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1. Introduction 
 

Graphene is an actually two-dimensional atomic crystal 

with exceptional electronic and mechanical properties. Many 

carbon based nanostructures including carbon nanotubes, 

nanoplates and nanobeams are considered as deformed 

graphene sheets (Ebrahimi and Salari 2015). In fact, analysis 

of graphene sheets is a basic matter in the study of the 

nanomaterials and nanostructures. Analysis of scale-free 

plates has been performed widely in the literature employing 

classical theories. But, such theories are not able to examine 

the scale effects on the nanostructures with small size. 

Therefore, the nonlocal elasticity theory of Eringen (Eringen 

1983, Eringen and Edelen 1972) is developed taking into 

account small scale effects. Contrary to the local theory in 

which the stress state at any given point depends only on the 

strain state at that point, in the nonlocal theory, the stress 

state at a given point depends on the strain states at all points. 

The nonlocal elasticity theory has been broadly applied to 

investigate the mechanical behavior of nanoscale structures 

(Ebrahimi and Barati 2016a, b, c, d, e, f). 

Pradhan and Murmu (2009) examined nonlocal 

influences on buckling behavior of a single-layer graphene 

sheets subjected to uniform in-plane loadings. Also, Pradhan 

and Kumar (2009) performed vibration study of orthotropic 

graphene sheets incorporating nonlocal effects using a semi-

analytical approach. Application of Levy type method in 

stability and vibrational investigation of nanosize plates 

including nonlocal effects is examined by Aksencer and 

Aydogdu (2011). Mohammadi et al. (2014) performed shear 

buckling analysis of an orthotropic graphene sheet on elastic  
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substrate including thermal loading effect. In another work, 

Mohammadi et al. (2013) examined the effect of in-plane 

loading on nonlocal vibrational behavior of circular graphene 

sheets.  

Also, Ansari et al. (2011) explored vibration response of 

embedded nonlocal multi-layered graphene sheets accounting 

for various boundary conditions. Shen et al. (2012) studied 

vibration behavior of nanomechanical mass sensor based on 

nonlocal graphene sheet model. They showed that vibration 

response of graphene sheet is significantly influenced by the 

mass of attached nanoparticle. Farajpour et al. (2012) 

examined static stability of nonlocal plates subjected to non-

uniform in-plane edge loads. Also, Ansari and Sahmani 

(2013) employed molecular dynamics simulations to examine 

biaxial buckling behavior of single-layered graphene sheets 

based on nonlocal elasticity theory. They matched the results 

obtained by molecular dynamics simulations with those of 

nonlocal plate model to extract the appropriate values of 

nonlocal parameter. Static bending and vibrational behavior 

of single-layered graphene sheets on Winkler-Pasternak 

foundation based on a two-variable higher order shear 

deformation theory is studied by Sobhy (2014). Also, 

Narendar and Gopalakrishnan (2012) carried out size-

dependent stability analysis of orthotropic nanoscale plates 

according to a nonlocal two-variable refined plate theory. 

They stated that the two variable refined plate model 

considers the transverse shear influences through the 

thickness of the plate, hence it is unnecessary to apply shear 

correction factors. Murmu et al. (2013) explored the 

influence of unidirectional magnetic fields on vibrational 

behavior of nonlocal single-layer graphene sheets resting on 

elastic substrate. Bessaim et al. (2015) presented a nonlocal 

quasi-3D trigonometric plate model for free vibration 

behavior of micro/nanoscale plates. Hashemi et al. (2015) 

studied free vibrational behavior of double viscoelastic 
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graphene sheets coupled by visco-Pasternak medium. 

Ebrahimi and Shafiei (2016) examined the influence of initial 

shear stress on the vibration behavior of single-layered 

graphene sheets embedded in an elastic medium based on 

Reddy’s higher-order shear deformation plate theory. Jiang et 

al. (2016) conducted vibration analysis of a single-layered 

graphene sheet-based mass sensor using the Galerkin strip 

distributed transfer function method. Arani et al. (2016) 

examined nonlocal vibration of axially moving graphene 

sheet resting on orthotropic visco-Pasternak foundation under 

longitudinal magnetic field. Sobhy (2016) analyzed Hygro-

thermal vibrational behavior of coupled graphene sheets by 

an elastic medium using the two-variable plate theory. Also, 

Zenkour (2016) performed transient thermal analysis of 

graphene sheets on viscoelastic foundation based on nonlocal 

elasticity theory. 

