Elat ?" 4 KEI "7 2 K M, ~M,)
For
Quadratic Moment Region: Case II Lep
M, 1 M, VuL
Constants: Ky=\[3-2——, K,= 1-—+ -2
M, Lep M, M,

K,=In[K J(My — My )+V2K Vo L3 +2K (My =My +VaLep)),

K;=In[2(My ~My, +VuLep) =V 2KV, L3,
LY Ke=Kg—InMy)-2K,, Kr=In(l—V2KLoy),
Ly Y M,

K,=2V2K Loy, Ks=

3.1. Linear moment variation

A linear varying moment in the elastoplastic region is given as

Mn - My ]x (29)

M. =M, +
p (X) y ( [

where M, is the maximum bending moment in the elastoplastic region. The area A,, for this
condition is calculated by substituting Eqs. (24) and (29) into (27) and integrating the expression
between 0 and L,,. The solution of the integral is
Lep My*(1-K
@ = p Aty ( 0) (30)
EI (Mm _My)
where the constant K is given as

Ko=A\[3—2Mn 31)
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The centroid of area, X,,, is found by substituting Egs. (24) and (29) into (28) and integrating
between 0 and L,,, then dividing by A,, from Eq. (30). The solution is given as

— _ Lep (My _K()Mm)

o = 32
=3 A-Ko) M M) 2
3.2. Quadratic moment region - Case |
A negative quadratic moment in the elastoplastic region is given as
Mep(x)=My +an+ Mn—"Mv_ﬁ x2 (33)
L3 Le

where V, is the shear force at the location of M,. The area A,, is calculated by substituting Eqs.
(24) and (33) into (27) and integrating between 0 and L,,. The solution of the integral is

V2 My (K,-K3)

Ap=—— 34
) EIK, (34)
where the constants K, through K; are given as
Vi L
1 _ Mm_ n Lep 35
K=o 1- e Yele 39)
K,=In [K4(My ~M)+V2K Vo L3 +2K o(My — M + Vi Lep )} (36)
K3=1n [Z(My _Mm +Vn Lep)—\/_2K1VnLe127j| (37)
and the constant K, in Eq. (36) is given as
K,=2V2K Loy (38)

The centroid of area, X,,, is found by substituting Egs. (24) and (33) into (28) and integrating
between 0 and L,,, then dividing by A,, from Eq. (34). The solution is given as

5 Lé [2KMy (o= 1)+ V2V, (K- K5

X, ep = —— (39)
4 My —Mpn + Vi Lep ) (K, —K5)
3.3. Quadratic moment region - Case |l
A positive quadratic moment in the elastoplastic region is given as
Mgy (x)=M, +2 Mo =My o | My M | (40)
Lep L3

where a shear force is not needed for this expression because it is assumed the shear force is zero
at M. Again the area A,, is calculated by substituting Egs. (24) and (40) into (27) and integrating
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between 0 and L,,. The solution of the integral is given as

py Y2 MK @)
4 EIK,

where the constant K; and K, are given as

1 . [Ma
K= \/——— 42
=T Vs 42)

y

K¢=Ks—In(My)-2K, 43)
and the constants K, and K; in Eq. (43) are given as

K7 = ln (]. - \/_2.K5 Lep ) (44)

Ky=In (3My —2M,,,) (45)

The centroid of area, x,,, is found by substituting Egs. (24) and (40) into (28) and integrating
between 0 and L,,, then dividing by A,, from Eq. (41). Eq. (48) gives the solution of the integral
in Eq. (29) where the constants K; through K, are given by Eq. (42) through Eq. (45).

_ 7 Lo [2LaMK(1-K)+V2K (M -M,)]
xep =—

2 Ks(Mn —My)

(46)

The results for A, and X, for all three moment variation conditions are summarized in Table 1.

4. Applied results

Two example problems are presented using the effective moment of inertia, I, for the
determination of elastoplastic beam deflections. The first example problem consists of a
cantilevered beam with a concentrated load at the free end. Three solutions for bending of the
cantilevered beam are presented using the virtual work method, the direct integration method, and
an approximate direct stiffness method using average values of I; in the elastoplastic region. The
second example problem consists of a continuous, statically determinate beam with concentrated
and distributed loads. Two solutions are provided for the continuous beam using the virtual work
method and the approximate direct stiffness method.

4.1. Cantilevered beam example

The cantilevered beam, as shown in Fig. 3, consists of a beam of length L, whereby the
elastic region of the beam is L, and the elastoplastic region is L,,. The concentrated load P at the
left end of the beam is greater than the load necessary to cause yielding.

