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1. Introduction 
 

The main purpose of reliability analysis is to compute 

failure probabilities for incorporating uncertainties in real 

engineering problems. The probability of failure is defined 

as (Melchers 1999) 

Pf = P(G(𝑿) ≤ 0) = ∫ f𝑿(𝒙)d𝒙
G(X)≤0

 (1) 

where 𝑿 is a vector of random variables; f𝑿 denotes the 

joint probability density function, and G(𝑿)  is the 

performance function defined such that G(𝑿) ≤ 0 denotes 

the failure domain and G(𝑿) = 0  is called limit state 

surface. Direct computation of the above integral is difficult 

for real problems, so various methods have been proposed 

to approximate the integral. Among these methods, FORM 

and SORM use an approximation of the limit state surface 

around the “most probable failure point (MPFP)” based on 

a Taylor series expansion (Madsen et al. 1986, Zhao and 

Ono 2001). These analytical methods require calculation of 

the gradient of the limit state function, so they are not 

appropriate for highly nonlinear and non-differentiable 

functions.  

Monte Carlo Simulation (MCS) is another method for 

approximating probabilities of failure (Melchers 1999).  
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This method is based on the random sampling according to 

probability distribution functions. After the evaluation of 

the performance function for each sample, the probability of 

failure can be predicted by the ratio of failed samples to the 

total number of samples as 

�̂�𝑓 =
𝑛𝑓

𝑁𝑀𝐶
=

1

𝑁𝑀𝐶
∑ 𝐼𝐺≤0(𝒙𝑀𝐶,𝑖)

𝑁𝑀𝐶

𝑖=1

 (2) 

where 𝑛𝑓 is the number of failure samples, 𝑁𝑀𝐶  is the 

total number of random samples, 𝒙𝑀𝐶,𝑖  (𝑖 = 1,2, … , 𝑁𝑀𝐶) is 

a sequence of random samples drawn from the distribution 

of  f𝑿, and IG≤0 is equal to 1 or 0 for samples located 

inside and outside the failure domain, respectively. The 

accuracy of estimation can be measured by the coefficient 

of variation as (Lemaire 2009) 

𝐶. 𝑂. 𝑉�̂�𝑓 = √
1 − �̂�𝑓

𝑁𝑀𝐶 . �̂�𝑓
 (3) 

The required number of samples to obtain a target 

coefficient of variation in Eq. (3) rapidly increases with 

decreasing failure probability. Thus, the main drawback of 

the Crude Monte Carlo simulation is significant numerical 

efforts to estimate failure probabilities with a good 

accuracy. To deal with such a drawback, several variance 

reduction techniques have been proposed in the literature 

such as importance sampling (Engelund and Rackwitz 

1993), directional simulation (Melchers 1994) or subset 
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simulation (Au and Beck 2001). Despite these 

improvements, Monte Carlo simulations are time-

consuming. Therefore, the methods above may not be 

practical for an expensive-to-evaluate performance 

function. For example, if a finite element analysis (FEA) is 

required to evaluate the performance function, these 

methods may not be appropriate. In such a case, using an 

approximate or surrogate model instead of the main 

performance function is desirable. Several methods for 

approximation of the performance function have been 

presented such as RSM (Rajashekhar and Ellingwood 1993, 

Dizangian and Ghasemi 2016, Fang and Tee 2017), ANN 

(Cardoso et al. 2008, Bucher and Most 2008), SVM 

(Hurtado and Alvarez 2003, Basudhar and Missoum 2008) 

and Kriging (Kaymaz 2005, Bichon et al. 2008, Echard et 

al. 2011, Schöbi et al. 2016).  

Among these methods, the response surface 

methodology (RSM) is widely used in structural reliability 

analysis. In this method, the first or second order 

polynomials are used to approximate the real performance 

function. Artificial Neural Network (ANN) is another 

method for function approximation, and several researchers 

have used this method for structural reliability assessment. 

Cardoso et al. (2008) have shown that ANN is a versatile 

method that can approximate non-linear functions. 

Comparing ANN with other surrogate methods shows that 

the accuracy of the various approaches depends on specific 

problems (Bucher and Most 2008). Another surrogate 

model is Support Vector Machine (SVM), which is widely 

used for classification and regression applications (Vapnik 

1998). The main feature of SVM is its ability to separate 

data samples with the largest margin (Hurtado and Alvarez 

2003). Kriging model or Gaussian process regression is 

another popular surrogate method due to its flexibility for 

highly nonlinear problems. This model was originally 

developed in geostatistics by Daniel Krige (Krige 1951) and 

then became very popular for fitting surrogates to expensive 

computer simulations (Jones et al. 1998).  
Surrogate models are built from a limited number of 

evaluations of the original computational model, which is 
called the design of experiments (DoE). The appropriate 
selection of the DoE is so important to build an accurate 
surrogate (Sacks et al. 1989). The region of failure is 
usually relatively small compared to the domain of the 
whole variable, and a small number of samples may be 
located in the region of interest. Therefore, iterative training 
processes or adaptive methods have been proposed to 
improve the training process of surrogate models with a 
lower number of samples (Shao and Murotsu 1997, Hurtado 
and Alvarez 2003, Schueremans and Van Gemert 2005, 
Basudhar and Missoum 2008, Bourinet et al. 2011). Shao 
and Murotsu have presented an active learning algorithm, 
where the ANN starts training with a limited number of 
samples, and more samples are added only in the most 
important region. Schueremans and Van Gemert have used 
an adaptive ANN method that refined during the reliability 
analysis. An adaptive SVM method has also been proposed 
for the structural reliability assessment (Hurtado and 
Alvarez 2003), in which the margin is formed with initial 
random samples, whereas next training samples are selected 
near the margin.  

 

Fig. 1 Flowchart of the AK-MCS method 

 

 

Recently, some researchers have presented adaptive 

DoE methods with Kriging surrogate model (Bichon et al. 

2008, Echard et al. 2011, Lv et al. 2015, Schöbi et al. 2016, 

Sun et al. 2017, Gaspar et al. 2017, Lelièvre et al. 2018). 

