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Buckling optimization of unsymmetrically
laminated plates under transverse loads
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Abstract. The critical buckling loads of unsymmetrically laminated rectangular plates with a given
material system and subjected to combined lateral and inplane loads are maximized with respect to
fiber orientations by using a sequential linear programming method together with a simple move-limit
strategy. Significant influence of plate aspect ratios, central circular cutouts, lateral loads and end
conditions on the optimal fiber orientations and the associated optimal buckling loads of
unsymmetrically laminated plates has been shown through this investigation,
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1. Introduction

Due to light weight and high strength, the use of fiber-reinforced composite laminate plates
increased rapidly in recent years. One of the advantages of laminated composite is that the
required in-plane stiffnesses and strengths can be achieved in any desired direction.
Unsymmetrically laminated composites, which are laminates with no central plane of symmetry,
embody the ultimate utilization of this advantage (Aiello and Ombres 1996).

In service, composite laminate plates are commonly subjected to various kinds of compression
which may cause buckling. Hence, structural instability becomes a major concern in safe and
reliable design of the composite plates. It is known that the buckling resistance of composite
laminate plates depends on end conditions, ply orientations (Crouzet-Pascal 1978, Hirano 1979,
Leissa 1985, Muc 1988), and geometric variables such as aspect ratios, thicknesses and cutouts
(Rhodes, Mikulas and McGowan 1984, Leissa 1985, Nemeth 1988, Vellaichamy, Prakash and
Brun 1990). Therefore, for composite plates with a given material system, geometric shape,
thickness and end condition, the proper selection of appropriate lamination to realize the
maximum buckling resistance of the plates becomes a crucial problem.

Research on the subject of structural optimization has been reported by many investigators
(Schmit 1981). Among various optimization schemes, the method of sequential linear
programming has been successfully applied to many large scale structural problems (Zienkiewicz
and Champbell 1973, Vanderplaats 1984). Hence, linearization of nonlinear optimization problems
to meet requirements for iterative applications of a linear programming method is one of the most
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popular approaches to solve the structural optimization problem.

In this investigation, the critical buckling loads of composite laminate plates subjected to
inplane and transverse forces are calculated by the bifurcation buckling analysis implemented in
the ABAQUS finite element program (Hibbitt, Karlsson & Sorensen 1996). Then, buckling
optimization of unsymmetrically laminated plates with respect to fiber orientations is performed
by using a sequential linear programming method together with a simple move-limit strategy. In
this paper, the bifurcation buckling analysis, the constitutive equations for fiber-composite
laminate and the optimization method are briefly reviewed first. Then the influence of plate aspect
ratios, central circular cutouts, lateral loads and end conditions on the optimal fiber orientations
and the associated optimal buckling loads of unsymmetrically laminated composite plates is
presented. Finally, important conclusions obtained from this study are given.

2. Bifurcation buckling analysis

In the finite-element analysis, a system of nonlinear algebraic equations results in the
incremental form:

[K:)d{u}=d{p} )

where [K|] is the tangent stiffness matrix, d{u} the incremental nodal displacement vector and
d{p} the incremental nodal force vector.

Within the range of elastic behavior, it is known that when the deformation of a structure is
small, the nonlinear theory leads to the same critical load as the linear theory (Chajes 1974).
Consequently, if only the buckling load is to be determined, the calculation can be greatly
simplified by assuming the deformation to be small and we can neglect the nonlinear terms,
which are functions of nodal displacements, in the tangent stiffness matrix. The linearized
formulation then gives rise to a tangent stiffness matrix in the following expression (Cook,
Malkus and Plesha 1989):

[Ke]=[K, ]+ [K] @)

where [K;] is a linear stiffness matrix and [K,] a stress stiffness matrix. If a stress stiffness matrix
[Ko).r is generated according to a reference load {p},, for another load level {p} with A a scalar
multiplier, we have

{p} Zl{p}ref 4 [Ka] :A'[Ko']ref (3)

When buckling occurs, the external loads do not change, i.e., d{p}=0. Then the bifurcation
solution for the linearized buckling problem may be determined from the following eigenvalue
equation:

(K 1+ Aer [Ko)rep) d{u} = {0} 4)

where 4, is an eigenvalue and d{u} becomes the eigenvector defining the buckling mode. The
critical load {p}, can be obtained from {p}.,=A.{p}.. In ABAQUS, a subspace iteration
procedure (Bathe and Wilson 1972) is used to solve for the eigenvalues and eigenvectors.
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3. Constitutive matrix for fiber-composite laminae

In finite element analysis, the laminate plates are modeled by eight-node isoparametric laminate
shell elements with six degrees of freedom per node (three displacements and three rotations). The
formulation of the shell element allows transverse shear deformation (Hibbitt, Karlsson &
Sorensen 1996).

