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1. Introduction 
 

The nonlinear finite element analysis is one of the most 

efficient approaches as a potential numerical method to 

predict and understand the mechanical behavior of the 

reinforced concrete members as well as the failure type, 

crack propagation and stress distribution which are difficult 

to measure in the experiment. There are some experimental 

studies related with RCHBs carried out several researchers 

(Zanuy et al. 2015, Hans et al. 2013, Tena-Colunga et al. 

2017a, b, Albegmprli 2017, Tena-Colunga et al. 2008). 

However, studies about the numerical and finite element 

modeling of RCHBs are very limited. A study provided by 

Albegmprli et al. (2015) discussed the stochastic finite 

element based reliability analysis of RCHBs. The authors 

proved that the RCHBs have higher sensitivity and 

probability of failure than the RC prismatic beams. Yuksel 

and Yarar (2015) investigated the prediction of load and 

moment capacity of symmetric parabolic haunched beams 

due to temperature changes by artificial neural network and 

adaptive neuro fuzzy inference systems.  
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haunched beams designed to fail in shear was investigated 

by Godinez-Dominguez et al. (2015). Design of reinforced 

concrete haunched beams with respect to American 

Concrete Institute (ACI) code was assessed by Rombach et 

al. (2011). 

This study investigates the finite element and numerical 

modeling of the simply supported RCHBs. Finite element 

models were prepared by taking RCHBs that had been 

tested by Albegmprli (2017) into consideration. Special 

nonlinear finite element based software named as, ATENA 

2D was used to simulate the behavior of the tested RCHBs. 

The aims of the study are to investigate the effectiveness of 

the finite element model used for RCHB and to produce 

new mechanical models and design formula to predict the 

shear strength of RCHBs with higher accuracy. 

The experimental work carried out by Albegmprli 

(2017) includes twenty-four beams consisting of four 

prismatic and twenty haunched beams. These beams are 

classified into three groups depending on the inclination 

type. Eighteen beams were without stirrups and so 

collapsed in shear, while other beams were reinforced by 

shear stirrups and failed in flexure. All of the beams are 

simply supported have; total length 1700 mm and span 

1500 mm, shear span ratio (a/d>2.5) and width 150 mm. 

However, the values of the inclination angles were 0
o
, 4.96

o
, 

9.86
o 
and 14.62

o
. Properties of the materials and geometries 

of each beam are stated in Table 1. 

This paper is composed of three parts. The first part 

indicates the nonlinear finite element modeling of the 

experimentally tested RCHBs. Load capacity, load- 
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Abstract.  This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced 
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parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly 

higher as compared to available design equations and its reliability index is within acceptable limits. 
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Fig. 1 Exponential tension softening 

 

 

deflection curve, and crack propagation results of finite 

element analysis are compared with the corresponding 

experimental results to discuss the effectiveness of the 

model. In the second part, a new comprehensive design 

formula is proposed to predict the shear capacity of all 

types of RCHBs with higher accuracy. In the last part, 

generalization capability of the proposed formula is 

investigated by parametric studies and reliability analysis.  

 

 

2. Theoretical concepts of finite element modeling 
 

2.1 Models of materials 
 

In this study, ATENA 2D software was used to model 

and simulate the behavior of RCHBs. The plain concrete is 

modeled using SBETA material model which is available in 

the software (Cervenka et al. 2016). The model includes the 

non-linear behavior of the concrete in compression. 

Fracture of concrete in tension is based on the nonlinear 

fracture mechanics and takes reduction of compressive 

strength after cracking, biaxial strength failure criterion, 

tension stiffening and reduction of the shear stiffness after 

cracking into consideration. 

The behavior of concrete in tension and compression is 

defined by equivalent uniaxial law proposed by Chen and 

Saleeb (2013). According to the law, the strain, εeq, is 

produced by the uniaxial stress σci (tensile or compressive) 

with modulus of elasticity Eci, which is associated with 

direction i. The relation between the equivalent strain and 

stress is expressed in Eq. (1). The complete equivalent 

stress-strain relationship for the concrete was proposed by 

Chen and Saleeb (2013). The behavior of concrete in 

tension is divided into two intervals, before and after 

cracking.  The concrete without cracks is assumed to 

behave as behave linear elastic material and the model is 

expressed according to the second part of Eq. (1). In this 

equation, 
ef

tf '
represents the effective tensile strength of 

the concrete that is obtained from biaxial failure criterion. 

c

si
eq

E


  ; 

ef

tc

eq

cc fE '0,    (1) 

Since, the mechanical behavior changes after cracking, 

the crack opening in tension is modeled by a fictitious crack 

model based on a crack-opening law and fracture energy. 

The model derived by Hordijk (1991) was used to model 

the concrete after cracking. The model is expressed in Eq.  

 

Fig. 2 Concrete compression model 

 

 

Fig. 3 Fixed crack model 

 

 

(2). In this equation, w and wc represents the crack width 

and crack width after release of all stress, respectively. This 

formula gives reasonable and better results for the 

prediction of the crack propagation in concrete (Fig. 1). 
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CEB-FIP Model Code 90 is used for modeling the 

concrete in descending part of the compressive stress- strain 

relationship, as shown in Fig. 2. The recommended formula 

in the current model is expressed in Eq. (3). In the equation, 

x is normalized strain; k is shape parameter and generally 

can be taken as 1 or higher. The model is appropriate for 

normal as well as high strength concrete. 

c

o

c

ef

c

ef

c
E

E
kx

xk

xkx
f 




 ,,

)2(1

2
'




  (3) 

Furthermore, the crack propagation is determined 

according to the rule that the principle axis is assumed to be 

fixed in the principle direction at moment of crack 

initiation, which is the condition of fixed crack model and 

shown in Fig. 3. The shear strength of the concrete is 

considered according to the smeared crack model. The 

shear modulus reduces as normal strain to the crack grows. 