The unique property of Kriging is its ability to determine 

the variance of predictions. This property allows developing 

adaptive algorithms based on the variance of Kriging 

model. Bichon et al. (2008) have proposed an Efficient 

Global Reliability Analysis (EGRA), which approximates 

limit state functions with good accuracy. This method 

begins with a Kriging model built with a small number of 

samples and then chooses where to generate subsequent 

samples with an expected feasibility function (EFF). Echard 

et al. (2011) have presented an Active learning method that 

combines Kriging and Monte Carlo Simulation (AK-MCS) 

method to evaluate the reliability of structures. Active 

learning means that the Kriging model is updated by adding 

a new point to the DoE. Schöbi et al. (2016) have used an 

adaptive Polynomial-Chaos Kriging method to assess the 

probability of failure and showed the efficiency of the 

proposed PC-Kriging method for rare events. 

The AK-MCS is a powerful method for structural 

reliability assessment, in which the number of calls to 

performance function is usually less in comparison with 

other traditional methods. This paper presents three 

modifications of the AK-MCS method to reduce the number 

of function calls. These modifications include: a method for 

defining an initial DoE, a new strategy for adding samples 

in the case of an insufficient size of initial DoE, and finally 

a stepwise regression trend for the AK-MCS method. 
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The remainder of this paper is organized as follows: 

Section 2 gives a brief overview of the Kriging model and 

AK-MCS method for structural reliability analysis. Section 

3 presents the proposed modifications to improve the AK-

MCS method. Four examples are employed in Section 4 to 

illustrate the efficiency of proposed modifications. Section 

5 is the conclusion. 

 

 

2. Structural reliability assessment using Kriging 
meta-model 
 

2.1 Kriging model 
 

Consider a design of experiments [𝒙1, … , 𝒙𝑘] with 𝒙𝑖 ∈
ℝ𝑛 , and 𝐘  with 𝑌𝑖 = 𝐺(𝒙𝑖) ∈ ℝ  to build a Kriging 

surrogate model. Kriging estimates the value of a function 

as a combination of known functions f(x) and departures as 

(Jones et al. 1998) 

G(𝒙) = 𝐟(𝒙)T𝛃 + Z(𝒙) (4) 

where 𝐟(𝒙) = [f1(𝒙), … , f𝑝(𝒙)]
T represents the basic 

functions, 𝛃 = [β1, … , β𝑝]
T  is the vector of regression 

coefficients, and Z(𝒙) denotes a Gaussian process with 

zero mean and covariance model defined by 

cov(𝒙i, 𝒙j) = σ
2R(𝒙i, 𝒙j)   i, j = 1, … , k (5) 

where σ2  is the process variance and R(𝒙i, 𝒙j)   denotes 

the correlation function between the points 𝒙i and 𝒙j.  

The most widely used correlation model is Gaussian 

correlation function, which can be expressed as 

R(𝒙i, 𝒙j) =∏exp (−θl(𝑥i,l − 𝑥j,l)
2)

n

l=1

 (6) 

where 𝑥i,l  and 𝑥j,l  are the lth coordinates of the points 

𝒙i and 𝒙j , and θl is the correlation parameter, which is  

 

 

determined using the Maximum Likelihood method as 

L(θ) = (2πσ2)−
k

2|𝐑|−
1

2exp (−
k

2
) (7) 

where  Rij = R(𝒙i, 𝒙j) , i, j = 1, … , k  is the matrix of 

correlation between each pair of points in the design of 

experiments. 

Regression coefficients and the variance of the process 

are determined using the least squares method as (Sacks et 

al. 1989) 

𝛃 = (𝐅T𝐑−1𝐅)−1𝐅T𝐑−1𝐘 (8) 

σ2 =
1

𝑘
(𝒀 − 𝑭𝜷)𝑇𝑹−1(𝒀 − 𝑭𝜷) (9) 

where Fij = fj(xi), i = 1, … , k, j = 1,… , 𝑝  is the 

information matrix. 

The mean of prediction 𝜇�̂�(𝒙0) and its variance 𝜎�̂�
2(𝒙0) 

for an arbitrary input sample point 𝒙0 is expressed as 

𝜇�̂�(𝒙0) = 𝐟(𝐱0)
T𝛃 + 𝐫0

T(𝐱0)𝐑
−1(𝐘 − 𝐅𝛃) (10) 

𝜎�̂�
2(𝒙0) = σ

2[1 − 𝐫0
T𝐑−1𝐫0 + 𝐮

T(𝐅T𝐑−1𝐅)−1𝐮] (11) 

where  𝐮 = 𝐅T𝐑−1𝐫0 − 𝐟(𝒙0)  and the vector of 𝐫0 =
[R(𝒙0, 𝒙1), … , R(𝒙0, 𝒙k) ]

T represents the correlation 

between the new sample point 𝒙0 and the experimental 

design points 𝒙1, … , 𝒙𝑘. 

The implementation of the Kriging meta-modeling 

technique can be found in Matlab toolbox DACE 

(Lophaven et al. 2002), which is used in this research to 

construct Kriging models. 

 

2.2 AK-MCS method 
 

The AK-MCS method includes Monte Carlo simulation 

and adaptive Kriging meta-model to evaluate the reliability 

of structures (Echard et al. 2011). It consists of 10 stages: 

 
 

(a) Determine upper and lower values of variables in the 

MC population 

(b) Uniform sampling in the specified domain 

Fig. 2 Two steps of uniform sampling of DoE (empty red circles mark the initial DoE) 
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1) Generate a Monte Carlo population (S) in the 

design space. 

2) Define an initial design of experiments (DoE) by 

random selection of N1 points among the population (S), 

and evaluate these points on the performance function (G). 

3) Construct a Kriging model with the toolbox of 

DACE according to the DoE and corresponding function 

values using ordinary Kriging. 

4) Predict the MC population (S) by the Kriging 

model and then estimate P𝑓. 

5) Identify the best next training sample in the S by 

a learning function.  

6) Check the stopping criterion. 

7) If the stopping criterion in step 6 is not satisfied, 

call the performance function (G) to evaluate the best 

sample. Then update the previous DoE with the best 

sample, and repeat stages 3 to 7 until the stopping criterion 

is satisfied. 

8) Compute the coefficient of variation (𝐶. 𝑂. 𝑉) 
of  P𝑓 by Eq. (3). 

9) If 𝐶. 𝑂. 𝑉𝑃𝑓 > 0.05, update the MC population by 

adding more samples to the current population and go back 

to stage 4. 

10) End AK-MCS. 