During the analysis, the constitutive matrices of composite materials at element integration
points must be calculated before the stiffness matrices are assembled from element level to global
level. For fiber-composite laminate materials, each lamina can be considered as an orthotropic
layer. The stress-strain relations for a lamina in the material coordinates (1, 2, 3) (Fig. 1) at an
element integration point can be written as

{o'}=[Q1{e’} 5)
{r'}=1Q{7} (6)
[ E VioE o, ]
1 ; Vg vy 1 —;’12 Va )
Q= Ly p7)
1-vpvy 1-vpvy
i 0 0 G 12
oGy 0
n_ 8
=] o 46, ®)

where {0} ={0;, 0, T}, {7} ={%s, %}, {€}={&, & %}, {¥}={Vs %}" The & and o,
are shear correction factors. In ABAQUS, the shear correction factors are calculated by assuming
that the transverse shear energy through the thickness of laminate is equal to that of the case of
unidirectional bending (Whitney 1973, Hibbitt, Karlsson & Sorensen 1996).
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Fig. 1 Material and element coordinate systems for fiber-composite laminate
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The constitutive equations for the lamina in the element coordinates (x, y, z) then become

{o}=[Q.{e}, [Qi=[T\) [QIITi] ©
{t=1C0{%, [QJ=I[T.] [Q:]IT,] (10
cos2 @ sin sinfcos@
[T,]=| sin’@ cos’6  —sinfcosH (11)
—~2sinBcosB 2sinBcos@ cos?0—sinZ@
cos@ sinf
[T2]= —siné cosf (12)

where {0} = {0, 0, ,}, {7t ={%, T.}", {&} ={& &, %} {N ={¥ %)", and fiber orientation
8 is measured counterclockwise from the element local x-axis to the material 1-axis.

Let {€,}={&,, &, %o} be the in-plane strains at the mid-surface of the laminate section,
{x} ={K, K, &,}" the curvatures, and 4 the total thickness of the section. If there are n layers in
the layup, the stress resultants, {N} = {N,, N,, N}/, {M} ={M, M,, M,}" and {V}={V,, V,}", can
be defined as

Ny, ({0 w 1204 ., [ [00(e)+2 (1)
(M} =Lﬂ s{ojfdz= | LzlOMet d: | {21018}z () de
v} {1} [0.1{n (021 {%
(13)
Gi-z)[Q] 3 CF-zpe] (0]
\ {&}
=3 | 3 G-zpI0)] SGi-zpled (0] {x}
o

[o]* [0} (z; -z ) [Q 2]_

where z;, and z, are the distance from the mid-surface of the section to the top and the bottom of
the j-th layer respectively. The [0] is a 3 by 2 matrix with all the coefficients equal to zero.

4. Sequential linear programming

A general optimization problem may be defined as the following:

Minimize: f{x) (14a)
Subjected to: g(x)<0, i=1,--,r (14b)
h(x)=0, j=r+l, om (14c)
p,<x<q, k=1,-,n (144d)

where x={x;, x,, ---, x,}" is a vector of design variables, f{x) is an objective function, g(x) are
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inequality constraints, and A(x) are equality constraints. The p, and g, are lower and upper limits
of the variable x,. If an optimization problem requires maximization, we simply minimize —f{x).

For the optimization problem of Egs. (14a)-(14d), a linearized problem may be constructed by
approximating the nonlinear functions at a current solution point, x, = {X,1, X,5, ***, X}, in a first-
order Taylor series expansion as follows

Minimize: f{x)~f x, *VAx,) & (152)
Subjected to: g(x )= g{x, +Vgi(x,) &<0 (15b)
hy(x)=h{(x,)+Vh; (%, ) &=0 (15¢)
P.<x,<q, (15d)

where i=1, -+, r; j=r+1, - m; k=1, -+, ny E={0K01, XpKozy s XuTon} -

It is clear that Egs. (15a)-(15d) represent a linear programming problem and a solution for these
equations may be easily obtained by the simplex method (Kolman and Beck 1980). After
obtaining an initial approximate solution for Egs. (15a)-(15d), say x;, we can linearize the original
problem, Eqs. (14a)-(14d), at x, and solve the new linear programming problem. The process is
repeated until a precise solution is achieved. This approach is referred to as sequential linear
programming (Zienkiewicz and Champbell 1973, Vanderplaats 1984).