The shear stiffness reduction due to the crack opening is 

shown in Fig. 4. The smeared crack approach for modeling 

of the cracks is adopted in the model SBETA.  

The stress-strain relation of the one-dimensional 

reinforcement is modeled using bilinear law, in other words, 

elastic-perfectly plastic behavior. The above described 

stress-strain laws can be used for the discrete as well as the 

smeared reinforcement. 
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Fig. 4 Shear retention factor 

 

 

Fig. 5 Finite element modeling in ATENA 

 

 

3. FE Modeling of beams 
 

All of the experimentally tested beams are symmetric. 

Therefore, only half of beams were modeled to reduce the 

total number of the elements for time and memory space 

saving. Furthermore, the element size was unified along the 

beam. The support and load bearing plate were modeled by 

isotropic steel plates which account for steel roller in the 

experiment. The constraint boundary conditions are 

necessary to provide the stability and equilibrium in the 

model. Therefore, the displacement of the symmetry line 

was prevented to move horizontally and the supporting 

plate was prevented to move vertically as shown in Fig. 5. 

The material properties and the geometries of each beam 

were taken the same as in the experiments for the modeling 

process. 

The assigned loading criteria were very similar to the 

experimental loading procedure in which prescribed 

displacement increments are applied in the position of the 

loading point. The prescribed displacement increment was 

0.2 mm at each step. The results of analyses were recorded 

at specified monitoring points which correspond to the 

place of measurements in the laboratory experiments. As 

solution procedure, the analyses were carried out according 

to Newton-Raphson method. 

 

 

4. Finite element analysis results 
 

The nonlinear finite element analysis results include; 

failure load, displacement at failure load, load-deflection 

curve, and crack patterns. The results for monitoring points 

were recorded and displayed after each step of analysis by 

the post-processor of the software. This part presents the 

comparison between the analyses and the experimental 

results. 

 

Fig. 6 Load-deflection graph of A1-0 beam 

 

 

Fig. 7 Load-deflection graph of B3-1 beam 

 

 

Fig. 8 Load-deflection graph of C1-0 beam 

 

 

Fig. 9 Load-deflection graph of A2-1 beam 

 
 
4.1 Load capacity and displacement 

 

The results of finite element analyses and the 

experimental study are presented in Table 1. The 

comparison includes the load capacity and the 

displacement. The displacement was compared according to 

formation of first diagonal shear crack for specimens  
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Fig. 10 Load-deflection graph of C2-1 beam 

 

 

Fig. 11 Load-deflection graph of B2-0 beam 

 

 

Fig. 12 Load-deflection graph of C2-2 beam 

 

 

Fig. 13 Load-deflection graph of B1-0 beam 

 

 

without stirrups and it was compared according to yielding 

point on load-deflection curves for specimens with stirrups. 

The calculated values by the NFEA exhibit a good 

agreement with the experimental results. The ratio of the  

 

Fig. 14 Load-deflection graph of A0-0 beam 

 

 

Fig. 15 Load-deflection graph of B2-1 beam 

 

 

Fig. 16 Load-deflection graph of C3-0 beam 

 

 

Fig. 17 Load-deflection graph of C2-0 beam 

 
 

experimental load capacity to the capacity resulted from the 

analysis varies between 0.97-1.06, with average 1.01, and 
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the same ratio for the deflection at mid-span is found to be 

between 0.85-1.17, with average 1.026. 
 

4.2 Load-deflection curves 
 

Load-deflection curves of some of the beams resulted 
from the numerical results versus ones of the experimental 
study are shown in Figs. 6-22. In general, a noticeable good 
fit is observed between the curves of experimental and 
numerical studies. Moreover, better fit is observed between 
experimental and numerical load-deflection curves of the 
beams without stirrups till the first diagonal shear crack 
appears. According to the corresponding figures, the beams 
of mode A and B fail suddenly due to the diagonal shear 
crack, the beams C1-0, C2-0, C2-1 & C3-1 have an early 
diagonal shear crack and continue to carry higher loads as 
observed from the experimental results. The numerical 
curve after the first diagonal shear crack could not achieve 
compatibility with the experimental curve in some 
specimens, since results were extracted from only half of 
the beams in the numerical analysis. However, the failure of 
experimentally tested beams was unsymmetrical in both 
halves of the beams. All of the beams which were  

 

 

reinforced by stirrups failed in flexure. Almost exact match 
is observed between the numerical and experimental curves. 
A reasonable good correlation also exists between 
numerical and experimental curves for the post-peak region. 
 

4.3 Crack patterns 
 

The crack pattern reflects the mechanical behavior and 

failure type of concrete members, especially the cracks 

which cause the failure are significant to research. In this 

study, the formation, propagation and orientation of the 

cracks were determined according to the stress and strain 

values in the integration points of the elements after each 

step of the analysis. The numerically predicted diagonal 

shear cracks versus the experimentally observed ones for 

the RCHBs without shear reinforcement are illustrated in 

Fig. 22. In the figure, major crack patterns after failure are 

compared. 

