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1. Introduction 
 

CNTs due to the excellent mechanical and thermal 

properties are a good candidate for the reinforce phase of 

composite structures. However, nanocomposite structures 

have been attracted more attention amongst researchers due 

to high mechanical and thermal properties and application 

in aerospace, automobile and etc. Since this paper studies 

the dynamic stability of nanocomposite pipes conveying 

pulsating fluid, the introduction divides into two parts 

including the theoretical works for the nanocomposite 

structures and structures conveying fluid. 

Mechanical analysis of nanostructures has been reported 

by many researchers (Zemri 2015, Larbi Chaht 2015, 

Belkorissat 2015, Ahouel 2016, Bounouara 2016, Bouafia 

2017, Besseghier 2017, Bellifa 2017, Mouffoki 2017, 

Khetir 2017). In the field of nanocomposite structures, 

Fiedler et al. (2006) highlighted the potential of the CNTs 

as nanofillers in polymers, but also stresses out the 

limitations and challenges one has to face dealing with 

nanoparticles in general. Esawi and Farag (2007) evaluated 

the technical and economic feasibility of using CNTs in 

reinforcing polymer composites. Natural frequencies 

characteristics of a continuously graded carbon nanotube-

reinforced (CGCNTR) cylindrical panels based on the 

Eshelby-Mori-Tanaka approach was considered by Aragh et 

al. (2012). The influences of centrifugal and Coriolis forces 

on the free vibration behavior of rotating carbon nanotube 

reinforced composite (CNTRC) truncated conical shells 

were examined by Heydarpour et al. (2014). The effects of  

                                                      

Corresponding author 

E-mail: mehran.khaki@gmail.com 

 

 

CNTs distributions on natural frequencies were studied by 

Hosseini (2013) for a functionally graded nanocomposite 

thick hollow cylinder reinforced by single-walled carbon 

nanotubes (SWCNTs) using a hybrid mesh-free method. 

Forced vibration behavior of nanocomposite beams 

reinforced by SWCNTs based on the Timoshenko beam 

theory along with von Kármán geometric nonlinearity was 

presented by Ansari et al. (2014). A linear buckling analysis 

was presented by Jam and Kiani (2015) for nanocomposite 

conical shells reinforced with SWCNTs subjected to lateral 

pressure. Analysis of free vibration of CNT reinforced 

functionally graded rotating cylindrical panels was 

presented by Lei et al. (2015) based on Extended rule of 

mixture for estimating the effective material properties of 

the resulting nanocomposite rotating panels. Garcıa-Macıas 

et al. (2016) provided results of static and dynamic 

numerical simulations of thin and moderately thick 

functionally graded (FG-CNTRC) skew plates with 

uniaxially aligned reinforcements. Moradi-Dastjerdi and 

Pourasghar (2016) reported on the effects of the aspect ratio 

and waviness index of CNTs on the free vibration and stress 

wave propagation of functionally graded (FG) 

nanocomposite cylinders that were reinforced by wavy 

SWCNT based on a mesh-free method. 

None of the above mentioned works has been reported 

the structures conveying fluid. The dynamic stability of 

supported cylindrical pipes converying fluid, when the flow 

velocity is harmonically perturbed about a constant mean 

value, was considered by Ariaratnam and Namachchivaya 

(1986). A new method for the stability analysis of a pipe 

conveying fluid which pulsates periodically was presented 

by Jeong et al. (2007). Nonlinear dynamics of a hinged-

hinged pipe conveying pulsatile fluid subjected to 

combination and principal parametric resonance in the 

 
 
 

Dynamic stability of nanocomposite Mindlin pipes conveying  
pulsating fluid flow subjected to magnetic field 

 

Hemat Ali Esmaeili, Mehran Khaki and Morteza Abbasi 
 

Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran 

 
(Received February 20, 2018, Revised April 15, 2018, Accepted April 17, 2018) 

 
Abstract.  In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating 

fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due 

to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by 

the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka 

model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton’s principle, the 

motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin’s 

method, the dynamic instability region (DIR) of the system is calculated.  The effects of different parameters such as volume 

fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR 

of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, 

the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity. 
 