Although the procedure for sequential linear programming is simple, the optimum solution for
the approximated linear problem may violate the constraint conditions of the original optimization
problem. In addition, if the true optimum solution of a nonlinear problem appears between two
constraint intersections, a straightforward successive linearization may lead to an oscillation of the
solution between the widely separated values. Difficulties in dealing with such problems may be
avoided by imposing a “move limit" (Zienkiewicz and Champbell 1973, Vanderplaats 1984) on
the linear approximation, which is a set of box-like admissible constraints placed on the range of
&. Generally, the choice of a proper move limit depends on experience and on the results of
previous steps. In addition, the move limit should gradually approach to zero as the iterative
process of the sequential linear programming continues (Zienkiewicz and Champbell 1973,
Vanderplaats 1984).

The algorithm of the sequential linear programming with selected move limits may be
summarized as follows:

(1) Linearize the nonlinear objective function and associated constraints with respect to an

initial guess x,.

(2) Impose move limits in the form of -a <(x-x,)<b, where a and b are properly chosen lower

and upper bounds.

(3) Solve the approximate linear programming problem to obtain an optimum solution x;.

(4) Repeat the procedures from (1) to (3) by redefining x, with x, until either the subsequent

solutions do not change significantly.

5. Results of the optimization analysis

5.1. Laminate plates with simply supported edges

In this section rectangular composite laminate plates subjected to uniaxial compressive force N
per unit length applied at the edges normal to the x direction as shown in Fig. 2(a) are analyzed.
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Fig. 2 Rectangular composite laminate plates with different edge conditions

The width of the plates, b, is 10 cm while the length, a, is varied between 5 cm and 30 cm. The
edges of the plates are all simply supported, which prevents out of plane displacement w but
allows some inplane u and v movements. In this regard, all the points on the right edge of the
plates are enforced to displace the same amount u in the x direction, while all the points on the
upper edge of the plates are enforced to displace the same amount v in the y direction. The
thickness of each ply is 0.125 mm. The laminate layups of the plates are [+ 6/90/0], (symmetric
layup) and [(= 6,/90/0),/(0/90/F 6,),] (unsymmetric layup). The lamina consists of Graphite/Epoxy
(Hercules AS/3501-6) with material constitutive properties taken from Crawley (1979), which are
E,;=128 GPa, Ex=11 GPa, v,,=0.25, G,,=G;=4.48 GPa, G;=1.53 GPa.

Based on the sequential linear programming method, in each iteration the current linearized
optimization problem for symmetrically laminated composite plates becomes:

Maximize: Ner (6) = Ner (6)+ (6~ 6) ag/g Y (162)
Subjected to: 0° < 9<90° (16b)
-R xQ x0.5 <(6-6,)<R xQ x0.5° (16¢)

where N, is the critical buckling load. The 6, is a solution obtained in the previous iteration.
The R and Q in Eq. (16¢) are the size and the reduction rate of the move limit. In the present
study, the values of R and Q are selected to be 10° and 0.9, where M is a current iteration
number. To control the oscillation of the solution, a parameter 0.5° is introduced in the move
limit, where s is the number of oscillations of the derivative dN,,/d6 that has taken place before
the current iteration. The value of s increases by 1 if the sign of dN,/08 changes. Whenever
oscillation of the solution occurs, the range of the move limit is reduced to half of its current
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value. This expedites the solution convergent rate very rapidly. The dN,/06 term in Eq. (16a)
may be approximated by using a forward finite-difference method with the following form:

aNcr ~ [Ncr (eg +Ae)_Ncr (00)] (17)
00 A6
Hence, to determine the value of dN_/d6 numerically, two bifurication buckling analyses to
compute N,(6,) and N,(6,+40) are needed in each iteration. In this study, the value of A8 is
selected to be 1° in most iterations.