The diagonal shear cracks formed suddenly without any 

indication before the failure in the experimental test and 

these cracks were usually to be extensive. As a result of the 

numerical analysis, the shear cracks occurred at the  

Table 1 Finite element modeling results of experimentally tested beams 

Code αo 
hs

a 

mm 

hm
b 

mm 

As 

mm2 

As” 

mm2 

ρv
c 

10-3 
fc 

MPa 

Fexp 

kN 

Fpred 

kN 

Fexp Wexp 

mm 

Wpred 

mm 

Wexp 

Fpred Wpred 

A0-0 0 300 300 603 100 - 44.5 53.5 55.3 0.97 1.8 1.9 0.95 

A0-2 0 300 300 603 100 6.7 58 107.5 105.5 1.02 4.3 4.7 0.92 

A1-0 4.97 300 250 603 100 - 60 56.75 51.85 8..1 2.22 2.22 8... 

A2-0 9.87 300 200 603 100 - 49 56.6 57.95 0.98 2.5 2.18 1.14 

A2-1 9.87 300 200 603 308 - 51.5 57.65 59.7 0.97 2.433 2.6 0.94 

A2-2 9.87 300 200 603 100 6.7 59 107.5 105.9 1.02 4.53 4.39 1.03 

A3-0 14.62 300 150 603 100 - 42.5 60.5 59.05 1.02 2.54 2.52 1.01 

A3-1 14.62 300 150 603 308 - 60 56.5 59.5 0.95 3.22 3.6 0.89 

A3-2 14.62 300 150 603 100 6.7 59.9 112.5 108 1.04 4.82 4.72 1.02 

B0-0 0 300 300 603 100 - 55 55.15 54.7 1.01 1.96 1.84 1.07 

B1-0 4.97 300 250 603 100 - 53.5 54.1 54.9 0.99 1.9 1.39 1.37 

B2-0 9.87 300 200 603 100 - 55.1 58.5 55.3 1.06 2.24 2.16 1.04 

B2-1 9.87 300 200 402 100 - 53.9 45.5 46 0.99 2.57 2.733 0.94 

B3-0 14.62 300 150 603 100 - 59.5 66 61.75 1.07 4.64 3.43 1.35 

B3-1 14.62 300 150 402 100 - 51.5 61.5 59 1.04 4.57 4.23 1.08 

B3-2 14.62 300 150 603 100 6.7 59 104 105 0.99 5.97 5.08 1.17 

C0-0 0 250 250 603 100 - 60.7 47.2 46.8 1.01 2.62 2.54 1.03 

C1-0 -4.97 300 250 603 100 - 58.5 54 51 1.06 5.55 5.56 0.99 

C2-0 -9.87 350 250 603 100 - 44 50.5 52 0.97 5.74 6.06 0.95 

C2-1 -9.87 350 250 402 100 - 61 45.9 45.7 1.00 6.53 6.66 0.98 

C2-2 -9.87 350 250 603 100 6.7 65 87.5 82.5 1.06 5.4 5.4 1 

C3-0 -14.62 400 250 603 100 - 62 52 53.5 0.97 5.33 6.3 0.85 

C3-1 -14.62 400 250 402 100 - 50.1 47.75 47.05 1.01 5 4.66 1.07 

C3-2 -14.62 400 250 603 100 6.7 59 82.5 78.5 1.05 5.5 6.5 0.85 

Average         1.01   1.026 

COV          0.03   0.12 

a 
hs is the depth of the support; 

b 
hm is the depth of the mid-span; 

c 
Stirrups by 8 mm diameter at each 100 mm 
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Fig. 18 Load-deflection graph of C3-1 beam 

 

 

Fig. 19 Load-deflection graph of B3-2 beam 

 

 

Fig. 20 Load-deflection graph of A2-0 beam 

 

 

Fig. 21 Load-deflection graph of A3-0 beam 
 

 

integration points of each adjacent element formed a bundle 

of cracks along the failure path. The resulted crack patterns 

show a reasonable agreement between the numerical and 

the experimental studies about the orientation and the 

position of the shear cracks as shown in Fig. 22. 
 

 

5. Shear capacity models for RCHBs 
 

5.1 Existing formulations 
 

Although RCHBs are widely used in reinforced concrete 

structures, most design codes do not offer any instructions 

for design of the beams except the ACI code and the 

German DIN code. The sections 22.5.1.9 and R22.5.1.9 of 

ACI 318-14 (2014) point out the variable depth members. 

These sections confirm to consider the effect of inclined 

flexural compression in calculating the shear strength of 

concrete where the internal shear at any section is increased 

or decreased by the vertical component of inclined flexural 

stresses. The section 27.4.5.3 of ACI 318-14 (2014) 

discusses the inclined shear crack in the variable depth 

beams and recommends measuring the depth at the mid-

length of the crack. According to the explanations stated 

above it can be extracted that the code did not provide any 

formula to calculate the critical depth or to consider the 

effect of the inclination on the shear strength of variable 

depth beams.   

Debaiky and Elniema (1982) proposed Eq. (4) for the 

design of RCHBs. The formula is a modification of the 

ACI-318 code beam equation that is adapted to RCHBs.  

The modification contributes influence of the depth 

variation along the beam by the term 1+1.7 tana, and 

influence of the inclined flexural reinforcement.  

aff

a
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The German code DIN 1045-01 (2001) is the only 

design code that clearly addressed the shear resistance 

mechanism of RCHBs in detail. On the other hand, the code 

introduced Eq. (5)-(5b) to design the shear resistance of 

RCHBs. 