It is clear that all of previous papers on graphene sheets 

applied only the nonlocal elasticity theory to capture small 

scale effects. However, nonlocal elasticity theory has some 

limitations in accurate prediction of mechanical behavior of 

nanostructures. Because, nonlocal elasticity theory is unable 

to examine the stiffness increment observed in experimental 

works and strain gradient elasticity (Lam et al. 2003). 

Recently, Lim et al. (2015) proposed the nonlocal strain 

gradient theory to introduce both of the length scales into a 

single theory. The nonlocal strain gradient theory captures 

the true influence of the two length scale parameters on the 

physical and mechanical behavior of small size structures (Li 

and Hu 2016, Li et al. 2016, Karami et al. 2018). Recently, 

Ebrahimi and Barati (2016g, h, 2017 a, b) applied the 

nonlocal strain gradient theory in analysis of nanobeams. 

They mentioned that mechanical characteristics of 

nanostructures are significantly affected by stiffness-

softening and stiffness-hardening mechanisms due to the 

nonlocal and strain gradient effects, respectively. Most 

recently, Ebrahimi et al. (2016) extended the nonlocal strain 

gradient theory for analysis of nanoplates to obtain the wave 

frequencies for a range of two scale parameters. Most 

recently, Li et al. (2018) examined the thickness effect on 

mechanical behaviors of NSGT nanobeams. 

Based on newly developed nonlocal strain gradient 

theory, free vibration behavior of single-layer graphene 

sheets in thermal environment resting on elastic medium is 

examined using a refined two-variable plate theory. The 

theory introduces two scale parameters corresponding to 

nonlocal and strain gradient effects to capture both stiffness-

softening and stiffness-hardening influences. Hamilton’s 

principle is employed to obtain the governing equation of a 

nonlocal strain gradient graphene sheet. These equations are 

solved via Differential quadrature method (DQM) to obtain 

the natural frequencies. It is shown that vibration behavior of 

graphene sheets is significantly influenced by nonlocal 

parameter, length scale parameter, temperature rise, elastic 

foundation and aspect ratio. 

 

 

2. Governing equations 
 

The higher-order refined plate theory has the following 

displacement field as 
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where the present theory has a trigonometric function in the 

following form (Ebrahimi and Barati 2016) 
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Also, u and v  are displacements components of the 

mid-surface and bw and sw denote the bending and shear 

transverse displacement, respectively. Nonzero strains of 

present plate model are expressed as follows 
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where g(z)=1-df/dz and 
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(6) 

Also, Hamilton’s principle expresses that 

0
( ) 0

t

U T V dt − + =  
(7) 

in which U is strain energy, T is kinetic energy and V
is work done by external loads. The variation of strain 

energy is calculated as 
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Substituting Eqs. (5) and (6) into Eq. (8) yields 
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The variation of the work done by applied loads can be 

written as 
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where 0 0 0, ,x y xyN N N are in-plane applied loads; kw and kp 

are Winkler and Pasternak constants.  

 The variation of the kinetic energy is calculated as 
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By inserting Eqs. (19)-(22) into Eq. (17) and setting the 
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the 

following Euler-Lagrange equations can be obtained. 
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where 0 0 0, 0T

x y xyN N N N= = = and thermal resultant 

can be expressed as 
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2.1 Nonlocal strain gradient nanoplate model 
 