Fig. 1 summarizes these steps as a flowchart. The 

learning function in stage 5 is defined using the prediction 

value 𝜇�̂�(𝒙)  and the variance of prediction  𝜎�̂�
2(𝒙) . To 

select a sample with high variance of prediction and near 

the limit state surface (𝜇�̂�(𝒙)  ≈ 0), the learning function 

U(𝒙) can be defined as (Echard et al. 2011) 

U(𝒙) = |𝜇�̂�(𝒙) |/𝜎�̂�(𝒙) (12) 

The U-learning function is computed for the MC 

population. Then a sample with the minimum value of U-

function is considered as the best sample to enrich the DoE.  

The prediction of the Kriging model for each point 𝒙0 has 

a normal distribution with the mean value of 𝜇�̂�(𝒙0) and 

variance of 𝜎�̂�
2(𝒙0). So U(𝒙) is equivalent to the reliability  

 

 

index corresponding to the probability of misclassification. 

Based on this property, Echard et al. (2011) have defined 

the stopping criterion (stage 6) as 

min [U(𝒙)] ≥ 2         ∀𝒙ϵS (13) 

So, the probability of misclassification must be smaller 

than Φ(−2) ≈  2%  for all samples to stop iterations.  

Schöbi et al. (2016) have shown this stopping criterion 

is conservative and proposed another criterion. Three failure 

boundaries were used to define the stopping criterion:  

1) The limit state surface using mean values of 

predictions (μĜ(x) = 0) 

2) The lower boundary of the limit state surface 

using  𝜇�̂�(𝒙) − 𝑘𝜎�̂�(𝒙) = 0 

3) The upper boundary of the limit state surface 

using  𝜇�̂�(𝒙) + 𝑘𝜎�̂�(𝒙) = 0  

where k defines the confidence level, typically equal 

to 1.96 = Φ−1(97.5%). So, the stopping criterion can be 

defined as (Schöbi et al. 2016) 

P̂f
+ − P̂f

−

P̂f
0

≤ ϵP̂f (14) 

where P̂f
+  and P̂f

−  are the upper and lower bounds of 

failure probabilities, respectively; P̂f
0 is failure probability 

using the mean values of predictions 𝜇�̂�(𝒙), and ϵP̂f = 5% 

is the acceptable threshold error. The bounds of failure 

probabilities were defined as 

�̂�𝑓
± = 𝑃[𝜇�̂�(𝒙) ∓ 𝑘𝜎�̂�(𝒙) ≤ 0] (15) 

and failure probability as  

P̂f
0 = P[𝜇�̂�(𝒙) ≤ 0] (16) 

They have shown that the stopping criterion in Eq. (14) 

leads to accurate results despite the smaller number of 

function calls when compared to the stopping criterion in 

Eq. (13).  

In the AK-MCS method, two types of error in prediction  

  
(a) Random selection method (b) K-means clustering method 

Fig. 3 Defining of initial DoE by selection from the MC population for the four-branch benchmark problem 
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of failure probability may occur:  

1) Error due to an insufficient number of MC 

samples: To control this error, the coefficient of variation of 

the prediction (𝐶. 𝑂. 𝑉𝑃𝑓) should be less than 0.05. 

2) The error of misclassification: To control this 

error, the stopping criterion of Eq. (13) or Eq. (14) are used. 

As mentioned before, according to Eq. (13), the probability 

of misclassification must be smaller than Φ(−2) ≈
 2%  for all samples. Also, ϵP̂f = 5% is used in Eq. (14) as a 

stopping criterion. 

Therefore, it is not expected that the AK-MCS method 

will give an exact probability of failure. 

 

 

3. Evaluation of effective parameters in the AK-MCS 

method  

 

This section evaluates three effective parameters in the 

AK-MCS method. These parameters include the following: 

1) method of defining an initial DoE, 2) size of the initial 

DoE, and 3) regression trend of the Kriging model. 

 

3.1 Method of defining the initial DoE 
 

The method of defining the initial DoE is an important 

factor in the AK-MCS method. Therefore, the conventional 

and proposed methods are introduced and compared by 

attempting a sample problem. 

 

3.1.1 The conventional method 
In the original AK-MCS method, the initial DoE is 

defined by a random selection of points among the MC 

population (Echard et al. 2011). The probability of choosing 

DoE points from the failure region is small by the random 

selection method because small portions of samples may be 

located in the failure region.  

Schöbi et al. (2016) have used another method to 

generate an initial DoE. Their method is based on the Latin 

Hypercube Sampling (LHS) algorithm in the unit hypercube 

and transforming into the variable space by an inverse 

cumulative distribution function. Because of using an 

inverse cumulative distribution function, most of the  

 

 
defined samples may be located near the mean value and 

are likely to be in the safe region. 

Another strategy to have a well-behaved initial DoE for 

selection of samples from the MC population is K-means 

clustering method (Hartigan and Wong 1979). In this case, 

centers of clusters are considered as an initial DoE. Centers 

of clusters will be near to the mean of random variables 

because of the high density of samples near the mean value. 

Therefore, samples in the failure region may not be selected 

as centers of clusters.   

In all the methods above, the AK-MCS algorithm may 

start with the samples located in the safe region. So, the 

predicted probability of failure may not be accurate enough 

in the early iterations. 

 

3.1.2 Proposed method for defining the initial DoE 
The proposed method for defining an initial DoE 

consists of two stages: 

1) Determine the upper and lower values (bounds) of 

each variable in the MC population 

2) Uniform sampling in the specified domain 

Fig. 2 shows these stages for random variables with 

standard normal distribution in the two-dimensional case. 

Min (𝒙1) and Max (𝒙1) are minimum and maximum values 

of 𝒙1 random variable in the MC population, respectively. 

Bounds of other random variables are determined similarly.  

For uniform sampling in the specified domain, different 

sampling strategies could be used. Uniform Random 

Sampling (URS) is one of the popular methods for 

generating uniform samples in the domain (Melchers 1999, 

Rashki et al. 2012). Other space-filling design methods 

include Latin Hypercube Sampling (LHS) (Butler 2001), 

Centroidal Voronoi Tessellations (CVT) (Romero et al. 

2006), etc.  