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Where, VEd is concrete shear resistance, VEdo is shear 

force, Vccd is shear resistance due to the inclination of the 

compression chord, Vtd is shear resistance component of 

inclined longitudinal tension reinforcements and VED
a
 is the 

design value of the shear bearing capacity of haunched 

beams at design section. Eqs. (4) and (5) are the most  

0

20

40

60

80

100

120

0 1 2 3 4 5 6

L
o
ad

  
k

N
 

Mid-span Displacement  mm 

Exp

FE-Model

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

L
o
ad

  
k

N
 

Mis-span Displacement  mm 

Exp

FE-Model

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5

L
o
ad

  
k

N
 

Mid-span Displacement  mm 

Exp

FE-Model

0

20

40

60

80

100

0 1 2 3 4 5

L
o
ad

  
k

N
 

Mid-span Displacement  mm 

Exp

FE-Model

428



 

Finite element and design code assessment of reinforced concrete haunched beams 
 

 

 

 

famous ones in this topic. However, these equations did not 
consider all cases of RCHBs. Other researchers had their 
attempts to introduce formulas to predict the shear strength 
of RCHBs (MacLeod and Houmsi 1994, Tena-Colunga et 
al. 2008). However, these works treated only special cases 
of the RCHBs and were built on limited data.  

 

5.2 Proposed mechanical models for RCHBs 

 

 

In this work, three mechanical models (A, B and C) are 

proposed depending on the inclination type and mechanism 

of failure as shown in Figs. 23-25. The proposed models 

differ from each other according to the contribution of the 

internal stresses; concrete shear resistance (VC), transverse 

shear  re inforcement ( V v ) ,  incl ined longi tudina l 

reinforcement (VF) and compression chord (VN). The  
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Fig. 22 Comparison of crack patterns between the experimental study and finite element analysis 
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Fig. 23 Mode A 

 

 

Fig. 24 Mode B 

 

 

Fig. 25 Mode C 

 

 

inclination angle is positive in modes A and B and negative 

in mode C. 

 

5.3 Proposed shear capacity formula for RCHBs 
 

In this study, a new formula was proposed involving all 

types of RCHBs for the first time in the literature. The new 

equation consists of four discrete components as stated in 

Eq. (6). These components represent the contribution of the 

internal stresses to the proposed mechanical models as are 

shown Figs. 23-25.  

FNvC VVVVV   (6) 

Where; V is the ultimate nominal shear strength, VC is 

the contribution of the concrete, Vv is the contribution of the 

shear reinforcement, VN is the contribution of the 

compression chord, VF is the contribution of the inclined 

flexural reinforcement. 

5.3.1 Contribution of the concrete 
The contribution of concrete (VC) in shear is given by 

the ACI318-14 (2014, Eq. (22.5.5.1a)). This equation 

predicts the shear strength of the reinforced concrete 

prismatic beams without shear reinforcement. The equation 

was modified to Eq. (6a) to involve also RCBHs in which 

the effective depth was replaced by critical depth (dc). The 

parameters ρ, Vu and Mu represent the longitudinal 

reinforcement ratio, shear force and moment at the critical 

section, respectively.  

c
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ccC bd
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fV )1716.0(   (6a) 

where, the value of Vudc/Mu cannot exceed 1.0.  

 

5.3.2 Contribution of the shear reinforcement 
The experimental results did not show a significant 

effect of shear reinforcement on the capacity of RCHBs. 

Therefore, the corresponding equation of ACI 318-14 

(2014, Eq. (22.5.10.5.3)) was used to calculate the 

contribution of shear reinforcement to the capacity (Vv), 

except the effective depth is replaced by the critical 

effective depth as introduced in Eq. (6b).  

cyvv bdfV   (6b) 

 

5.3.3 Contribution of the compression chord 
The contribution of the compression chord (VN) is given 

in Eq. (6c). This term consists of the vertical components of 

the normal stress of the concrete and reinforcement bars in 

the compression chord in the beams of mode A.  

tan1
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f
bd

f
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The parameters b and dc are the width and critical depth; 

respectively, As" is area of the compression reinforcement, 

(Es, Ec) are the modulus of elasticity of concrete and 

reinforcement; respectively and α is the inclination angle. 

 

5.3.4 Contribution of flexural reinforcement 
The contribution of the inclined flexural reinforcement 

(VF) is introduced in Eq. (6d). However, the consideration 

of the inclined flexural reinforcement (As) is limited to the 

modes B and C. This equation was derived by regression 

analysis. 

sin2.0 ysF fAV   (6d) 

 

5.3.5 Critical effective depth 
The substantial challenge for the design of RCHBs is 

the determination of the critical effective depth due to 

variation of depth along the RCHBs. Therefore, a new and 

practical formulation (Eq. (7)) was proposed to predict the 

effective depth at critical section by the consideration of the 

effective depth of the RCHBs on support. The range of the 

inclination angle lies between -14.62
o
 and +14.62

o
. 
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Fig. 26 Correlation of the proposed formula 
 

 

Fig. 27 Correlation of formula proposed by Debaiky and El 

Neima 
 

 

Fig. 28 Correlation of formula proposed by DIN 1045-01 
 

  

55.1)tan04.31( 608.0  aF  (7) 

Where dc is the effective depth at the critical section and 
ds is the effective depth of the beam on the support. 
 

 

6. Verification of shear capacity models 
 

6.1 Statistical correlations 
 

The performance of the proposed formula was  

 

Fig. 29 Comparison of correlation factors between formulas 
 

 

compared with the other two equations (Eqs. (4) and (5)). 

The comparisons are shown in Appendix part of the article 

(Table A.1) and Figs. 26-28. These formulas are the most 

comprehensive equations for the design of the RCHBs. 