The newly developed nonlocal strain gradient theory 

(Ebrahimi et al. 2016) takes into account both nonlocal 

stress field and the strain gradient effects by introducing 

two scale parameters. This theory defines the stress field as 
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in which the stresses 
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strain xx and strain gradient ,xx x , respectively as 
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in which ijklC  are the elastic coefficients and e0a and e1a 

capture the nonlocal effects and l captures the strain 

gradient effects. When the nonlocal functions 0 0( , , )x x e a 

and 1 1( , , )x x e a  satisfy the developed conditions by 

Eringen (Eringen 1983), the constitutive relation of 

nonlocal strain gradient theory has the following form 
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The governing equations of nonlocal strain gradient 

graphene sheet in terms of the displacement are obtained by 

inserting Eqs. (25)-(27), into Eqs. (14)-(15) as follows 
4 6 6 4 6 6

11 12 664 6 4 2 2 2 4 2 2 4

4 6 6 4 6 6

22 114 6 4 2 4 6 4 2

4 6 6

12 66 2 2 4 2

[ ( )] 2( 2 )[ ( )]

[ ( )] [ ( )]

2( 2 )[ (

b b b b b b

sb b b s s s

s s s s s

w w w w w w
D D D

x x x y x y x y x y

w w w w w w
D D

y y y x x x x y

w w w
D D

x y x y x

 

 



     
− − + − + − +

         

     
− − + − − +

       

  
− + − +

    

2 4 4

0 22 2 2 2 2 2 2 2

4 4

22 2 2 2

4 6 6

222 4 4 6 4 2

4

2 2 2 2

4 6

2 2 4

6 6 6

2 4 4

(

)] [ ( )]

( )] (
) ( ) ( )

[ [

[2 )] ( 2

b s b s b s b b b

b b s s s

s s s s

w w w w w w w w w
I I

t t t x t y t t

w w w w w
J

t x t x t y t

w w w
D

y y y y x

x y x

y y xt



 



  
− − +

    

  
− + −

  

 

 + + +  
− + +

       

 
+ +

    


+ + −

 
+

 

6 6

2 4

4 4 4

4

2 2 2

2 2

2 2 2

2 2

2

4

2

2

)]

( 2 )
( ) ( ) ( ) ( ) ( )

( k )[

(

]

) ( )
[( ( )] 0

s s

T b s b s b s b s b s
p

b s b s
w b s

w w

t x t

w w w w w w w w w w
N

x y x

w w w w

y y

x y y

k w w
x y





  



 
+

 

  
− +

+  + + + +
− − +

  

 +  +
− + +







+


+


=

 

(30) 

/2
2 2

0 2 2 2
/2

( , , , ) (1, , , )
h

h
I I J K z zf f dz

−
= 

695



 

Farzad Ebrahimi and Mohammad Reza Barati 

 

4 6 6 2 4 4

11 554 6 4 2 2 4 2 2

2 4 4 4 6 6

44 12 662 4 2 2 2 2 4 2 2 4

4 6 6

22 114 6 4 2

[ ( )] [ ( )]

[ ( )] 2( 2 )[ ( )]

[ ( )]

s sb b b s s s

s s ss s s b b b

s sb b b

w w w w w w
D A

x x x y x x x y

w w w w w w
A D D

y y y x x y x y x y

w w w
D H

y y y x

 

 



     
− − + + − +

       

     
+ − + − + − +

         

  
− − + −

   

4 6 6

4 6 4 2

4 6 6 4 6 6

12 66 222

2 4 4

0 22 2 2

2 4 2 2 4 4 6 4 2

4 4

22 2

6

22 2

[

( ) ( )

( )]

2( 2 )[ ( )] [ ( )]

( )]
( )

[ [ (

s s s

s s ss s

b s b s b s b b

s s s s

w w w

x x x y

w w w w w w
H H H

x y x y

w w w w

x y y y y x

w w w w
I J

t t t x t yx ty



 

 

  
− +

   

     
− + − + − − +

         

  + + +  
− + +

     
−




+ −

  4

6 6 6 6 6

2

4 4

22 2 2 2 2 2 2 2 2 2 2

2 2

2 4

2 2 2

2

4 2 4

4 4

4 2

4

4

2 )] ( 2 )]

( 2

[

( ) ( ) ( ) ( )
( k )[

(
)]

) (
[( (

b

b b s s s s s

T b s b s b s b s
p

b s
w b s

w

t

w w w w w w w
K

t x t x t y t t t x t

w w w w w w w w
N

x y x

w w w
k

x

y y x y y

x

w

y

y
w 







    
+ + − + +

    

 
− +



 
+ +

          