In this study, three uniform sampling methods including 

URS, LHS, and CVT are considered for uniform sampling 

in the specified domain. In the URS method, the uniform 

distribution is used to generate random samples within the 

predefined intervals. The basic idea of the LHS method is 

that no two samples can have the same value or level for a 

specific variable. The CVT method also provides a uniform  

 

   
(a) URS method (b) LHS method (c) CVT method 

Fig. 4 Defining of the initial DoE by uniform sampling in the defined domain for the four-branch benchmark problem 
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sampling of the space. In the CVT method, samples are 

placed such that they lie at the centroids of the respective 

Voronoi cells (Basudhar 2011). 
 

3.1.3 Comparing two strategies via a sample problem 
The method of defining an initial DoE is investigated 

for a sample problem with two strategies. Consider a 

benchmark problem with four distinct limit states (four-

branch function) as follows (Waarts 2000) 

G(𝑥1, 𝑥2) = min

{
 
 
 

 
 
 3 +

(𝑥1 − 𝑥2)
2

10
−
(𝑥1 + 𝑥2)

√2

3 +
(𝑥1 − 𝑥2)

2

10
+
(𝑥1 + 𝑥2)

√2

(𝑥1 − 𝑥2) + 6/√2

(𝑥2 − 𝑥1) + 6/√2 }
 
 
 

 
 
 

 (17) 

where  𝑥1 and 𝑥2 are standard normal distributed random 

variables. 

The size of the initial design of experiments and MC 

population are considered N1 = 12 and  nMC = 10
6 , 

respectively. These values have been used by Schöbi et al. 

(2016) to compare the original Kriging method with the PC-

Kriging method.  

The initial DoE by the conventional selection method is 

shown in Fig. 3 for two cases of random selection method 

and the K-means clustering method. It can be seen that the 

K-means clustering method provides a better distribution 

for the initial DoE. In both cases, the initial samples are 

located in the safe region. 

Fig. 4 shows the initial designs of experiments by the 

proposed uniform sampling method for three cases. As can 

be seen, the distribution of initial samples is almost 

uniform, and some of them are located in the failure region. 

Also, the CVT method provides a better uniform sampling 

of the space.  

Fig. 5 compares the convergence histories of the AK-

MCS algorithm with different strategies for defining the 

initial DoE. It is seen that the uniform sampling methods 

converge faster than the selection methods. Therefore, the  

 

 

Fig. 5 Convergence histories with different methods of 

defining the initial DoE for the benchmark problem 

 

 

approximate probability of failure is obtained with less 

iteration by uniform sampling methods, whereas selection 

methods need more iteration to reach the same results. 

Among the uniform sampling methods, the LHS and CVT 

methods converge faster than the URS. Also, the K-means 

clustering selection method has a better performance than 

the random selection method.  

To compare two strategies, predicted limit states at 

different iterations are shown in Figs. 6-7 for selection 

method (K-means clustering) and uniform sampling method 

(LHS), respectively. The empty red circles show the initial 

DoE, whereas the red filled circles show the additional 

adaptive samples. As can be seen in Fig. 6, the failure 

boundaries are explored one by one in the case of selection 

method, and only three failure boundaries are discovered at 

iteration of 30. Schöbi et al. (2016) have reported this issue 

previously for the ordinary Kriging and presented an 

adaptive PC-Kriging method (APCK- MCS) to solve it. In 

the current study, improvement is achieved by uniform 

sampling methods instead of selection methods. As shown 

in Fig. 7, all four-failure boundaries are discovered after ten 

iterations by LHS sampling method, so the algorithm gives 

better results in the early iterations.  

   

(a) Iteration=10 (b) Iteration=20 (c) Iteration=30 

Fig. 6 Iterations of adaptive experimental design with K-means clustering method to select initial DoE for the four-branch 

benchmark problem (Blue lines denote the predicted limit states, and black lines are the real limit state. The empty circles 

mark the initial DoE, whereas the filled circles mark the adaptive samples) 
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Table 1 Four-branch function: Results using different 

stopping criteria and defining methods of initial DoE 

Method 
Stopping 

criteria 

Defining method of 

initial DoE 
𝑁𝑐𝑎𝑙𝑙 Pf ϵPf(%) 

Monte Carlo 

(Echard et al. 

2011) 

- - 106 0.004416 - 

AK-MCS 

(Echard et al. 

2011) 

Eq. (13) 
Selection method 

(Random) 
126 0.004416 0.0000 

Monte Carlo - - 106 0.004448 - 

AK-MCS Eq. (13) 

Selection method 

(Random) 
12+83=95 0.004447 0.0225 

Selection method  

(K-means) 
12+83=95 0.004446 0.0450 

Proposed uniform 

sampling (CVT) 
12+93=105 0.004448 0.0000 

Proposed uniform 

sampling (LHS) 
12+96=108 0.004450 0.0450 

Proposed uniform 

sampling (CVT) 
12+86=98 0.004414 0.7644 

AK-MCS Eq. (14) 

Selection method 

(Random) 
12+60=72 0.004450 0.0449 

Selection method  

(K-means) 
12+52=64 0.004445 0.0674 

Proposed uniform 

sampling (RUS) 
12+45=57 0.004446 0.0450 

Proposed uniform 

sampling (LHS) 
12+46=58 0.004447 0.0225 

Proposed uniform 

sampling (CVT) 
12+48=60 0.004446 0.0450 

 

 

Table 1 summarizes the results of the considered 

benchmark problem. The results are presented for both 

stopping criteria. The relative error (RE) is calculated based 

on the probability of failure for the same MC population 

evaluated by the original performance function as  

ϵPf(%) =
|P̂f − Pf,MC| ∗ 100

Pf,MC
 (18) 

where P̂f and Pf,MC  are predicted and exact probabilities of 

the failure, respectively. In the case of using Eq. (13) as a 

stopping criterion, the number of calls to the performance 

function (N𝑐𝑎𝑙𝑙) is not reduced by uniform sampling methods 

for defining the initial DoE (despite the fast convergence) due 

to conservatively of this criterion (Schöbi et al. 2016). On the 

other hand, the stopping criterion of Eq. (14) and uniform 

sampling methods tend to better results. Comparing the 

number of calls to the performance function (N𝑐𝑎𝑙𝑙) with 

reference value shows the efficiency of the proposed uniform 

sampling method for defining the initial DoE. Furthermore,  

 

Table 2 Four-branch function: Results using different size 

of initial DoE by the AK-MCS method 

Number of 

initial samples 

Number of adaptive 

samples 

Total number of 

samples (N𝑐𝑎𝑙𝑙) 
Pf ϵPf(%) 

2 7 9 0.000834 81.2500 

4 22 26 0.001734 61.0162 

6 29 35 0.001737 60.9487 

8 53 61 0.004353 2.1358 

10 63 73 0.004414 0.7644 

12 60 72 0.004450 0.0450 

 

 

Fig. 8 Final iteration of the AK-MCS method with initial 

DoE size of two 

 

 

the difference of the N𝑐𝑎𝑙𝑙  between three uniform sampling 

methods is not significant. According to the results, the 

relative error for all cases is less than the predefined value of 

5%, so all results are acceptable.  