Table A.1 shows the comparison of the experimental results 

that obtained from the literature and the predicted nominal 

shear capacity values of the corresponding beams resulted 

from the three equations. Furthermore, Figs. 26-28 illustrate 

the correlation between the experimental results and 

predicted values. The correlations of the results are 

represented by the correlation coefficient (R
2
) and 

coefficient of variation (CoV).  The correlation factors for 

the proposed formula, Eq. (6) are Vpredicted/Vtest = 0.96, 

CoV=0.14 and R
2
 = 0.89; for Eq. (4) are Vpredicted/Vtest = 

0.81, CoV=0.4 and R
2
 = 0.31; and for Eq. (5) are 

Vpredicted/Vtest = 0.62, CoV=0.26 and R
2
 = 0.57. The statistical 

parameters stated above and comparison of them, as shown 

in Fig. 29, prove the efficiency and superiority of the 

proposed design model for all cases of RCHBs.  
 

6.2 Parametric study of the proposed formula 
 

The parametric study was carried out to verify the 

generalization of the proposed model and to study the 

influence of each parameter on the predicted value. 

Parametric study was implemented by the help of Monte 

Carlo simulation. In addition to values of the parameters of 

the experimental study, extra database was produced via 

Monte Carlo simulation according to range and coefficient 

of variation of each parameter (Table 2). Main effect plots 

were extracted as a result of the parametric study as shown 

in Figs. 30-32. The three categories of beams (A, B and C) 

were examined separately by the parametric analysis. The 

minimum and maximum values of each parameter were 

utilized as identified by the experimental database. The 

considered parameters are; compressive strength (fc), yield 

strength of the reinforcement (fy), longitudinal flexural 

reinforcement ratio (ρs), transverse shear steel ratio (ρv) and 

inclination angle (α). 

As a result of the study, it was extracted that the 

proposed model has high generalization capability for the 

range of the variables. It can be observed from Figs. 30-32 

that all parameters have a significant influence on the shear 

capacity of the RCHBs. Although the compressive strength 
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(fc) shows a significant influence on the shear capacity, 

effect of yield strength of steel bars (fy) is negligibly small 

for all RCHB types. The shear reinforcement ratio (ρv) has 

also a remarkable effect on the shear strength; especially in 

Mode C. The flexural reinforcement ratio (ρs) has a 

positivity effect in Modes A&B and negative effect in 

beams of Mode C as observed in Figs. 30-32. However, 

influence of the inclination angle (α) is the highest among 

all considered parameters. 
 

 

7. Reliability analysis 
 

7.1 Concepts 
 

The material properties and geometric aspects of 

structural members usually have uncertain values. 

Therefore, it is difficult to model the real behavior of 

reinforced concrete members using deterministic analysis. 

Probabilistic models are required to quantify the 

uncertainties of the parameters to develop realistic 

representations of the output and failure state of these 

systems to obtain a rational and safe design (Vorechovsky 

2004). The uncertainty of the parameters is modeled as 

random variables which described by the probability 

distribution functions (PDF). Table 2 summarizes the 

statistical parameters of material properties, member 

geometries and load factors. The coefficient of variation 

values of statistical parameters are taken from previous 

studies (Choi et al. 2004, Strauss et al. 2006, Szerszen and 

Novak 2003).  

Structural reliability can be defined as the capability of a 

structure or a structural member to achieve the specified 

requirements for which it has been designed (EN 1990, 

2002). The requirement for a structural element can be  

 

 

Table 2 Uncertainty factors 

Variable Statistical distribution Mean COV 

Width, depth and inclination Normal Nominal 0.03 

Reinforcement effective depth Normal Nominal 0.03 

Reinforcement area Normal Nominal 0.05 

Concrete compressive strength Normal Nominal 0.1 

Concrete modulus of elasticity Normal Depends on strength 0.07 

Yield strength Normal Nominal 0.1 

Steel Modulus Beta Nominal 0.1 

Dead load Normal Nominal 0.08 

Live load Normal Nominal 0.18 

 

 

achieved when the external applied loads (Q) do not exceed 

the resistance of the element (R). The corresponding limit 

state function, g for structural reliability can be expressed in 

Eq. (8) as follows 

QRg 
; 

LDQXXXRR LDnn   &).,,.........,( 21  
(8) 

Where Xi represents the random parameters, D is dead 

load, L is live load, ϕ is reduction factor and λ is bias factor. 

The reliability of the structure is assessed by the failure 

probability of limit state function which is given explicitly 

in Eq. (9). 

)0(  gPPf  (9) 

 

7.2 Reliability index 
 

The reliability index is the shortest distance from the  

 

Fig. 30 Parametric study results for Mod A 

 

Fig. 31 Parametric study results for Mod B 
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origin of the reduced variables to the failure surface as 
introduced by Hasofer and Lind (1974). The reliability 
index β is strongly related to the probability of failure, Pf, 
as stated in Eq. (10) 

)(1
fP   (10) 

Where ϕ
−1

 is the inverse of the probabilistic distribution 
function, Pf is the failure probability and β is the reliability 
index. The expression of the reliability index is expressed in 
Eq. (11) 

22
QR

QR











 
(11) 

The reliability analysis was achieved according to the 
load and resistance factor design (LRFD) approach which is 
specified by ASCE-7 and ACI 318-14 (Eq. (12)). ϕ 
represents the strength reduction factor, D and L are dead 
and live loads, respectively.  

RD

RLD









4.1

6.12.1
 (12) 

Due to the critical effective depth concept, reinforced 
concrete haunched beams have more risk as compared to 
prismatic beams regarding shear forces.  