 +  + + +
− − +

  

+ 
− +



+




+



2

2 2
0

) ( )
)]b s b sw w w

x y

+  +
+


=



 

(31) 

 

 

3. Solution by DQM 
 

In this section, differential quadrature method (DQM) is 

implemented to solve the governing equations of nonlocal 

strain gradient graphene sheets. In DQM, derivative of a 

function F at a given grid point (𝑥𝑖 , 𝑦𝑗) is considered as 

weighted linear sum of all functional values within the 

computational domain as 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖

= ∑ 𝑐𝑖𝑗
(𝑛)

𝐹(𝑥𝑗)

𝑁

𝑗=1

 (32) 

where  

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗 (33) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (34) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)

𝑁

𝑘=1

,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘,

𝑖 = 𝑗 

(35) 

Also, weighting coefficients of higher order derivatives 

are defined as 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

          𝑖, 𝑗

= 1, 2, … , 𝑁. 

𝐶𝑖𝑗
(5)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(4)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(4)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

           

𝐶𝑖𝑗
(6)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(5)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(5)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

(36) 

Table 1 Comparison of natural frequency of a graphene 

sheet for various nonlocal and foundation parameters 

(a/h=10) 

µ Kw=0, Kp=0  Kw=100, Kp=0  Kw=0, Kp=20 

 
Sobhy 

(2014) 
present  

Sobhy 

(2014) 
present  

Sobhy 

(2014) 
present 

0 1.93861 1.93861  2.18396 2.18396  2.7841 2.78410 

1 1.17816 1.17816  1.54903 1.54903  2.31969 2.31969 

2 0.92261 0.92261  1.36479 1.36479  2.20092 2.20092 

3 0.78347 0.78347  1.27485 1.27485  2.14629 2.14629 

4 0.69279 0.69279  1.22122 1.22122  2.11486 2.11486 

 

 
Fig. 1 Configuration of graphene sheet resting on elastic 

substrate 

 

 

In the present method, the distribution of grid points 

according to Gauss-Chebyshev-Lobatto model is defined by 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, 

𝑦𝑗 =
𝑏

2
[1 − cos (

𝑗 − 1

𝑀 − 1
𝜋)]       𝑗 = 1, 2, … , 𝑀, 

(37) 

Also, the time derivatives of displacement field can be 

calculated as 

( , , ) ( , ) i t

b bw x y t W x y e =  (38) 

( , , ) ( , ) i t

s sw x y t W x y e =  (39) 

in which Wb and Wn are unknown coefficients and 𝜔 is the 

eigenfrequency. Boundary conditions based on present plate 

model are 

2 2 2 2

2 2 2 2
0, 0   simply-supported edgeb s b s

b s

w w w w
w w

x x y y

   
= = = = = =

   

 
(40) 

0, 0   clamped edgeb s b s
b s

w w w w
w w

x x y y

   
= = = = = =

   
 

(41) 

By modifying weighting coefficients, it is possible to 

consider mentioned boundary conditions. For fully simply-

supported edges, we have  

𝐶1̅,𝑗
(2)

= 𝐶𝑁̅,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

𝐶𝑖̅,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁. 
(42) 

Other weighting coefficients can be written as 

𝐶𝑖̅𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘̅𝑗
(2)𝑁

𝑘=1       

 𝐶𝑖̅𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘̅𝑗
(3)𝑁

𝑘=1  
(43) 
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Substituting Eq. (36) into the governing Eqs. (30) and 

(31), we have 
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Where 𝐶̅ and 𝐴̅ denote the weighting coefficients in x 

and y directions, respectively. Setting the coefficient matrix 

of above equations leads to the following eigenvalue 

problem 

2([ ] [ ]) 0
b

s

W
K M

W


 
+ = 

 

 
(46) 

where [M] and [K] are the mass matrix and stiffness matrix, 

respectively. Finally, setting the coefficient matrix to zero 

gives the natural frequencies. It should be noted that 

calculations are performed based on the following 

dimensionless quantities 
2 2 3

*

* * 2

4a ρ a a
ˆ ω , k , k , , ,

E 12(1 )
w w p p

Eh ea l
K K D

h D D v a a
  = = = = = =

−

 
(47) 