4.1.1. Virtual work method

The virtual work expressions developed for a linear varying moment are used to determine the
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Fig. 3 Cantilevered beam example problem
elastoplastic beam deflection at the left-end. As shown in Fig. 3, the area under the elastic region of
the curvature diagram is denoted as A, and the area under the elastoplastic region as A,. The

corresponding virtual moments at the centroids of the areas, &M, and &M, are also shown. The
following equation is all that is needed to find the deflection at the left-end of the beam.

yxzﬂzA 1 6A_41 +Aep 6M—.—ep =A 1 [%] +Aep (L 1 +-fep) (47)

where A,, and x,, are found by using Eqs. (30) and (32), respectively. Substitution into Eq. (47),
and after some simplification, yields the left-end beam deflection equation as

PL} L L
=L 5|3+~ \/3—2— 48
Yes0=3pr { Ll] L, (48)

If P=2624.45 kN, L=2413 mm, M,=4.2369x 10° kN-mm, E=199.948 kN/mm’, and [=5.4197 x 10’
mm’, then L,=M,/P=1614.41 mm and substitution into Eq. (48) yields the elastoplastic deflection
at the left-end to be 15.41 mm.

4.1.2. Direct integration method

The direct integration method for elastic beams involves writing an expression for M/EI as a



106 Ronald K. Faller and Barry T. Rosson

function of x along the beam. The expression is then integrated twice to obtain the expressions for
the deflections of the elastic curve, and the constants of integration are determined from the
boundary conditions. For the elastoplastic cantilever beam, the integrations must be conducted
over the elastic and elastoplastic regions of the beam. This introduces two additional constants of
integration that are evaluated using the conditions of continuity. Thus, expressions for the slope
and deflection must be developed for both the elastic and elastoplastic regions.

FElastoplastic region

Expressions for the slope and deflection of the elastoplastic region of the cantilever beam are
determined by integrating Eq. (1). The expression for M,, used in Eq. (1) is M+P(x-L,) for L,<x
<L, where M,=PL,. The equation for the effective moment of inertia is found by substituting the
equations for M,, and M, into Eq. (24). The slope of the beam in the elastoplastic region is

& _PL [ Wﬂ/s 2—} (49)

ep—p

where the constant of integration is found using dy/dx,,=0 at x=L. The deflection of the
elastoplastic region is obtained by integrating Eq. (49) and is given as

n
2 32 L
Vep_ _PL{\ L, 3-2% +x»\’3_2L__1 3., L _L»\/3_2L (50)
PP El | 3 L, L, 3 L, L,

where the constant of integration is found using y,,,=0 at x=L.

Elastic region
Expressions for the slope and deflection of the elastic region of the cantilever beam are

determined by integrating the elastic moment-curvature relationship. The slope of the beam in the

elastic region is given as
2
dy _Plxz_ 3Li +L3\/3—2£ (51)
dx EI|2 2 L,

where the constant of integration is determined using dy/dx,,,=dy/dx,,. at x=L,. The equation for
the deflection in the elastic region is given as

2
P|x3 3 ,[ L | 5.7 L} 5 ‘/ L
—| = +xL 2 —=+1\/3-2—= |+ -—13- 2— —-L{LN\/3-2— 52
Yoo =TT 76 2 L, |73 3 L, ! L, (52)

where the constant of integration is determined using y,,,=V.,. at x=L,. If the same constants used
in 4.1.1 are substituted in Eq. (52), the deflection at the left-end is identical to that found using
the virtual work method.

4.1.3. Approximate direct stiffness method

The direct stiffness method was chosen to show the ease with which the effective moment of
inertia can be used with a linear stiffness matrix to approximate the bending of elastoplastlc
beams. A model of the cantilever beam is shown in Fig. 4, where two beam elements are used in
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Fig. 4 Model of cantilevered beam

the elastoplastic region and one element is used in the elastic region. The elastoplastic region is
divided into two, unequal length elements consisting of 25% and 75% of L.,, where the shortest
element is closest to the maximum moment. For this example problem, analyses with various
element lengths showed that a 1:3 proportion produced results that were the closest to the “exact’
solutions. Since the beam is determinate, the bending moments above yield are known a priori,
and the effective moment of inertia can be determined at each node in the elastoplastic region.
The effective moments of inertia at each end of the elements in the elastoplastic region are then
averaged and used as a constant I,,, in the linear stiffness matrix. Fig. 4 shows the reduction in
the moment of inertia for the two elements in the elastoplastic region.

If this procedure is applied to the cantilevered beam example, using the same constants as in
4.1.1, the end deflection is found to be 15.80 mm. This results in a 2.53 percent error when
compared with the “exact” solution of 15.41 mm. Fig. 5 shows the relative percent error of the
end deflections from the onset of yielding (M.,/M,=1) up to full plasticity at the fixed-end (M,,/M,

4
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Yw Vads
Yow

-

o

1 1.1 1.2 1.3 1.4 1.5

PL/M,

Fig. 5 Relative percent error of the cantilevered beam end deflections
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=1.5). The relative error increases as the load is increased, and the maximum error is 3.03 percent
just before full plasticity is reached. From this example, it is evident that the average effective
moment of inertia method overestimates the end deflection, however the relative error is
reasonable for most practical purposes.