Table 3 shows the reliability indices of the predicted 
shear strengths from the proposed and existing formulas 
using the limit state load case in Eq. (12) for three values of 
strength reduction factors (0.8, 0.75 and 0.7). Calculation 
procedure of reliability index is same for all considered 
equations (Eqs. (4), (5) and (6)). The values in Table 3 
show reliability indices of each formulation for load ratio 
(D/D+L) of 0.5. According to the results, reliability indices 
for the proposed formula are higher than the others. In other 
words, the proposed formula gives more reliable and safer 
results for the capacity of RCHBs. Acceptable reliability 
index values are obtained for the strength reduction value of 
0.75. Indeed, this value is also recommended by ACI code 
for the structural elements which are critical regarding 
shear. Therefore, the reduction factor of 0.75 is 
recommended for the application of the proposed formula. 

Fig. 33 presents change of the reliability indices of the 
three formulas according to different load ratios (D/D+L) 
for strength reduction factor of 0.75. 
 

 

8. Nominal design capacity 
 

The new formulation is proposed to extend the application  

 

 

Fig. 33 Reliability index for different ratio of loading 

(D/D+L) 

 

Table 3 Resulting reliability indices, β 

Strength 

Reduction 

factor (ϕ) 

Eq. (4) Eq. (5) 
Eq. (6) (Proposed 

Formulation) 

0.8 1.04 2.32 3.2 

0.75 1.1 2.45 3.45 

0.7 1.17 2.59 3.74 

 

 

of shear design formula which is adopted by ACI318 to 

involve all types of RCHBs. The proposed formulation adopts 

the factors based on the Eq. (12) for load combinations and the 

strength reduction factor, Ø =0.75. Therefore, nominal design 

capacities (Vw) are calculated according to Eq. (12). The load 

ratio of, D/(D+L), 0.5 was considered for the calculation. The 

nominal design capacities of RCHBs which are resulted from 

Eqs. (4), (5) and (6) are given in Table A.1. For instance, the 

nominal design capacity of the beam named as, A1-0 was 

calculated according to Eq. (6) as follows; 

The resulting capacity of the beam resulted from the 

proposed formulation is 59.62 kN. This value is placed in Eq. 

(12) (R). Since, 0.5 value is considered as D/(D+L) ratio, 

Nominal design capacity of the beam;  

kN94.31
)5.0*6.15.0*2.1(

62.59*75.0



 (13) 

The safety factor was also determined using the following 

equation 

 

Fig. 32 Parametric study results for Mod C 
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wV

V
SF

exp
  (14) 

Where, Vexp is the experimental shear capacity and Vw is the 

design capacity. The average values of the safety factor are 

equal to 2 with COV=0.16 for the proposed formula, 3.35 with 

COV=1.11 for Eq. (4), and 2.88 with COV=0.68 for Eq. (5). 

Therefore, it can be concluded that when resulting reliability 

index, safety factors and COV values are taken into 

consideration, the proposed formula gives more reliabile and 

economic results for the design of all types of haunched beams 

as compared to other formulations. 

 

 

9. Conclusions 
 

In this study, the experimentally tested RCHBs were 

modeled by ATENA 2D program to simulate the 

mechanical behavior of the RCHBs. Also, a new 

formulation was proposed for the prediction of the shear 

strength capacity of RCHBs. The noticeable conclusions are 

summarized as follows:  

• The predicted values of the NFEM exhibited a good 

agreement with the experimental results. The ratio of 

predicted capacities of RCHB to the corresponding 

experimental results was found to be in the range of 0.97 – 

1.06, with average 1.01. Moreover, the ratio of the predicted 

result to the experimental result for mid-span deflection at 

failure load was found to be between 0.85-1.17, with 

average 1.026.   

• A reasonable similarity was observed about the 

orientation and position of the diagonal shear cracks 

between the NFEA and the experimental study. 

• A comprehensive formulation was proposed for the 

prediction of failure load and design of all cases of RCHBs 

and new parameters were taken into account in the equation 

for the first time in literature. 

• The proposed formula exhibited better agreement with 

the experimental results as compared to the existing design 

equations for RCHBS. 

• The parametric analysis indicated that the proposed 

model had the capability of determination of the capacity of 

RCHBs for wide ranges of variables. Moreover, the 

inclination angle (α) and the compressive strength (fc) were 

the most influential parameters on the shear strength of 

RCHBs. 

• As a result of reliability analysis, the safety margin of 

the proposed model is found to be higher and more reliable 

as compared to existing design formulas for uncertain 

material and geometric properties of RCHBs. 

• The safety factor of the proposed model for the design 

of RCHBs is found to be 2.  
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Abbreviations 
 

a Shear span 

b Beam width 

dc Effective depth at the critical section 

ds The effective depth at the support 

D Dead Load 

L Live Load 

Ec Secant modulus of elasticity 

s Initial elastic modulus 

Es Elasticity modulus of reinforcement 

fc Compressive strength of concrete 

fc
’ef

 Concrete effective compressive strength 

ft
’ef

 The effective tensile strength 

fy Reinforcement yield strength 

G 
f
 The fracture energy 

Mu Moment force at the critical section 

Vn Nominal ultimate shear capacity for considered eqs. 