 

 
4. Numerical results and discussions 
 

This section is devoted to study the hygro-thermo-

mechanical vibration behavior of nonlocal strain gradient 

graphene sheets on elastic substrate based on a two-variable 

shear deformation theory. The model introduces two scale 

coefficients related to nonlocal and strain gradient effects 

for more accurate analysis of graphene sheets. Material 

properties of the graphene sheet are: E=1 TPa, v=0.19, 

α=1.6*10-6 1/K and ρ=2300 kg/m3. Also, thickness of 

graphene sheet is considered as h=0.34 nm. Natural  

 
(a) SSSS 

 
(b) CCCC 

Fig. 2 Variation of dimensionless frequency versus nonlocal 

parameter for different strain gradient parameters (a/h=10, 

ΔT=0) 
 

 

frequencies of a graphene sheet are validated with those 

obtained by Sobhy (2014) for various nonlocal parameters 

(µ=0, 1, 2, 3, 4 nm2) and foundation constants ({Kw, 

Kp}={(0,0), (100,0),  (0,20)}. Obtained frequencies via 

present DQ method are in excellent agreement with those of 

exact solution presented by Sobhy (2014), as tabulated in 

Table 1. For comparison study, the strain gradient 

parameter is set to zero (λ=0). 

Examination of nonlocal and strain gradient effects on 

vibration frequencies of graphene sheets for SSSS and 

CCCC boundary conditions is presented in Fig. 2 when 

a/h=10. In this figure, various values of nonlocal parameter 

(µ=0~1) and length scale parameter (λ=0.1, 0.2, 0.3, 0.4) 

are considered. When µ=0 and λ=0, the results based on 

classical continuum mechanics are rendered. It is observed 

that natural frequency of graphene sheet reduces with 
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(a) Kp=0.5 

 
(b) Kp=5 

 
(c) Kp=10 

Fig. 3 Variation of dimensionless frequency versus length 

scale parameter for different Winkler and Pasternak 

constants (a/h=10, ΔT=0, µ=0.2) 
 

 
(a) SSSS 

 
(b) CCCC 

Fig. 4 Variation of dimensionless frequency versus length 

scale parameter for different aspect ratios (a/h=10, ΔT=0, 

Kp=5, Kw=25, µ=0.2) 

 

 

increase of nonlocal parameter for every kind of boundary 

condition. This observation indicates that nonlocal 

parameter exerts a stiffness-softening effect which leads to 

lower vibration frequencies. But, effect of nonlocal 

parameter on the magnitude of natural frequencies depends 

on the value of strain gradient or length scale parameter. In 

fact, natural frequency of graphene sheet increases with 

increase of length scale parameter which highlights the 

stiffness-hardening effect due to the strain gradients. Also, 

it is clear that making the graphene sheet more rigid by 

imposing clamped edges leads to higher natural 

frequencies. 

Fig. 3 demonstrates the variation of dimensionless 

frequency versus length scale parameter for different  
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(a) SSSS 

 
(b) CCCC 

Fig. 5 Variation of dimensionless frequency versus 

temperature change for different strain gradient parameters 

(a/h=30, Kp= Kw=0, µ=0.5) 
 

 

Winkler and Pasternak constants when a/h=10, ΔT=0 and 

µ=0.2. However, it is clear that natural frequency of 

graphene sheet depends on the values of both Winkler and 

Pasternak parameters. In fact, Pasternak layer provides a 

continuous interaction with graphene sheet, while Winkler 

layer has a discontinuous interaction with the graphene 

sheet. Increasing Winkler and Pasternak parameters leads to 

larger frequencies by enhancing the bending rigidity of 

graphene sheets. But, Pasternak layer shows more 

increasing effect on natural frequencies compared with 

Winkler layer. It is found that magnitude of natural 

frequency for various values of foundation parameters 

depends on the strain gradient effect. As previously 

mentioned, increasing of length scale parameter leads to 

larger natural frequencies for every values of foundation 

parameters. 

