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Abstract. The dynamic analysis of trusses using the finite element method tends to overlook the
effect of local member dynamic behavior on the overall response of the complete structure. This is
due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the
structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to
calculate the exact dynamic properties of trusses without the need to increase the model size. In the
examples the limitations of current solutions are presented together with the exact results obtained
from the proposed method.
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1. Introduction

The dynamic analysis of large structures has become in recent years a practical problem. Large
space stations and huge structures on the ground (like Energy Towers) require the dynamic
analysis of systems that are modeled by hundred thousands of degrees of freedom. This kind of
analysis is an impasse even for the most advanced computers on the market today. Thus, it
becomes a real obstacle to technological advance in a number of fields.

The vibrational analysis of large scale trusses is currently done by the finite elements method.
The members of the structure are modeled with elements, one elements per member, and this
results in a stiffness matrix of size (2N X 2N) for plane trusses, or (3N x3N) for space trusses,
where N is the number of joints in the truss. For large scale structures this results in a very large
eigenvalue problem, which demands enormous computational efforts and very long execution time,
even with the most modern computers. This finite element model, however, is approximate, and
the results may still have significant errors due to several shortcomings of the finite element
method that will be pointed out.

The dynamic stiffness method differs from the finite elements method in several respects. The
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first and most important is that it is exact and the results are not dependent on the selection of the
element type and discretization parameters for the structure. The second difference is that there is
no separate modeling of the mass inertia (as the mass matrix in finite element method) and its
effect is included in the stiffness matrix that is frequency dependent. The third difference is that
all the inertias of the members, along its axis, and transversely are taken into account and it will
be shown that they have a significant effect on the vibration frequencies of the structure. The
fourth difference is in the fact that the size reduction that is done in the finite element solution
introduces additional inaccuracies, and in the dynamic stiffness approach the results from the
condensed model are still exact.

2. Limitations of the finite element method in dynamic analysis

The Finite Element Method (FEM) is based on assuming the local behavior within the
element (in our case member) to derive the stiffness and mass matrices of the structure which are
needed for dynamic analysis. The quality of the results of the analysis are therefore highly
dependent on the quality of the assumed element behavior. For frame structures, as it is in our
case, the shape functions are exact and the stiffness matrix is thus the exact static stiffness
matrix. It is exact since the shapes function which are used are the exact solution of the
differential equation that represents the element response, but this is so only when the inertia
terms are omitted. The mass matrix, which is derived based on the same static shape function is
thus not exact. It is well known that due to this limitation, the vibration frequencies that are found
using FEM are only approximation to the exact results.

Another problem that arises in the dynamic analysis using FEM is that for the higher
frequencies of vibration, the accuracy is deteriorating, and at some level these become totally
unreliable. For large scale structures, the resulting matrices, stiffness and mass, are very big, and
thus very time consuming for the computation of the eigenvalues. Size reduction techniques that
were employed in the past have introduced additional approximations, and reduced even further
the accuracy of the resulting natural frequencies.

A very important and ignored problem of FEM is the fact that the local inner element or local
modes of vibrations cannot be found. The shape functions for the axial degrees of freedom of the
element are linear, and the local axial modes are sinusoidal. Thus, the element is not capable of
representing the local axial vibration even at minimal accuracy, for the first axial mode, and even
worse for higher axial modes. As for the lateral local modes the third degree polynomial that is
used in FEM to approximate lateral displacements is very limited in modeling the sinusoidal
behavior of such motions, for all the modes.

3. Derivation of the dynamic stiffness method (DSM)

The dynamic stiffness matrix is frequency dependent (Paz and Dung 1975, Fricker 1975, Leung
1993). It is derived, as shown below, by solving exactly the equations of motion of the member.
The single dynamic stiffness matrix combines the stiffness and inertia effects in one. The natural
frequencies of vibrations are the values of the frequency  that cause the dynamic stiffness matrix
to become singular. These values can be found by several search methods and by the Wittrik-
Williams algorithm (Wittrick and Williams 1971).
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The differential equation that represents the lateral vibrations y(x, #) of a beam element with
flexural rigidity EI, mass per unit length m, and length L, loaded by time dependent distributed
lateral load p(x, f) is:

& i
Eo1~$y(x,t)+m .5t_z.y(x,t):p(x,t) 1)

The stiffness matrix is derived for an unloaded member i.e., p(x, £)=0. The general solution of this
equation is:

Y(&)=A -cos(or- E)+B -sin(or- E)+C - cosh(ax- E)+D - sinh(ex - &) 2
where:
=t M —g2. P4 3)
E -1 E -1

and where: p-material density, a-beam cross section, and
E= % 0<é<1 “
Applying the unit end conditions for the 4 degrees of freedom (two end translations and two end
rotations) one at a time, one can write down the force-displacement relationship as :
F=K(w)-D o)

with F the end forces, D the end displacements and rotations, and K(w) the frequency
dependent element dynamic stiffness matrix. Written in full we have:

Vl —a3-Z1 —OCZ'ZZ 063-Z4 a2-25 v
1
Ml —OCZ'ZZ (Z~Z3 —062‘25 a‘Z6 0
< r=B-. 3 ’ 3 1 (6)
V2 o ’Z4 - ‘ZS -0 'Z1 az'Zz ‘ <V2>
M2 az‘Z5 OC~Z6 OCZ'ZZ (X'Z3 02
B = E-L (6a)
cos(ax-L)-cosh(ar-L)-1
Z,=cos(c-L)-sinh(a- L)+sin(a- L) - cosh(a-L) (6b)
Z,=sin(a- L) - sinh(ex- L) (6¢)
Zi=cos(a-L)-sinh(er- L)—sin(e- L) - cosh(er- L) (6d)
Z,=sin(a - L)+sinh(a- L) (6¢)
Zs=cos(o- L)—cosh(a- L) (6f)
Zg=sin(o - L)—sinh(a- L) (6g)

v, 6, V and M are the displacement, rotation, shear force, and bending moment at the two ends, 1
and 2, respectively.
For axial vibrations the differential equation is:
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. dulx,t) ulx,t) _
E -a e +m 32 =qx,t) 7

with Ea the axial stiffness, g(x, ¢) the time dependent distributed axial load, and u(x, £) is the
axial displacement. Following the same procedure as above the axial dynamic stiffness matrix is
found as:

F, cot(u-L) —esc(u-L)| [u
F,[=E-a- i {—csc(,u-L) cot(,u-L)] ' {uz} ®)

where:

and % and F are the axial displacement and axial force at the ends, 1 and 2 respectively.

For three dimensional members the same terms are combined into the appropriate locations in
the space frame member stiffness (with terms for torsional stiffness similar to those for axial
stiffness).

4. Local modes within members in FEM analysis

The problem of obtaining the local modes in the FEM can be overcome at the high price of
introducing additional nodes along the members. The number of additional nodes per each
member will determine the ability of the model to predict the order of local modes, where
sinusoidal lateral and longitudinal behavior should be approximated. This will cause the increase
of the numerical eigenvalue problem to be solved by a factor depending on the number of
additional nodes, and even by an order of magnitude.

Another strategy is to use the component mode method suggested by Weaver and Loh (1985).
Here, a number of exact local modes are added to the member stiffness matrix formulation, and
resulting in a larger element matrix. Again, the size of the eigenvalue problem is increased
significantly. The advantage of this approach is that the local modes are calculated exactly, rather
than approximately as in the FEM solution, but only for the number of modes that is added in the
member formulation.

5. Local modes in dynamic stiffness method

The formulation of the DSM includes in it inherently all the local modes for a member. For
truss type structures, the inertias related to rotations of the end-joints which are required for
local transverse modes, are retained by obtaining the required stiffness matrix for the end
translations only, by condensation of the rotational degrees of freedom. In the DSM, this
condensation is exact (as proved in, Levy 1997).

For the truss member we partition the dynamic stiffness matrix to be:
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5 5 11 5 12

h D21 D 22

where subscript 1 relates to the retained degrees of freedom (the end translations), and subscript 2
relates to the condensed (the end rotations), and the condensed matrix D* is

(10)

5* =511—512'52_21 ‘521 (11)
or in detail for a plane truss member
[E.-A -u-cos(u-L) 0 E:x A 0
sin(u-L) sin(u-L)
O Ex'Iz'a3‘Z3 0 Ex']z'a3'26
. 2-Z, 2:Z, (12)
b* = E.-A-u 0 E.-A-p-cos(u-L) 0
sin(u-L) sin(u-L)
0 Ex‘Iz‘a3‘Z6 0 EX'IZ'a3'Z3
2'Z2 2Z2 |

This matrix is used in the example in the next section to calculate all the vibrational modes of a
two-bar plane truss. A 3D version of this matrix is used to calculate two space truss example.