 

3.2 The sensitivity of the AK-MCS method on the size 
of initial DoE 
 

3.2.1 Original AK-MCS method 
In the original AK-MCS method, the algorithm starts with 

a very small size of the initial DoE. For instance, Echard et  

   

(a) Iteration=10 (b) Iteration=20 (c) Iteration=30 

Fig. 7 Iterations of adaptive experimental design with LHS sampling method for defining initial DoE for the four-branch 

benchmark problem 
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Table 3 Four-branch function: Results using different size 

of initial DoE by the modified AK-MCS method 

Number of 

initial 

samples 

Number of adaptive 

samples 

Total number of 

samples(N𝑐𝑎𝑙𝑙) 
Pf ϵPf(%) 

2 50 52 0.004396 1.1691 

4 56 60 0.004455 0.1574 

6 57 63 0.004384 1.4388 

8 57 65 0.004428 0.4496 

10 65 75 0.004408 0.8993 

12 61 73 0.004447 0.0225 

 

 

Fig. 9 Calculation of distance of a sample in the MC 

population to the samples of DoE 

 

 

al. (2011) have suggested a dozen of points for the initial 

DoE. If the sample distribution of initial DoE doesn't 

properly cover the space, or the size of initial DoE is not 

large enough, the AK-MCS algorithm may not discover all of 

the failure boundaries in the limit state surface. To illustrate 

the effect of the size of an initial DoE, consider the four-

branch function which is defined in the previous section. The 

total number of required samples (Ncall) for different size of 

the initial design are shown in Table 2. The initial DoE is 

created with random selection method and Eq. (14) is 

considered as a stopping criterion. The results show that the 

relative error is so high for the lower size of the initial DoE. 

Fig. 8 illustrates the final predicted limit state with an 

initial DoE size of two. As can be seen, only one branch of 

the limit state is found with this sample size of the initial 

DoE. Therefore, the predicted limit state is not accurate 

enough to compute the probability of failure.  

 

3.2.2 The proposed method for scattered DoE 
To overcome the aforementioned drawback of the AK-

MCS, a modified approach is proposed by adding the 

endmost sample of the MC population from the current DoE 

samples. The proposed method includes three steps after the 

convergence of the original AK-MCS algorithm: 

1) Compute the distance of each sample in the MC 

population to the samples of DoE (see Fig. 9) 

2) Calculate the summation of distances for each 

sample of the MC population  

3) Find a sample which corresponds to the maximum 

of summation of distances  

So, a candidate sample is selected to add to the DoE as 

follows 

𝒙candidate = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝐷(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 ∑ 𝑑𝑖(𝒙)

𝑁𝐷𝑜𝐸

𝑖=1

 (19) 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 ∑ ∑(𝑥𝑙 − xi,l)
2

𝑛

𝑙=1

𝑁𝐷𝑜𝐸

𝑖=1

          ∀𝒙ϵ𝑆 

where 𝒙 is a sample from MC population,  𝒙𝑖  is a sample in 

the DoE,  𝑥𝑙  and 𝑥𝑖,𝑙 are the lth coordinates of points 𝒙 

and 𝒙𝑖, respectively,  𝑁𝐷𝑜𝐸  is the number of samples in the 

DoE, and 𝑛 is the dimension of the problem. 

Briefly, the endmost sample in the MC population from 

the current samples (DoE) is added to the DoE after 

convergence of the original AK-MCS method. Then, the 

Kriging model is updated according to the new DoE. If 

adding a new sample, has a considerable effect on the 

estimated probability of failure (𝑃𝑓 ), other samples are 

needed to increase the accuracy of the surrogate model. So, 

the iterative process continues until the convergence of the 

algorithm is achieved (see Fig. 14). 

Fig. 10 shows the added sample and the updated model 

for the four-branch problem. As can be seen, by adding one 

sample to DoE, the algorithm finds another mode of failure. 

So, the original AK-MCS method could find other adaptive 

samples, and the algorithm converges to the exact limit state 

in the next iterations. 

The results in Table 3 show the reduction of relative error 

from 81.25% to less than 1.5% by the modified AK-MCS 

method for initial DoE size of two. The number of function 

evaluations and relative error for predicted 𝑃𝑓 are compared 

in Fig. 11 for the original and modified AK-MCS method. As 

can be seen, the relative error reduces dramatically in the 

fewer size of initial DoE by the modified AK-MCS method. 

Therefore, the sensitivity of the AK-MCS method to the size 

of initial DoE could be reduced by the modified approach. 
 

3.3 The trend of Kriging model 
 

In the original AK-MCS method, the regression trend of 

Kriging model has been assumed to be an unknown constant 

value (Echard et al. 2011). In this section, different 

regression models with polynomial orders of zero, one and 

two are considered in the AK-MCS method. As defined in 

Eq. (4), the regression part of Kriging model is in the 

form  𝐟(𝒙)Tβ , where 𝐟(𝒙) = [f1(𝒙),… , f𝑝(𝒙)]
T  represents 

the basic functions and 𝛃 = [β1, … , β𝑝]
T  is the vector of 

regression coefficients. Therefore, the polynomials of orders 

0, 1 and 2 can be defined as (Lophaven et al. 2002)  

Constant Regression (p = 1) 

f(x)
T
β=β

0
 (20) 

Linear Regression (p = n + 1) 

f(x)
T
β=β

0
+∑ β

i

n

i=1

xi (21) 

Quadratic Regression (p =
(𝑛+1)(𝑛+2)

2
) 

f(x)
T
β=β

0
+∑ β

i

n

i=1

xi+∑∑ β
ij
xixj

n

j=1

n

i=1

 (22) 

where 𝑛 is the dimension of the problem (number of 

random variables), and 𝑝 is the number of terms in the  
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regression model. 