The linearized optimization problem for unsymmetrically laminated composite plates can be
written as:

.. ON.r
Maximize: Ner (6, 8,) <N (6,4, 0,2)+(6,—86,;) 26, |o=0,1.0,0,,
ONer

+(62 02) 802 P _901, 0. = 902 (183)
Subjected to: 0° < 6, <90° (18b)
0° <6,<90° (18¢)
—RIXQ1X0.5s'S(Ol—eol)SRIXQIXO.SS‘ (18d)
—RZXQZXO.SSZ S'(BZ—GOZ)SRZXQZXO.SSZ (186)

where (6,, 6,,) is a solution obtained in the previous iteration. The values of R, and R, are
selected to be 20° and Q, and Q, are selected to be 0.9*". Again, s, and s, are the numbers of
oscillations of the derivatives dN,/00, and ON,/d0, that have taken place before the current
iteration, respectively. The oN,/06, and ON,/06, terms in Eq. (18a) may be approximated by
forward finite-difference expressions as follows:

aNcr ~ [NC’ (901 +A67 602)'—]vc’ (601 » 602)] (193)
36, A6
aNcr ~ [NC’ (901’ 902+A9)_N0r (6017 902)] (19b)
36, A6

Hence, three bifurication buckling analyses to compute N,(6,+A6, 6,), N.(6,, 2+A9) and
N.(6,,, 6,,) are needed in each iteration. Again, the value of A is selected to be 1° in most
iterations. For each case studied, several different initial guesses of fiber angles are selected to
make sure that they all converge to the same global maximum solution.

Fig. 3 shows the optimal fiber angle and the associated optimal buckling load N, with respect
to plate aspect ratio a/b for [£6/90/0],, and [(+6,/90/0),/(0/90/F 6,),] rectangular composite
plates. From the figure we can see that the optimal fiber angles and optimal buckling loads
attenuate to constant values when the plate aspect ratios are large. It is not surprising to find that
the results of optimization for plates with symmetric and unsymmetric layups are all the same.
This is because when buckling occurs, there is no preference for plates to buckle up or down.
Thus, for composite plates under inplane loading conditions, there is no benefit to employ the
unsymmetric laminate layup.

In addition to inplane forces, the composite plates in service may also be subjected to lateral
forces. As another example, composite plates similar to previous ones but with an additional
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Fig. 3 Effect of plate aspect ratios on buckling optimization of [+ 6/90/0],, and [(=+ 6,/90/0),/(0/90/ F
6,),] rectangular composite plates with simply supported edges and subjected to inplane force

- a - > a -
TP
q
N fy b N N i Y b N
N X / - X A—Vd /
(a) concentrated load at center (b) uniform line load around central cutout
Fig. 4 Rectangular plates with combined inplane and lateral forces
> 80 X r r . 400‘! T T . r
o \ .
S 70F ! S0 (symmetric) 350 F —8—N (symmetric) ]
%0 60E Y — A Bl(unsymmetrlc) 3 \ erl )
Z sok x‘.‘ "*"ez(unsymmetric) 3 E 300 F ‘* i Ncrz(unsymmetrlc)_
Q S~
TS T R S z
%o 40‘& =
= 2o =
g
S 10
o
O  oc
0.5 1 1.5 2 2.5 3 .
al/b al/b
(a) Aspect ratio a/b vs. optimal fiber angle (b) Aspect ratio a/b vs. critical load

Fig. 5 Effect of plate aspect ratios on buckling optimization of [+ 6/90/0], and [(= 6,/90/0),/(0/90/F
6,),] rectangular composite plates with simply supported edges and subjected to combined
inplane and lateral forces

lateral concentrated load P acting at the center of the plates as shown in Fig. 4(a) are analyzed. In
the analysis, the ratio P/(Nb)=0.5 is used. Fig. 5 shows the optimal fiber angle and the associated
optimal buckling load N, with respect to plate aspect ratio a/b for [+ 6/90/0],, and [(= 6,/90/0),/(0/
90/ 6,),] rectangular composite plates. The figure shows that when the plate aspect ratio is large
(say a/b>1), the results of optimization for plates with unsymmetric layups are very similar to
those for plates with symmetric layups. In addition, as a/b ratio increases, the optimal fiber angles
and optimal buckling loads gradually approach constant values. However, when the plate aspect
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Fig. 6 Buckling modes of simply supported [(Z6,/90/0),/(0/90/F86,),] and [+ 6/90/0],, composite
plates with combined inplane and lateral loads and under optimal fiber orientations