6. Examples

The first example is of a very simple two bar truss and it is used to compare finite element,

4m

4y
<————3cm——>i

Fig. 1 Example of two member truss
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Fig. 2 Normalized determinant vs. normalized frequency plot for the plane truss

Table 1 Normalized frequencies for standard FEM

Mode number F.E. F.E.
Consistent mass matrix Lumped mass matrix
1 1.00000 0.81650
2 3.02330 2.46851

Table 2 Results from refined FEM, CMM and DSM

Mode Condensed dynamic Component F.E. beam element method
number stiffness method mode method (Coupled at connection)
5 Function 20 Function 1 Element 10 Elements
exact
par member  par member par member  par member
1 0.20396 0.20397 0.20397 0.22580 0.20455
2 0.31658 0.31659 0.31659 0.34975 0.31621
3 0.79562 0.79657 0.79567 0.97634 0.79351
4 1.18867 1.18941 1.18933 1.42832 1.18448
5 1.66325 1.66787 1.66727 2.30692 1.65516
6 2.14448 2.17098 2.16838 3.19301 2.13019
7 2.88168 3.03368 3.03162 2.88118
8 3.03502 3.16326 3.16281 3.00243
9 3.54627 3.62789 3.61621 3.50462
10 5.13264 5.14617 5.14612 5.04856
11 5.28080 5.57522 5.53014 5.20794
12 6.66417 8.26739 7.53583 6.62913
Member 4 9 24 6 33
matrix size
DOF

. 2 12 42 6 60
model size
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Fig. 3 The first 6 modes of the example truss

component mode and dynamic stiffness results. The example truss shown in Fig. 1 is taken from
Weaver and Loh (1985). The numerical data is taken as unity for all material and section
properties, except for the moment of inertia which is taken as 1/250. This was done so
deliberately in the original analysis by Weaver and Loh (1985), in order to make the influence of
the transverse local modes more important. The first analysis that was done is a regular two bar
two degrees of freedom model solved by FEM. Two methods for mass modeling were used - the
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Fig. 4 Example of 3 member space truss

lumped mass model and the consistent mass model. The results for the first two modes (this
model is not capable of predicting more frequencies), are given in Table 1, normalized with
respect to the first frequency from the consistent mass solution (@=0.12162 [rad/s]). As the
consistent mass model yields upper bound on the correct eigenvalues, and the lumped mass model
yields lower bounds, we can observe that the difference between these values is in the order of
20%. This difference is too large to bracket the frequencies adequately. In order to study the
effect of local modes, the same problem was also analyzed by the component mode method. Two
modeling schemes were used: 5 sinusoidal shape functions added to each member (as in Weaver
and Loh 1985), and 20 sinusoidal shape functions added. These resulted in (12X 12) and (42x 42)
eigenvalue problems, respectively. Also a finite element solution was obtained using the ANSYS
Code. There, in order to obtain local modes, each member was modeled by 1 and 10 beam
elements with the connections simulated by coupling the displacements degrees of freedom at the
ends. The sizes of these models were (6 X 6) and (60 X 60), respectively.

The proposed method was employed with 2 elements i.e., (2X2) dynamic stiffness matrix. For
this case, the determinant of the dynamic stiffness matrix was found for values of w. The
natural frequencies are the values of @, for which the determinant is equal to zero. The plot of the
normalized determinant (with respect to the value at =0, the static determinant) is shown in Fig.
2. The exact values are found by bracketing the eigenvalues by two values with opposite
determinant sign, and then by bisections to the desired accuracy.

The results form the three methods normalized with respect to the first frequency in the FE
solution in Table 1 (,=0.12162 [rad/s]) , are given in Table 2. The first 6 modes (from the
proposed method) are plotted in Fig. 3. From this figure it is very clear that local transverse
modes dominate the behavior of the truss. From the results in Table 2, we see that the FE model,
using 20 elements per member, but with beam elements that include the lateral mode shapes, and
coupling the end displacements at the connection of the members, gives very different results
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Table 3 Normalized frequencies for standard FEM of the 3 member space truss

Mode number F.E. F.E.
Consistent mass matrix Lumped mass matrix
1 1.00000 0.81650
2 1.46789 1.19853
3 3.64114 2.97298
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Fig. 5 Normalized determinant vs. normalized frequency plot for the space truss
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Fig. 6 Normalized determinant vs. normalized frequency plot for the space truss, detailed behavior in the
close neighborhood of the first pair
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Table 4 FEM, CMM and DSM results for the 3 member space truss example