Unknown coefficients (βi) can be calculated according to 

Eq. (8). The minimum size of DoE could not be less than 𝑝, 

because the number of unknown coefficients (βi) is equal 

to 𝑝. For example, if the number of random variables is equal  

to 10, the number of samples in the DoE should not be 

less than (10+1)(10+2)⁄2=66 for the quadratic regression. 

Therefore, for high dimensional problems, the quadratic 

regression may not be a good choice as a trend of the Kriging 

model because it requires a large size of initial DoE. 

To investigate the effect of regression part of Kriging 

model in the AK-MCS method, previously defined problem 

is considered. The initial DoE is defined with the selection 

method (K-means clustering), and three types of regression 

models are considered for comparison. Convergence histories 

in Fig. 12 show that the AK-MCS method with the quadratic 

regression trend converges faster for this problem. In the case 

of linear regression trend with the stopping criterion of Eq. 

(14), the algorithm has stopped before an accurate failure 

probability could be predicted.  

 

 

 

Table 4 summarizes the results of the AK-MCS method 

with different regression trends using two stopping criteria. 

According to the results, 𝑃𝑓  is predicted with a good 

accuracy for different regression trends in the case of using 

Eq. (13) as a stopping criterion, whereas the relative error is 

high with the linear regression trend and the stopping 

criterion of Eq. (14). Therefore, using Eq. (14) as a stopping 

criterion may be not efficient for some cases. 

Fig. 13 shows the predicted limit state for this case (linear 

regression trend with Eq. (14) as a stopping criterion for the 

sample problem) in the first and final iterations. The upper 

and lower boundaries of estimations are also illustrated. 

These boundaries are used to define the stopping criterion 

according to Eq. (15). As can be seen, the predicted limit 

state in the first iteration is similar to the linear regression. 

Although it improves in the next iterations, not all branches 

of the limit state are found in the final iteration.  

As it can be seen, the samples of MC population between 

the upper and lower boundaries of limit state surface in the 

final iteration have not a considerable effect on finding other  

  
(a) Original AK-MCS method (b) Modified AK-MCS method 

Fig. 11 Number of function evaluation and relative error of 𝑃𝑓 using different size of initial DoE for the four-branch benchmark 

problem 

  

(a) Finding the endmost sample in MC to samples of DoE 

(Iteration=7) 

(b) Predicted LSF after adding the farthest sample to DoE 

(Iteration=8) 

Fig. 10 Illustration of adding one sample in the proposed method after the convergence of the algorithm 
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branches of limit state. To overcome this drawback, the 

defined method in the previous section can be used for 

adding more samples (section 3.2.2). 

Although the type of regression trend could be effective 

in the number of calls to the performance function and the 

accuracy of the estimated 𝑃𝑓, there are some limitations in 

using a higher order regression trend. As mentioned above, 

the minimum size of initial DoE is increased with linear and 

quadratic regression trends in comparison with the ordinary 

Kriging (constant regression). So, a stepwise method is 

proposed to achieve better results for higher dimensional 

problems as 

 

(23) 

 

 

Table 4 Four-branch function: Results using different 

regression trends and stopping criteria 

Regression 

Trend 
Stopping criteria 

Total number of 

samples (N𝑐𝑎𝑙𝑙) 
Pf ϵPf(%) 

Constant Eq. (13) 12+83=95 4.449 × 10−3 0.0225 

Linear Eq. (13) 12+103=115 4.447 × 10−3 0.0225 

Quadratic Eq. (13) 12+92=104 4.448 × 10−3 0.0000 

Constant Eq. (14) 12+52=64 4.414 × 10−3 0.7644 

Linear Eq. (14) 12+27=49 2.180 × 10−3 50.9892 

Quadratic Eq. (14) 12+49=61 4.427 × 10−3 0.4721 

 

 

where 𝑁𝐷𝑜𝐸  is the size of DoE and n is the number of 

random variables. 

In the proposed method, the size of DoE is calculated in 

each iteration, and then the regression trend is selected based 

on the size of DoE. Therefore, the type of regression trend 

may change with iterations. Also, if the algorithm converges 

before the NDoE reaches (n + 1)(n + 2)/2, there is no need 

to use the quadratic regression trend.  

 

  
(a) Iteration=1 (b) Iteration=27 (final iteration) 

Fig. 13 Prediction of the AK-MCS method with linear regression trend and stopping criterion of Eq. (14) 

  
(a) Stopping criterion of Eq. (13) (b) Stopping criterion of Eq. (14) 

Fig. 12 Convergence histories of the AK-MCS method with different regression trends and two stopping criteria for the four-

branch problem 
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Table 5 Example 1-random variables of the nonlinear 

oscillator 

Variable Distribution Mean Standard deviation 

m Normal 1 0.05 

c1 Normal 1 0.1 

c2 Normal 0.1 0.01 

r Normal 0.5 0.05 

F1 Normal 1 0.2 

t1 Normal 1 0.2 

 

 

Fig. 14 Flowchart of the enhanced AK-MCS method 

 

 

Fig. 15 Example 1-nonlinear oscillator 

 

 

However, if   NDoE  become greater than  (n + 1)(n +
2)/2, all samples of DoE (includes initial and adaptive 

samples) will be used as DoE by the Kriging model with the 

quadratic regression trend. Therefore, the procedure can 

converge faster than AK-MCS method with the quadratic 

regression trend and the regular initial DoE (without adaptive 

samples). 

All mentioned modifications of the AK-MCS method are 

summarized as a flowchart in Fig. 14. In summary, three 

modifications are presented in this paper: The initial DoE is 

defined with uniform sampling method as described in 

section 3.1. The endmost sample is added to DoE after the 

convergence of the algorithm according to the method 

described in section 3.2, and finally, the stepwise regression 

trend used according to Eq. (23) in section 3.3. Briefly, the 

proposed modification could be effective in three cases as 

follows: 

1) Defining the initial DoE with the uniform sampling 

method helps to cover the entire domain of variables. So 

using such an initial DoE could provide a better 

approximation in the earlier iterations.  

2) Adding the endmost sample of the MC population 

to the DoE could help to discover other failure boundaries. 

This strategy could be effective for problems with multiple 

failure boundaries. 