ratio is small (say a/b< 1), the optimal fiber angles of plates with unsymmetric layups are quite
different from those of plates with symmetric layups. In addition the optimal buckling loads of the
former plates are much higher than those of the latter plates. By comparing with the plates with
symmetric layups, the implementation of unsymmetric layups in some cases (say a/b=0.7) may
increase the optimal buckling loads of plates by 70%.

Fig. 6 shows the optimal buckling modes for symmetrically and unsymmetrically laminated
plates. We can find that when the plate aspect ratio is small the buckling modes of plates with
unsymmetric layups are quite different from those of plates with symmetric layups. When the
plate aspect ratio is large, the buckling modes of plates with unsymmetric layups are very similar
to those of plates with symmetric layups. Also, as a/b ratio increases, the optimal buckling modes
of plates have more waves in x direction.

5.2. Laminate plates with clamped edges

In order to find the effect of boundary conditions on the results of optimization, the composite
plates subjected to combined inplane and lateral forces in previous section are analyzed again,
however, with all edges clamped as shown in Fig. 2(b).

Fig. 7 shows the optimal fiber angle and the associated optimal buckling load N, with respect
to plate aspect ratio a/b for [+ 6/90/0),, and [(+ 6,/90/0),/(0/90/=F 6,),] rectangular composite plates
with clamped edges. Form the figure we can observe that except plates with small aspect ratio
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Fig. 8 Buckling modes of clamped [(+6,/90/0),/(0/90/7F 6,),] and [= 6/90/0], composite plates with
combined inplane and lateral loads and under optimal fiber orientations

(say a/b around 0.5), the results of optimization for plates with unsymmetric layups are very
different from those for plates with symmetric layups. In addition, when a/b>1, the optimal
buckling loads of plates with unsymmetric layups are higher than those of plates with symmetric
layups by up to 20%.

Fig. 8 shows that the optimal buckling modes for symmetrically and unsymmetrically laminated
plates with clamped edges and under optimal fiber orientation are very similar. Again, as a/b ratio
increases, the optimal buckling modes of plates have more waves in x direction.
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Fig. 9 Effect of cutout size on buckling optimization of [+ 6/90/0],, and [(= 6,/90/0),/(0/90/= 6,),]
rectangular composite plates with simply supported edges and subjected to combined inplane
and lateral forces (a/b=0.7)
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Fig. 10 Buckling modes of simply supported [(+6,/90/0),/(0/90/F6,),] and [+ 6/90/0},, composite
plates with combined inplane and lateral loads, with circular cutouts and under optimal fiber
orientations (a/b=0.7)

5.3. Laminate plates with various central circular cutouts and with simply supported edges

In this section [+ 6/90/0],, and [(Z£ 6,/90/0),/(0/90/F 6,),] rectangular composite laminate plates
with central circular cutouts and subjected to combined inplane force and lateral force (a uniform
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line load of intensity g) as shown in Fig. 4(b) are analyzed. The edges of the plates are all simply
supported. The width of the plates, b, is 10 cm, the length of the plates, a, is 7 cm, the diameter
of the hole, d, varies from 0 to 5 cm, and the ratio gzd/(Nb)=0.5 is used.