Mode Condensed dynamic Component F.E. beam element method
number stiffness method mode method (Coupled at connection)
5 Function 20 Function 1 Element 10 Elements
exact
par member  par member par member  par member
1 0.05979 0.05979 0.05979 0.06635 0.05979
2 0.05980 0.05980 0.05980 0.06637 0.05980
3 0.07652 0.07652 0.07652 0.08491 0.07651
4 0.07652 0.07654 0.07654 0.08494 0.07654
5 0.11949 0.11949 0.11949 0.13258 0.11948
6 0.11950 0.11956 0.11956 0.13267 0.11955
17 0.94896 0.94900 0.94896 ' 0.94983
18 0.95445 0.95445 0.95444 0.95533
19 1.06386 1.06397 1.06388 1.06361
20 1.07041 1.07045 1.07043 1.07013
21 1.21174 1.21193 1.21177 1.21263
Member
matrix size 6 16 46 12 66
DOF 3 33 123 27 189
model size
12
1
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Fig. 7 Normalized determinant vs. normalized frequency plot for the space truss, detailed behavior in the
close neighborhood of the second pair

from those in Table 1. The results of the finer FEM model and the CMM model are very close to
the exact results that are obtained by the DSM model (with 2 degrees of freedom only, i.e., a (2%
2) eigenvalue problem, and the problem is reduced to finding the zeros of the determinant of the
dynamic stiffness matrix).

A 3 member space truss is used as the second example. The 3 members are built from steel
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Fig. 8 Normalized determinant vs. normalized frequency plot for the space truss, detailed behavior in the

close neighborhood of the third pair

Mode Number: 3

Mode Number: 1 Mode Number: 2

Mode Number: 5§ Mode Number: 6

Mode Number: 4
Fig. 9 The first 6 modes of the 3 member space truss

pipes (A=3.81e-4 m’, I=1.12¢-7 m‘), and are of different length as shown in Fig. 4. The
symmetric nature of the members result in similar local behavior of each member in its own
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Fig. 10 Example of 48 member space truss

Table 5 Exact and FEM results for the 48 member space truss example

F.E. Condensed dynamic

Exact Consistent stiffness method F.E.
Mode Mode Consistent
Exact .
number number mass matrix
rad/s normalized rad/s normalized
1-22 27.4860-27.5431 0.1571-0.1574
23-48 39.4464-39.6621 0.2254-0.2266
49-96 58.3417-59.4100 0.3334-0.3395
97-118 109.5497-110.1725 0.6260-0.6295
119-144 157.3020-158.6484 0.8989-0.9065
1 175.0044 1.0000
145-192 227.0551-237.6400 1.2982-1.3579
193-214 244.5264-247.8882 1.3974-1.4165
2 289.2963 1.6531
215-240 322.8061-356.9590 2.0013-2.0397
3 364.0516 2.0802
4 440.3656 2.5163

principal axis, and thus will result in repeated local modes. However, since the end conditions, i.e.,
restraints exerted on each member by the other two members, is not equal, in each direction, and



Dynamic analysis of trusses including the effect of local modes 93

Mode Number: 1 Mode Number: 23

Fig. 11 The first 6 modes of the 48 member space truss

the repeated modes are slightly separated. This can be seen in Fig. 5 where the normalized
determinant of the dynamic stiffness matrix is plotted vs. the frequency, and in the numerical
results in Table 4. Figs. 6, 7, and 8 show the detailed behavior of the determinant in the close
neighborhood of the three first pairs of the almost repeated modes as discussed above.

In Table 3 the results obtained from a 3 DOF FE model are given. Comparison of these values
with the exact results in Table 4 (from DSM, CMM, and enhanced FEM) shows that 18 natural
frequencies of the structure are lower than the first frequency from the simple FE analysis results
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in Table 3. The first 6 modes for this truss are shown in Fig. 9.

In the third example a 48 member space truss is analyzed. This is a double layer truss
supported along the edges in all directions as shown in Fig. 10. The cross-sectional area and
moment of inertia is taken as A=6.88e-4 m” and /=2.62¢-7 m®, respectively. Since there are groups
of identical members and the sections are circular then one has many repeated local modes in this
truss. However, since the end conditions of these members are not identical, but very close to
being identical, we have separation of the frequencies as given in Table 5. We can see in the
Table, that the regular finite element analysis fails to predict the frequencies of the truss
completely. In Fig. 11 six modes, from the first six groups of very close frequencies are shown.

7. Conclusions

The use of the condensed dynamic stiffness matrix in the analysis of trusses overcomes the
limitations of the finite element method in modeling the lateral inertias of the members. The main
advantage of the Dynamic Stiffness Matrix is that the size of the model is kept very compact
compared to other methods, (at least an order of magnitude size reduction), while the results are
still exact, with significantly reduced computational effort. This advantage is more important for
the analysis of large scale trusses, where model size is an obstacle for the other methods.
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