Keywords:  dynamic stability; nanocomposite pipe; pulsating fluid; magnetic field; Bolotin method 

 



 

Hemat Ali Esmaeili, Mehran Khaki and Morteza Abbasi 

 

presence of internal resonance was investigated by Panda 

and Kar (2008). Wang (2009) studied nonlinear dynamics of 

pipes conveying pulsating fluid using the Galerkin method 

and fourth order Runge-Kutta scheme. The natural 

frequency of fluid-structure interaction in pipeline 

conveying fluid was investigated by Huang et al. (2010) 

eliminated element-Galerkin method, and the natural 

frequency equations with different boundary conditions 

were obtained. Yu et al. (2011) studied the flexural 

vibration band gap in a periodic fluid-conveying pipe 

system based on the Timoshenko beam theory. For a single-

walled CNT conveying fluid, the internal flow was 

considered by Liang and Su (2013) to be pulsating and 

viscous, and the resulting instability and parametric 

resonance of the CNT were investigated by the method of 

averaging. The vortex-induced vibrations of a long flexible 

pipe conveying pulsating flows were investigated by Dai et 

al. (2014) via a two-mode discretization of the governing 

differential equations. The stability and bifurcations of a 

hinged-hinged pipe conveying pulsating fluid with 

combination parametric and internal resonances were 

studied by Zhou et al. (2015) with both analytical and 

numerical methods. Attia (2016) presented dynamics of a 

straight supported pipe conveying a harmonically pulsating 

incompressible fluid flow. Raminnea et al. (2016) presented 

temperature-dependent nonlinear vibration and instability of 

embedded functionally graded (FG) pipes conveying 

viscous fluid-nanoparticle mixture. The free vibration 

analysis of fluid conveying Timoshenko pipeline with 

different boundary conditions using Differential Transform 

Method (DTM) and Adomian Decomposition Method 

(ADM) was investigated by Bozyigit et al. (2017). Vakili 

Tahami et al. (2017) studied Dynamic response of 

functionally graded Carbon nanotubes (FG-CNT) 

reinforced pipes conveying viscous fluid under accelerated 

moving load. 

To the best of our knowledge, no investigation has been 

performed on the dynamic stability of nanocomposite pipes. 

The aim of this study is to present a mathematical model for 

dynamic stability analysis of pipes reinforced by CNTs 

conveying pulsating fluid. The nanocomposite pipe is 

surrounded by a viscoelastic medium which is simulated by 

visco-Pasternak foundation. The motion equations are 

derived using Hamilton’s principle and FSDT. Applying 

HDQM and Bolotin’s method, the DIR of structure is 

obtained. The influences of fluid velocity, geometrical 

parameters of pipe, viscoelastic foundation, percentage of 

CNTs in pipe and boundary conditions on the DIR of pipe 

are shown. 
 

 

2. Structural definition 
 

A schematic diagram of a pipe reinforced with CNTs 

conveying pulsating fluid embedded in a viscoelastic 

foundation is illustrate in Fig. 1 in which geometrical 

parameters of length L, average radius R and thickness h are 

also indicated. As shown in this figure, the viscoelastic 

foundation is simulated with spring, shear and damper 

elements.  

There are many new theories for modeling of different  

 

Fig. 1 Mathematical modeling of a nanocomposite pipe 

conveying pulsating fluid 

 

 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017). In order to calculate the 

middle-surface strain-displacement relations, the Mindlin 

theory is used. The displacement components of an 

arbitrary point based on this theory can be written as 

(Reddy 2002) 

1( , , , ) ( , , ) ( , , ),xu x z t u x t z x t   = +  (1) 

2( , , , ) ( , , ) ( , , ),u x z t v x t z x t   = +  (2) 

3( , , , ) ( , , ),u x z t w x t =  (3) 

where ψx(x,θ,t) and ψθ(x,θ,t) are the rotations of the normal 

to the mid-plane about x- and θ- directions, respectively. 