Fig. 9 shows the optimal fiber angle and the associated optimal buckling load N,, with respect
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Fig. 11 Effect of cutout size on buckling optimization of [+ 6/90/0],, and [(£ 6,/90/0),/(0/90/ F 6,),]
rectangular composite plates with clamped edges and subjected to combined inplane and
lateral forces (a/b=1.5)
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Fig. 12 Buckling modes of clamped [(=-6,/90/0),/(0/90/F 6,),] and [+ 6/90/0],, composite plates with
combined inplane and lateral loads, with circular cutouts and under optimal fiber orientations
(a/b=1.5)
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to the ratio d/b for [+6/90/0], and [(+ 6,/90/0),/(0/90/F 6,),] rectangular composite plates. The
figure shows that the results of optimization for plates with unsymmetric layups are very different
from those for plates with symmetric layups. In addition, the optimal buckling loads of the former
plates are much higher than those of the latter plates. In some cases (say d/b=0.5), the
implementation of unsymmetric layups may increase the buckling loads of the plates by 300%.
For plates with symmetric layups, the optimal buckling load (say d/b<0.4) first decreases with
the increasing of d/b ratio then it (say d/b>0.4) increases with the increase of the cutout sizes.
For plates with unsymmetric layups, the optimal buckling load increases with the increase of the
sizes of cutouts. This phenomenon is quite different from our intuition that introducing a large
hole into a plate can cause a reduction in the buckling load of the plate. However, past research
did show (numerically and experimentally) that introducing a hole into an isotropic plate or a
composite plate does not always reduce the buckling load and, in some instances, may increase its
buckling load (Ritchie and Rhoades 1975, Nemeth 1988). This is because that the buckling load
of a plate is not only influenced by cutout, but also influenced by material orthotropy, end
condition, and plate geometry.

Fig. 10 shows that the buckling modes of plates with unsymmetric layups under optimal
conditions are quite different from those of plates with symmetric layups. Generally, the buckling
modes of plates with unsymmetric layups have more waves in both x and y directions.

5.4. Laminate plates with various central circular cutouts and with clamped edges

In this section, the composite laminate plates with central circular cutouts similar to those in
previous section are analyzed again, however, with all edges changed to clamped conditions and a/
b ratio changed to 1.5. The width b of the plates is still 10 cm, the cutout size varies between 2
cm and 8 cm, and the ratio gzzd/(Nb)=0.5 is still kept in the analysis.

Fig. 11 shows the optimal fiber angle and the associated optimal buckling load N,, with respect
to the ratio d/b for [+ 6/90/0], and [(F6,/90/0),/(0/90/F 6),] rectangular composite plates. Fig.
11(a) shows that the optimal fiber angles for plates with unsymmetric layups are very different
from those for plates with symmetric layups. Fig. 11(b) shows that the optimal buckling loads of
the former plates are generally higher than those of the latter plates. In some cases (say d/b<0.2),
the implementation of unsymmetric layups may increase the buckling loads of the plates by 15%.
For plates with either symmetric or unsymmetric layup, the optimal buckling load seems to be a
second-order function of the cutout size.

Fig. 12 shows that when d/b>0.2, the buckling modes of plates with unsymmetric layups
under optimal conditions are quite different from those of plates with symmetric layups.
Nevertheless, for both types of plates, when the cutout sizes are large, the buckling modes are
more locally around the cutout areas.

6. Conclusions

In the process of sequential linear programming, most optimal results are obtained within 13
iterations, and the results are all verified by choosing different initial guesses. Hence, as a general
conclusion, the sequential linear programming is efficient and stable to solve nonlinear
optimization problems.

For the optimal buckling analysis of uniaxially compressed symmetric [+ 6/90/0], and
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unsymmetric [(+ 6,/90/0),/(0/90/F 6.),] laminated plates with various plate aspect ratios, circular
cutouts and end conditions, the following conclusions may be drawn:

1. For composite plates under inplane loading conditions, there is no benefit to be derived from
employing an unsymmetric laminate layup.

2. For composite plates with simply supported edges and subjected to combined inplane and
lateral loads, it is beneficial to employ the unsymmetric laminate layups when the plate
aspect ratio is small (say a/b<1).

3. For composite plates with clamped edges and subjected to combined inplane and lateral
loads, the adoption of unsymmetric laminate design is beneficial when the plate aspect ratio
is large (say a/b>1).

4. For composite plates with a central circular cutout and subjected to combined inplane and
lateral loads, the use of unsymmetric laminate layups is recommended. The optimal buckling
loads of these plates in some cases (say plates with clamped edges) may increase with the
increasing of cutout sizes. Hence, it is possible to tailor the cutout size and fiber angle to
increase the buckling loads of these plates beyond those of corresponding plates without
cutouts.

In this paper, bifurcation buckling analysis is carried out based on the assumption that the
composite laminate material behaves linearly. For low aspect ratio plates and for plates with large
cutouts, the stresses in the laminates may exceed the elastic range and these laminates are
probably driven by compression strength failure in stead of buckling. In these cases, buckling
analyses of composite plates based on nonlinear material properties are recommended (Hu 1995).
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