3) In some problems, using a linear or quadratic trend 

could reduce the number of calls to the performance function. 

Using a stepwise regression trend could be sound in such 

cases. 

The efficiency of the proposed enhanced AK-MCS 

method is shown for some benchmark problems in Section 4. 

 

 

4. Applications 
 

In this section, two analytical example and two structural 

examples are employed to validate the efficiency of the 

proposed modifications. In these examples, Eq. (14) is used 

as a stopping criterion due to its efficiency (Schöbi et al. 

2016), and the size of initial DoE is considered equal to12 

according to suggested value in (Echard et al. 2011). 
 

4.1 Example 1: Dynamic response of a nonlinear 
oscillator 
 

The first example is a problem with a moderate number 

of random variables (Echard et al. 2011). It deals with a 

nonlinear un-damped single degree of freedom system (see 

Fig. 15). This problem is also studied by Pan and Dias (2017) 

using Adaptive Support Vector Machine and the Monte Carlo 

Simulation (ASVM-MC) method. The performance function 

is defined as 

G(c1, c2, m, r, t1, F1)=3r-|zmax|=3r- |
2F1

mω0
2

sin (
ω0

2t
1

2
 )| (24) 

where ω0 = √(c1 + c2)/m. The six random variables listed 

in Table 5. 

The obtained results including the failure probability (𝑃𝑓), 

the number of calls to the performance function (N𝑐𝑎𝑙𝑙), and 

the relative errors of failure probability ϵPf  are summarized 

in Table 6. It is seen that the enhanced AK-MCS method 

requires fewer calls to the performance function than the 

presented values in the references (Echard et al. 2011, Pan 

and Dias 2017). The enhanced AK-MCS needs only 35 calls  
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Table 6 Results for Example 1: Nonlinear oscillator 

problem 

Method N𝑐𝑎𝑙𝑙 P𝑓 ϵPf(%) 

AK-MCS (Echard et al. 2011) 58 0.02834 - 

ASVM-MCS  

(Pan and Dias 2017) 
56 0.02790 - 

MCS 2 × 104 0.02785 - 

AK-MCS 12+55=67 0.02805 0.7181 

Enhanced AK-MCS 12+23=35 0.02800 0.5386 

 

 

to the performance function, whereas the AK-MCS and 

ASVM-MC require more calls (58 and 56 calls, 

respectively). Also, the predicted value is very close to the 

exact value using the MC simulation.  

Fig. 16 shows the convergence histories of the AK-MCS 

and enhanced methods. It is seen that the enhanced AK-MCS 

method converges faster than the original AK-MCS method. 

The upper and lower bounds of failure ( P̂f
+  and  P̂f

− 

according to Eq. (15)) have also been indicated in the Fig. 

16. As can be seen, the difference between the upper and 

lower bounds (shading area) of failure probabilities is 

significant in the AK-MCS method, so more iterations are 

required to satisfy the stopping criterion of Eq. (14). 

 

4.2 Example 2: High-dimensional example 
 

The second example aims to apply the enhanced AK-

MCS method for a high-dimensional problem (Echard et al. 

2011). It consists of independent lognormal random variables 

with mean value μ = 1 and standard deviation σ=0.2. This 

example is also studied by some researchers (Bourinet et al. 

2011, Pan and Dias 2017). The performance function reads as 

follows 

G(X1, … , Xn)=(n+3σ√n)-∑Xi

n

i=1

 (25) 

The dimension of the problem is n=40 in this study. 

Obtained results are provided in Table 7. According to the 

results, the proposed enhanced method needs only 43 calls to 

the performance function, which is better than the reported 

values of 112, 341 and 3729 (Echard et al. 2011, Bourinet et 

al. 2011, Pan and Dias 2017). 

 

 
Fig. 17 Example 2-Convergence of P𝑓  by enhanced AK-

MCS method for the high dimensional problem 

 

Table 7 Results for Example 2: High dimensional problem 

Method N𝑐𝑎𝑙𝑙 P𝑓 ϵPf(%) 

MCS (Echard et al. 2011) 3 × 105 0.001813 - 

AK-MCS (Echard et al. 2011) 112 0.001813 0.0000 

MCS (Pan and Dias 2017) 106 0.001820 - 

ASVM-MCS (Pan and Dias 2017) 341 0.001780 2.2000 
SS-SVM 

(Bourinet et al. 2011) 3729 0.001950 - 

MCS 3 × 105 0.001830 - 

Enhanced AK-MCS 12+31=43 0.001830 0.0000 

 

 

Convergence history in Fig. 17 shows that the changing 

of the trend from constant regression to linear regression 

causes fast convergence. According to the proposed stepwise 

regression model, this change occurs when the size of DoE 

(which is equal to Ncall) reaches the value of  𝑛 + 1 = 41. 

Therefore, using a linear regression could reduce the number 

of calls to the performance function in this example. 

 

4.3 Example 3: Two-dimensional 23 bars truss 
 

This example includes a two-dimensional 23-bars truss 

structure, which has been studied by Schöbi et al. (2016). As 

shown in Fig. 18, it consists of 11 horizontal bars and 12 

diagonal bars. The geometry is deterministic, whereas the 

material properties and the loadings are modeled  

  
(a) AK-MCS method (b) Enhanced AK-MCS method 

Fig. 16 Example 1-Convergence histories of the AK-MCS and enhanced algorithms for the nonlinear oscillator 
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Table 8 Example 3-Random variables of truss structure 

Variable Distribution Mean Standard deviation 

E1, E2(Pa) Lognormal 2.1 × 1011 2.1 × 1010 

A1(m
2) Lognormal 2.0 × 10−3 2.0 × 10−4 

A2(m
2) Lognormal 1.0 × 10−3 1.0 × 10−4 

P1, … , P6(N) Gumbel 5.0 × 104 7.5 × 103 

 

 

Fig. 18 Example 3-Two-dimensional 23 bar truss 

 

 

Fig. 19 Example 3-Convergence histories of the AK-MCS 

and enhanced algorithms for 23 bars truss 

 

 

stochastically. Ten random input variables form the input 

vector as 

𝒙 = [E1, E2, A1, A2, P1, P2, P3, P4, P5, P6] (26) 

where A1, E1 denote horizontal bars cross-section and 

Young’s modulus respectively, while A2, E2 denote diagonal 

bars’, and P1, … , P6 are vertical loads acting on the nodes of 

the upper part of the structure. These ten random variables 

are independent, and their distribution parameters are given 

in Table 8. 