However, the nonlinear strain-displacement relations 

associated with the above displacement field can be derived 

as 
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In this research the nanocomposite pipe is made of 

polymer reinforced by CNTs. However, the stress (σij)-

strain (εkl) relation based on the Mori-Tanaka method as 

22
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(Mori and Tanaka 1973) 
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(9) 

where k, m, n, l and p are the stiffness coefficients which 

according to the Mori-Tanaka method can be given by 
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(10) 

where the subscripts m and r stand for matrix and 

reinforcement respectively; Em and υm are the matrix 

Young’s modulus and the Poisson’s ratio; cm and cr are the 

volume fractions of the matrix and the CNTs, respectively; 

kr, lr, nr, pr, mr are the Hills elastic modulus for the CNTs.  

 

 

3. Motion equations 
 

The total potential energy (∏), of the embedded pipe is 

the sum of strain energy (U), kinetic energy (K) and the 

work done by the applied viscoelastic medium (WV), 

pulsating fluid flow (WF)
 
and the force induced by magnetic 

field (WM). The strain energy is  
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Combining of Eqs. (4)-(8) and (11) yields 
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where the resultant force and moments may be calculated as 
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where k’ is shear correction factor. 

The kinetic energy of the structure may be expressed as 
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where ρ is the density of nanocomposite pipe. By 

substituting Eqs. (1)-(3) in Eq. (16), we have 
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By defining the following relations 
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Eq. (15) can be rewritten as below 
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The surrounded viscoelastic medium includes both 

normal and shear modulus with considering damping effect 

that modeled as follows (Ghavanloo 2010)  
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where kw, kg and cv are spring, shear and damping modulus, 

respectively. 

In order to calculate the work down by fluid, the well-

down Navies-Stokes equation is used as follows (Wang and 

Ni 2009) 

2V
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where V=(vr, vθ, vx) is the flow velocity in a cylindrical 

coordinate system, ρf, P and μ are fluid density, static 

pressure and fluid viscosity, respectively. In the Navies-

Stokes equation, 
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At the point of contact between the inside tube and the 

internal fluid, their respective velocities and accelerations in 

the direction of flexural displacement become equal. These 

relationships thus can be written as 

.
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 (22b) 

Using Eq. (22) and considering the axial fluid velocity, 

Eq. (21) can be expanded in z direction as follows 
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The work down by fluid can be calculated as follows 
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(24) 

The pulsating internal flow is assumed harmonically as 

follows 

0 (1 cos( )) ,fu V t = +  (25) 

where V0, β and ω are the mean flow velocity, the harmonic 

amplitude and pulsation frequency, respectively.  

The Lorentz force due to a steady magnetic field, H0 can 

be obtained as follows (Kiani 2014) 
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where η, , u, h and J are the magnetic permeability of the 

SWCNTs, gradient operator, displacement field vector, 

disturbing vectors of magnetic field and current density, 

respectively. Noted that in this paper the magnetic field is 

assumed as   eHeH xxx
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+=0H  where δ is the 

Kronecker delta tensor. Using Eqs. (1)-(3), the Lorentz 

force per unit volume can be calculated as 
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The generated forces and the bending moment caused 

by Lorentz force may be calculated by  
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Using Hamilton’s principle, the variational form of the 

equations of motion can be expressed by 
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By applying the Hamilton’s principle and sorting of 
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Using Eqs. (4)-(9), the resultant force and moments can 

be written as 
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Substituting Eqs. (43)-(49) into Eqs. (38)-(42) yields 
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In this paper, three types of boundary conditions are 

considered as 

• Simple-Simple (SS) 

0, 0,xx L u v w M=  = = = = =  (58) 
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• Clamped- Clamped (CC) 

0, 0,xx L u v w  =  = = = = =  (59) 

• Clamped- Simple (CS) 
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4. Solution procedures 
 