 

 

Fig. 6 Variation of dimensionless frequency versus 

temperature change for different foundation parameters 

(a/h=30, µ=0.5, λ=0.1) 

 

 

Effect of plate aspect ratio (b/a) on natural frequencies 

of graphene sheets with respect to length scale parameter is 

plotted in Fig. 4 at a/h=10, ΔT=0, Kp=5, Kw=25 and µ=0.2. 

It is found that increasing aspect ratio reduces the vibration 

frequencies of graphene sheets. This is due to the more 

flexibility of grapheme sheets with higher aspect ratios. 

However, effect of length scale parameter on vibration 

frequencies depend on the value of aspect ratio. In fact, 

graphene sheets with lower aspect ratios are more affected 

by length scale parameter. Therefore, strain gradient effect 

which is neglected in all previous studies on graphene 

sheets should be incorporated into nonlocal elasticity theory 

to obtain more reasonable results. 

Fig. 5 shows the variation of dimensionless frequency of 

graphene sheets with respect to temperature rise (ΔT) for 

different length scale parameters when a/h=30. It should be 

pointed out that increase of temperature degrades the plate 

stiffness and natural frequencies reduce until a critical point  
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Fig. 7 Variation of dimensionless frequency versus 

temperature change for different side-to-thickness ratios 

(µ=0.5, λ=0.1) 
 

 

in which the frequencies become zero. At this point, the 

graphene sheet buckles and does not oscillate. However, 

obtained critical buckling temperatures depend on the value 

of length scale parameter. In fact, inclusion of length scale 

parameter in nonlocal strain gradient theory leads to higher 

critical temperatures compared with nonlocal theory. So, it 

can be concluded that critical temperatures obtained by 

nonlocal elasticity theory are underestimated. As a 

consequence, it is very important to consider both nonlocal 

and length scale parameters in analysis of graphene sheets.  

Effect of Winkler and Pasternak layers of elastic 

foundation on natural frequencies and critical buckling 

temperatures of nonlocal strain gradient graphene sheets is 

depicted in Fig. 6 at a/h=30, µ=0.5 and λ=0.1. It is observed 

that values of critical temperatures are affected by the 

Winkler and Pasternak constants. In fact, increase of Winkler 

and Pasternak constants makes the plate more rigid and the 

critical temperature shifts to the right. In other words, 

increasing the magnitude of elastic foundation parameters 

leads to postponement in thermal buckling of grapheme 

sheets. 

Fig. 7 depicts the variation of dimensionless frequency 

versus temperature change for different side-to-thickness 

ratios (a/h) at µ=0.5, λ=0.1. It is seen that graphene sheets 

with higher side-to-thickness ratios are more flexible and 

they have lower vibration frequencies. Accordingly, 

graphene sheets with higher side-to-thickness ratios have 

smaller critical buckling temperatures. It is also found that 

effect of side-to-thickness ratio on natural frequencies is not 

sensible at lower temperature differences. In other words, as 

the temperature rises, effect of side-to-thickness ratio on 

natural frequencies becomes more important. 
 

 

5. Conclusions 
 

In this paper, nonlocal strain gradient theory is employed 

to investigate free vibration behavior of single-layer graphene 

sheets in thermal environment resting on elastic medium 

using a refined two-variable plate theory. The theory 

introduces two scale parameters corresponding to nonlocal 

and strain gradient effects to capture both stiffness-softening 

and stiffness-hardening influences. Hamilton’s principle is 

employed to obtain the governing equation of a nonlocal 

strain gradient graphene sheet. These equations are solved via 

DQ method to obtain the natural frequencies. It is observed 

that natural frequency of graphene sheet reduces with 

increase of nonlocal parameter. In contrast, natural frequency 

increases with increase of length scale parameter which 

highlights the stiffness-hardening effect due to the strain 

gradients. Also, increase of temperature degrades the plate 

stiffness and natural frequencies reduce until a critical point 

in which the frequencies become zero. It is seen that nonlocal 

strain gradient theory provides larger critical temperatures 

than nonlocal elasticity theory. In fact, considering strain 

gradient effects leads to postponement in thermal buckling of 

grapheme sheets. All these observations are affected by the 

Winkler-Pasternak medium which enhances the plate 

stiffness and increases the natural frequencies. 
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