A finite-element model is used to calculate the mid-span 

deflection, denoted by  s(𝒙) , as a function of random 

variables. The deflection is defined as positive in the 

direction indicated in Fig. 18. The threshold of s(𝒙)  is 

considered equal to 0.10 m. Hence the performance function 

can be defined as 

G(𝒙) = 0.10 − |s(𝒙)| (27) 

The results of AK-MCS and enhanced methods are 

summarized in Table 9. The results show the effectiveness of 

the enhanced method. The number of calls to the 

performance function for the original AK-MCS and the 

enhanced AK-MCS methods are 225 and 72, respectively. 

Schöbi et al. (2016) reported the number of calls equal to 170 

for the APCK-MCS method, so the number of calls to 

performance function using the enhanced method is  

Table 9 Results for Example 3: 23 bars truss problem 

Method N𝑐𝑎𝑙𝑙 P𝑓 ϵPf(%) 

APCK-MCS (Schöbi et al. 2016) 170 0.0432 0.6693 

MCS 104 0.0427 - 

AK-MCS 12+213=225 0.0428 0.2342 

Enhanced AK-MCS 12+60=72 0.0423 0.9368 

 

Table 10 Example 3-Random variables of the frame 

structure 

Variable Distribution Mean Standard deviation 

A1(m
2) Lognormal 0.25 0.025 

A2(m
2) Lognormal 0.16 0.016 

A3(m
2) Lognormal 0.36 0.036 

A4(m
2) Lognormal 0.20 0.020 

A5(m
2) Lognormal 0.15 0.015 

P(kN) Type I Largest 30.0 7.5 

 

Table 11 Results for Example 4: Twelve-story steel frame 

Method N𝑐𝑎𝑙𝑙 P𝑓 ϵPf(%) 

MCS (Cheng and Xiao 2005) 2 × 103 0.0751 - 

MCS 104 0.0737 - 

AK-MCS 12+90=102 0.0738 0.1357 

Enhanced AK-MCS 12+19=31 0.0739 0.2713 

 

 

considerably lower than the reported value. The relative error 

of the failure probability for the enhanced method is equal to 

0.9368%, which is acceptable because of using the value of 

ϵP̂f
=5% as an accuracy criterion in Eq. (14). It should be 

noted that the improvement in term of calls to the 

performance function is considerable, whereas the error of 

the prediction is negligible. 

Fig. 19 shows that the enhanced method converges faster 

than the original AK-MCS method. As can be seen, the 

number of required iterations decreases significantly from 

213 in the original AK-MCS method to 60 in the enhanced 

method. This improvement is due to the use of the uniform 

sampling method and the stepwise regression trend.  

 

4.4 Example 4: A three-bay twelve-story steel frame 
 

The last example consists of a steel portal frame structure 

with twelve stories and three bays as shown in Fig. 20 

(Cheng and Xiao 2005). Cross-sectional areas ( Ai ) and 

horizontal load (P) are independent random variables, and 

their distribution information is listed in Table 10. The 

sectional moments of inertia are expressed as  Ii = αiAi
2  

(α1=α2=α3=0.08333,  α4=0.26670, α5=0.200).  

Fig. 20 shows the element types. The Young’s modulus 

(E) is treated as deterministic, E=2.0×107kN/m2 . The 

performance function reads as follows 

G(A1,A2,A3,A4,A5,P)=0.096-uA(A1,A2,A3,A4,A5,P) (28) 

where 𝑢A is the horizontal displacement at node A. 
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Fig. 20 Example 4-Three-bay twelve-story steel frame 

 

 

The reliability results in Table 11 show the efficiency of 

the proposed method. It is seen that the number of calls to the 

performance function (N𝑐𝑎𝑙𝑙) is 102 in the original AK-MCS 

method, whereas it decreases to 31 in the enhanced method 

(including 12 samples of initial DoE and 19 adaptive 

samples). Comparison of convergence histories in Fig. 21 

shows that the enhanced AK-MCS method converges faster 

than the original method, and the number of calls to the 

performance function (N𝑐𝑎𝑙𝑙) is also reduced significantly. 

The relative error of the failure probability is not significant 

by the enhanced method. Also, the probability of failure is 

estimated with a good accuracy with only 31 calls to the 

performance function. Therefore, the results show the 

effectiveness of the enhanced AK-MCS method for reliability 

assessment of the frame structure. 

 
 

5. Conclusions 
 

This paper proposes an improved AK-MCS method to 

reduce the number of calls to the original performance 

function. The proposed method includes three modifications:  

1) method of defining an initial DoE, 2) adding more 

samples in the case of incorrect prediction, and 3) a stepwise 

regression trend. 

The method of defining the initial DoE is important in the 

AK-MCS method, so the uniform sampling method is 

proposed instead of the selection method in the original AK-

MCS method. The proposed strategy could reduce the 

number of function calls. The size of initial DoE is another 

important factor in the application of AK-MCS method. The  

 

Fig. 21 Example 4-Convergence histories of the AK-MCS 

and enhanced methods for the twelve-story steel frame 

 

 

algorithm may not converge to exact limit state with an 

inappropriate size of the initial DoE. Therefore, a new 

strategy is proposed for this case by adding the endmost 

sample of MC population to the DoE, and its efficiency is 

shown for four-branch function.  

The original AK-MCS method uses the ordinary Kriging 

model in the algorithm, so the regression trend of Kriging 

model is an unknown constant regression. In this paper, 

different regression trends (constant regression, linear 

regression, and quadratic regression) are evaluated for the 

benchmark problem, and it is shown that the appropriate 

choice of trend can be effective in reducing the number of 

function calls. In addition, the required size of the initial DoE 

increases rapidly with the growth of dimension in the case of 

using the quadratic regression trend. Therefore, a stepwise 

regression method is proposed to overcome this drawback. 

The efficiency of the proposed method is shown for some 

benchmark examples. In the benchmark problems, the 

number of calls to performance function reduced 

significantly. The reduction of function calls is near to 70% 

for the studied truss and frame structures. Therefore, the 

proposed enhanced method can be effective in prediction of 

the failure probability with less number of calls to the 

performance function. 
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