HDQM is used in this study to solve the motion 

equations. In this method, the differential equations change 

into first algebraic equations with first order and weighting 

coefficients. In other words, the partial derivatives of a 

function (F) are approximated by a specific variable, at 

discontinuous points in domain as a set of weighting series 

and its amount represent by the function itself at that point 

and other points throughout the domain. Let F be a function 

of x and θ in the domain of (0<x<L, 0<θ<2π). Based on this 

method, the derivates with respect to x and θ can be written 

as (Civalek 2004) 
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where 
)(n

ikA  and 
)(m

jlB are the weighting coefficients 

associated with nth-order partial derivative of F(x,θ) with 

respect to x at the discrete point xi and mth-order derivative 

with respect to θ at θi, respectively, whose recursive 

formulae can be written as 
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In addition, for higher order derivatives we have 
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A more superior choice for the positions of the grid 

points is Chebyshev polynomials as expressed in [26] 
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Applying HDQM and using Eqs. (58)-(60) to motion 

equations and boundary conditions results governing 

equations as set of algebraic. 
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where [K] and [C] are stiffness matrix and damping, 

respectively and [M] is matrices of mass; db and dd are 

related to the boundary and domain points, respectively.  

Finally, by substituting Eq. (25) to Eq. (69), we have 
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( )( )  
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f

f

ff

f

f

f

K t K
d

t K

C t C d

M d

 

 

 

 + +   
 + +   

+ + +  

+ =

 

(70) 

In the above equations [K]f, [K]ff and [C]f are stiffness 

matrix coefficients, damping coefficient matrix coefficients 

of pulsating fluid. To solve the Eq. (70), the Bolotin’s 

method is used. In this way displacement vector {d} be 

considered as follows (Patel 2006) 

     
1,3,...

sin cos  ,
2 2k k

k

k t k t
d a b

 

=

 
= + 

 
  (71) 

According to studies, the first dynamic range of the 

most important and largest range of shows. Finally, by 

substituting the Eq. (71) in Eq. (70) and separate sinus and 

cosinus coefficients, we have 
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Fig. 2 Dimensionless frequency of a pipe versus length to 

radius ratio for the first mode 

 

 

Fig. 3 Convergence and accuracy of HDQM 
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Eq. (38) is an eigenvalue problem which based on a 

direct iterative method, the variation of ω with respect to α 

as DIR of system can be obtained. 

 

 

5. Numerical results and discussion 
 

In this research, dynamic stability of nanocomposite 

pipes conveying pulsation fluid flow is studied. The pipe is 

made from polyethylene (PE) with the Yong modulus of 

Em=0.3 Gpa, Poisson’s ration of vm=0.3, length to thickness 

ratio of L/h=40 and thickness to radius ratio of h/R=0.02, 

which is reinforced with CNTs with the Hills elastic 

modulus reported in [22]. the fluid inside the pipe is water 

with the density of ρf=1000 Kg/m3 and viscosity of 

μ=8.9×10-4 Pa.s.  

At the first, the validation of presented results is 

investigated. For this purpose, neglecting CNTs (cr=0),  

 

Fig. 4 The effects of CNTs volume percent on the DIR of 

structure 

 

 

Fig. 5 The effects of dimensionless flow velocity on the 

DIR of structure 

 

 

viscoelastic medium and fluid, dimensionless frequency (
5.02

)]1([ mmR  −= ) of a pipe h/R=0.02 is plotted in 

Fig. 2 against length to radius ratio for the first mode. It can 

be seen that presented results are in a good agreement with 

Ref. (Lakis and Sinno 1992). 

The convergence and accuracy of HDQM is studied in 

Fig. 3. As shown, the fluid harmonic amplitude is plotted 

versus dimensionless pulsation frequency for different grid 

point numbers. It can be concluded that with increasing the 

grid point numbers, the dimensionless pulsation frequency 

decreases until in N=17, the results become converge. 

However, the result of this work are reported for N=17. 

The effects of different parameter on the DIR of 

structure are discussed. In all of the figures, the fluid 

harmonic amplitude is plotted versus dimensionless 

pulsation frequency. In these figures, the regions inside and 

outside the boundary curves are correspond to unstable 

(parametric resonance) and stable regions, respectively. 