Vu Shear force at the critical section 

Vw The nominal design capacity for haunched beams 

w The crack opening 

wc The crack opening at the complete release of stress 

α Inclination angle 

ε Strain 

εc Strain at the peak stress 

ε
eq

 The equivalent uniaxial strain 

ρc Reinforcement ratio at the critical section 

ρs Flexural reinforcement ratio 

ρv Shear reinforcement ratio 

σci The uniaxial stress 

σ
ef
 The effective tensile stress 

σc
ef
 Concrete compressive stress 

ϕ Resistance reduction factor 
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Table A.1 Experimental database of RCHBs and comparison of models 

Beam Mode a α 
fc 

MPa 

Av 

mm2 
As 

mm2 
b 

mm 

ds 

mm 

As
” 

mm 

Vexp 

kN 

Eq. (6) Eq. (4) Eq. (5) 

Vn 

kN 
Bias 

Vw 

kN 

Safety 

factor 

Vn 

kN 
Bias 

Vw 

kN 

Safety 

factor 

Vn 

kN 
Bias 

Vw 

kN 

Safety 

factor 

 Albegmprli (2017)                   

A1-0 A 0.65 4.97 60.00 0 603 150 210 100 56.75 59.62 1.05 31.94 1.77 80.11 1.41 42.92 1.32 40.79 0.72 27.19 2.09 

A2-0 A 0.65 9.87 49.00 0 603 150 160 100 56.6 55.94 0.99 29.97 1.89 86.10 1.52 46.13 1.23 45.52 0.80 30.35 1.87 

A2-1 A 0.65 9.87 51.50 0 603 150 160 308 57.65 57.31 0.99 30.70 1.88 110.97 1.92 59.45 0.97 46.28 0.80 30.85 1.87 

A3-0 A 0.65 14.62 52.00 0 603 150 110 100 60.5 55.05 0.91 29.49 2.05 95.98 1.59 51.42 1.18 53.17 0.88 35.45 1.71 

A3-1 A 0.65 14.62 46.00 0 603 150 110 308 56.5 53.72 0.95 28.78 1.96 110.85 1.96 59.38 0.95 51.04 0.90 34.03 1.66 

 Nghiep (2010)                    

2L1 A 1.5 3.95 49.45 0 942 200 223 0 75 70.80 0.94 37.93 1.98 79.00 1.05 42.32 1.77 62.10 0.83 41.40 1.81 

2L2 A 1.5 3.95 49.99 0 942 200 223 0 74.5 71.12 0.95 38.1 1.96 79.40 1.07 42.54 1.75 62.30 0.84 41.53 1.79 

3L1 A 1.5 5.91 50.21 0 942 200 178 0 66.5 64.29 0.97 34.44 1.93 93.80 1.26 50.25 1.32 72.10 1.08 48.07 1.38 

3L2 A 1.5 5.91 50.98 0 942 200 178 0 69.5 64.66 0.93 34.64 2.01 84.40 1.21 45.21 1.54 72.50 1.04 48.33 1.44 

2K1 A 0.85 3.95 54.18 0 942 200 267 0 83.5 90.47 1.08 48.47 1.72 85.30 1.02 45.70 1.83 57.10 0.68 38.07 2.19 

2K2 A 0.85 3.95 54.22 0 942 200 267 0 85 90.50 1.06 48.48 1.75 85.30 1.00 45.70 1.86 57.10 0.67 38.07 2.23 

3K1 A 0.85 6.71 54.26 0 942 200 238 0 79.5 95.06 1.20 50.93 1.56 91.60 1.15 49.07 1.62 64.20 0.81 42.80 1.86 

3K2 A 0.85 6.71 54.31 0 942 200 238 0 80 95.09 1.19 50.94 1.57 91.70 1.15 49.13 1.63 64.20 0.80 42.80 1.87 

4K1 A 0.85 10.01 54.78 0 942 200 198 0 85 95.88 1.13 51.36 1.65 99.70 1.17 53.41 1.59 73.80 0.87 49.20 1.73 

4K2 A 0.85 10.01 54.78 0 942 200 198 0 84 95.88 1.14 51.36 1.64 99.70 1.19 53.41 1.57 73.80 0.88 49.20 1.71 

 MacLeod and Houmsi (1994)                  

B2 A 0.81 4.76 37.90 0 736 150 175 157 45.5 41.22 0.91 22.08 2.06 41.90 0.97 22.45 2.03 37.50 0.87 25.00 1.82 

B4 A 0.9 6.36 33.50 0 736 150 175 157 45.5 43.42 0.95 23.26 1.96 50.50 0.99 27.05 1.68 40.90 0.81 27.27 1.67 

B5 A 0.81 7.56 35.50 0 736 150 145 157 45.5 39.86 0.88 21.35 2.13 73.70 0.92 39.48 1.15 42.30 0.89 28.20 1.61 

B5R A 0.81 7.56 33.00 0 736 150 145 157 45.5 38.92 0.86 20.85 2.18 42.30 0.84 22.66 2.01 41.30 0.82 27.53 1.65 

B6 A 0.81 10.37 33.20 0 736 150 150 157 45.5 48.20 1.06 25.82 1.76 45.40 0.79 24.32 1.87 47.30 0.83 31.53 1.44 

 Stefanou (1983)                    

B3- Ia A 0.6 13.39 15.72 0 226 100 100 100 27.5 21.63 0.79 11.59 2.37 14.77 0.93 7.91 3.48 17.71 0.64 11.81 2.33 

B3-Ib A 0.6 13.39 15.72 0 402 100 100 100 25 22.39 0.90 11.99 2.08 18.45 0.74 9.88 2.53 21.46 0.86 14.31 1.75 

B4- Ia A 0.6 8.13 15.72 0 226 100 150 100 26.5 21.61 0.82 11.58 2.29 16.22 0.61 8.69 3.05 15.47 0.58 10.31 2.57 