4.2, Determinate continuous beam example

Elastoplastic beam deflections are also found for a statically determinate, continuous beam with
both concentrated and distributed loads, as shown in Fig. 6. The shear and moment diagrams for
the continuous beam example are not shown for brevity, however they can be found by simple
structural analysis because the structure is determinate. The curvature diagram, MJELg is shown in
Fig. 6, where it is noticed that the diagram is divided into 14 areas, with the six shaded areas
representing the elastoplastic regions. Two solutions are provided for the continuous beam
example using the virtual work method and the approximate direct stiffness method. The virtual
work method was used to determine the deflections at various locations along the length of the
beam so that the versatility of the method could be shown for a more complex problem and the
deflections could be used for comparison with the approximate direct stiffness method results.

4.2.1. Virtual work method

The deflections of the beam are found by using Eq. (26) and the A,, and X, equations given in
Table 1 for all three moment conditions. The area and location of the centroid for each of the 14
regions in Fig. 6 are first calculated, then the virtual moments are determined at the centroid of

444.82kN 4448.22kN 2668.93kN
w=1.75kN/mm

LTIy Ty r

XX

//ﬁ/? A ///% B D 7/% C
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Fig. 6 Determinate continuous beam example problem



Effective moment of inertia for rectangular elastoplastic beams 109

Table 2 Summary of continuous beam results

Elastoplastic Deflection (mm)

Node Virtual Work Method ~ APProximae Direct Perce(n;;,)Emr
(exact) (approximate)
8.402 8.708 3.64
9 5.214 5.208 0.115
13 4.116 4113 0.073
15 14.408 14.402 0.042
16 5.981 6.031 0.836
21 44.169 44.628 1.039
444.82kN 4448.22kN ook N S 2668.93kN
HHHrU{;;,/;/iAHIH irilli/!/iyidiH”;&,HHﬁLx e
@ @ @@ ® ©®0 R B @ ® ® @@@ @ @) Nodes

Fig. 7 Model of continuous beam

each region for each virtual loading condition corresponding to a desired deflection location. In
the elastic regions, the areas and centroidal locations are calculated using well documented
formulas found in most structural analysis references (Kassimali 1993).

If the loads and span lengths shown in Fig. 6 are used with M,=4.6606x10° kN-mm,
E=199.948 kN/mm’, and I=5.9616 X 10° mm"*, the virtual work method yields the deflections at
six locations along the beam as shown in Table 2. The six node numbers in Table 2 correspond to
those used in Fig. 7. '

4.2.2. Approximate direct stiffness method

The direct stiffness method is used to determine the deflections of the continuous beam using
two beam elements with an average effective moment of inertia for each element in the
elastoplastic regions. Fig. 7 illustrates the model used for the continuous beam example. It
consists of 20 linear elastic beam elements, where each element between nodes 2 through 6, 9
through 13, and 16 through 20 has a moment of inertia that is the average between the two
effective moments of inertia found on each end of the element. As with the previous example,
each side of the elastoplastic region is divided into two, unequal length elements consisting of 25%
and 75% of L, where the smaller element length is closest to the maximum moment. For this
determinate beam example M,, does not change due to the reduced stiffnesses in the elastoplastic
regions; therefore, Eq. (24) can be used to determine the effective moment of inertia at each node
in the shaded regions. The average moment of inertia, I,,, is calculated for each affected element
and is used as a constant [ in the beam element stiffness matrix.

The deflection results from this method are compared with those obtained from the virtual work
method. The results in Table 2 indicate that the deflections calculated by the approximate direct
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stiffness method compare very closely with the “exact” deflections. The relative errors are highest
at the two ends of the beam where the deflections are largest, although most of the errors are well
below the maximum value of 3.64 percent. This loading condition produces moments nearing the
full plasticity of the section at M,,/M,=1.4545, indicating the approximate direct stiffness method
can be used with good accuracy up to the formation of plastic hinges and with relative ease
compared with the other methods of analysis.

5. Conclusions

A new procedure was developed to reduce the rigidity of elastoplastic beams by reducing the
moment of inertia using an effective moment of inertia, I, Using the I, relationship for a
rectangular beam with elastic, perfectly plastic material behavior, convenient virtual work
equations were developed to find deflections of beams with concentrated and distributed loads that
are “exact’ and closed-form. The approximate direct stiffness method using an average effective
moment of inertia produced results that agreed very closely to the “exact” results up to full
plasticity.

This study shows that the effective moment of inertia can be accurately and conveniently used
to represent the beam stiffness reduction for rectangular, elastoplastic beams. It is anticipated that
the procedures outlined in this paper can be used to determine I, for other beam cross-sections
with equal success, and can also be extended for predicting deflections of indeterminate structures
in an iterative manner.
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