Fig. 4 shows the effects of CNTs volume percent on the 

DIR of nanocomposite pipe. It is observed that with the 

increase of the CNT volume percent, the dimensionless 

pulsation frequency increases and the DIR of structure 

shifts to right. Since the elastic stiffness and density of  
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Fig. 6 The effects of surrounding viscoelastic foundation on 

the DIR of structure 

 

 

Fig. 7 The effects of longitudinal magnetic field intensity on 

the DIR of structure 

 

 

CNTs are higher than PE, with increasing volume percent of 

CNTs in polymer, the equivalent stiffness coefficients as 

well as the density increase, and this makes the system 

stronger, and the instability occurs later. 

Fig. 5 presents the effect of dimensionless flow velocity 

(V0=v0[ρm/Em]0.5) on the DIR of system. As can be seen, 

with increasing fluid velocity, the DIR occurs in lower 

pulsation frequencies. In addition, the greater fluid velocity 

leads to large instability zone and low pulsation frequency. 

In order to show the effects of surrounding viscoelastic 

foundation, Fig. 6 depicts DIR of structure. Three different 

viscoelastic medium are considered namely as without 

viscoelastic medium, visco-Winkler medium and visco-

Pasternak mediums. As can be seen considering viscoelastic 

foundation increases the magnitude of dimensionless 

pulsation frequency and subsequently, DIR shifts to right. It 

is due to the fact that putting the system in a viscoelastic 

medium makes the system more stable and stiffer. It is also 

concluded that the DIR of visco-Pasternak model is higher 

than visco-Winkler. It is because nonlinear visco-Pasternak 

model considers not only the normal stresses but also the 

transverse shear deformation and continuity among the 

spring elements. 

 

Fig. 8 The effects of circumferential magnetic field intensity 

on the DIR of structure 

 

 

Fig. 9 The effects of length to the thickness ratio on the DIR 

of structure 

 

 

Fig. 10 The effects of thickness to radius ratio on the DIR 

of structure 

 

 

Figs. 7 and 8 show, respectively, longitudinal and 

circumferential magnetic field intensity on the variations of 

the dimensionless pulsation frequency versus the fluid 
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pulsation amplitude. It can be observed that increment of 

longitudinal and circumferential magnetic field intensity 

makes the system more stable, hence the DIR and 

dimensionless pulsation frequency shift to right and 

increase. Comparing the effect of longitudinal and 

circumferential magnetic field intensity, it can be concluded 

that the effect of longitudinal magnetic field intensity on the 

DIR of structure is higher than circumferential one. 

Variation of length to the thickness ratio and thickness 

to radius ratio on the DIR of structure are observed in Figs. 

9 and 10. Ii is clear that the increase in length to the 

thickness ratio decreases the pulsation frequency while 

increasing thickness to radius ratio increases the pulsation 

frequency. It is due to the fact that with increasing length to 

the thickness ratio and thickness to radius ratio, the stiffness 

of structure decrease and increases, respectively. 

 

 
6. Conclusions 
 

Dynamic stability of CNT reinforced pipes conveying 

pulsating fluid flow was presented in this article. The 

external surface of pipe was surrounded by viscoelastic 

foundation. The radial applied force by the fluid was 

derived using Navier-Stokes equation. Based on Mindlin 

theory, energy method and Hamilton’s principal, the motion 

equations were derived. Applying HDQM and Bolotin 

method, the DIR of structure was obtained. The obtained 

results by were listed as follows: 

• Increasing the volume percent of CNTs in polymer 

matrix leads to increase in pulsation frequency, so the 

system becomes more stable. 

• Increasing the fluid velocity, pulsation frequency 

decreases and the pipe becomes susceptible to instability. 

• Increasing the magnetic field leads to increase the 

pulsation frequency and the stability of system. 

• The high values of length to thickness ratio, reduces 

the pulsation frequency and closes the system to the 

unstable state. 

• Considering viscoelastic foundation leads to higher 

pulsation frequency. 
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