B4-Ib A 0.6 8.13 15.72 0 402 100 150 100 32.5 22.47 0.69 12.04 2.7 18.47 0.62 9.89 3.28 18.75 0.58 12.50 2.60 

B7- Ias A 0.6 13.39 15.72 56.55 226 100 100 100 29 30.46 1.05 16.32 1.78 20.59 0.92 11.03 2.63 25.56 0.88 17.04 1.70 

B7-Ibs A 0.6 13.39 15.72 56.55 402 100 100 100 29 31.22 1.08 16.73 1.73 24.27 0.90 13.00 2.23 29.31 1.01 19.54 1.48 

B8- Ias A 0.6 8.13 15.72 56.55 226 100 150 100 27.5 32.76 1.19 17.55 1.57 24.95 0.86 13.37 2.06 26.51 0.96 17.67 1.56 

B8-Ibs A 0.6 8.13 15.72 56.55 402 100 150 100 45.5 33.63 0.74 18.02 2.53 27.19 0.81 14.57 3.12 29.78 0.65 19.85 2.29 

 Debaiky and El-Niema (1982)                  

A2 B 0.9 9.46 20.00 47.5 942 120 110 0 58 44.45 0.77 23.81 2.44 72.48 1.25 38.83 1.49 47.73 0.82 31.82 1.82 

C2 B 0.9 9.46 28.20 47.5 942 120 110 0 72 46.80 0.65 25.07 2.87 77.85 1.08 41.71 1.73 52.13 0.72 34.75 2.07 

D3 B 0.9 9.46 29.60 47.5 942 120 110 0 69 58.40 0.85 31.29 2.21 98.72 1.43 52.89 1.30 64.24 0.93 42.83 1.61 

D4 B 0.9 9.46 27.50 100.5 942 120 110 0 58.5 59.15 1.01 31.69 1.85 99.78 1.71 53.45 1.09 64.56 1.10 43.04 1.36 

E4 B 0.9 9.46 34.00 56.6 603 120 110 0 42 47.17 1.12 25.27 1.66 83.97 2.00 44.98 0.93 55.25 1.32 36.83 1.14 

F3 B 0.9 9.46 21.50 56.55 603 120 110 0 44 39.42 0.90 21.12 2.08 68.46 1.56 36.68 1.20 45.47 1.03 30.31 1.45 

F4 B 0.9 9.46 21.00 56.55 763 120 110 0 45.5 42.78 0.94 22.92 1.99 72.15 1.59 38.65 1.18 47.82 1.05 31.88 1.43 

A3 B 0.9 4.76 17.80 47.5 942 120 185 0 78.5 47.17 0.60 25.27 3.11 58.38 0.74 31.28 2.51 43.62 0.56 29.08 2.70 

E5 B 0.9 4.76 35.50 56.6 603 120 185 0 57.5 59.22 1.03 31.73 1.81 74.50 1.30 39.91 1.44 54.68 0.95 36.45 1.58 

C3 B 0.9 4.76 27.80 47.5 942 120 185 0 52 51.55 0.99 27.62 1.88 64.38 1.24 34.49 1.51 48.15 0.93 32.10 1.62 
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Table A.1 Continued 

 Debaiky and El-Niema (1982)                  

B3 B 0.7 12.10 18.60 47.5 942 120 110 0 65.5 52.24 0.80 27.99 2.34 40.36 0.62 21.62 3.03 29.07 0.44 19.38 3.38 

B4 B 0.5 16.70 21.00 47.5 942 120 110 0 101.5 75.52 0.74 40.46 2.51 49.37 0.49 26.45 3.84 29.79 0.29 19.86 5.11 

 Stefanou (1983)                    

B1-Ia B 0.6 13.39 19.99 0 226 100 100 0 15.8 16.68 1.06 8.94 1.77 11.88 0.75 6.36 2.48 9.32 0.59 6.21 2.54 

B1-Ib B 0.6 13.39 19.99 0 402 100 100 0 25 21.22 0.85 11.37 2.2 15.56 0.62 8.34 3.00 11.29 0.45 7.53 3.32 

B2- Ia B 0.6 8.13 19.99 0 226 100 150 0 26.5 17.86 0.67 9.57 2.77 13.61 0.51 7.29 3.63 11.55 0.44 7.70 3.44 

B2-Ib B 0.6 8.13 19.99 0 402 100 150 0 30 21.09 0.70 11.3 2.66 15.86 0.53 8.50 3.53 13.99 0.47 9.33 3.22 

B5- Ias B 0.6 13.39 19.99 56.55 226 100 100 0 22.5 25.51 1.13 13.67 1.65 17.69 0.79 9.48 2.37 17.18 0.76 11.45 1.96 

B5-Ibs B 0.6 13.39 19.99 56.55 402 100 100 0 27 30.05 1.11 16.1 1.68 21.37 0.79 11.45 2.36 19.15 0.71 12.77 2.11 

B6- Ias B 0.6 8.13 19.99 56.55 226 100 150 0 29 29.02 1.00 15.55 1.87 22.34 0.77 11.97 2.42 22.58 0.78 15.05 1.93 

B6-Ibs B 0.6 8.13 19.99 56.55 402 100 150 0 33.75 32.24 0.96 17.27 1.95 24.59 0.73 13.17 2.56 25.02 0.74 16.68 2.02 

 Albegmprli (2017)                    

B1-0 B 0.65 4.97 54.00 0 603 150 210 0 54.1 53.43 0.99 28.62 1.89 42.91 0.79 22.99 2.35 31.54 0.58 21.03 2.57 

B2-1 B 0.65 9.85 54.00 0 402 150 160 0 45.5 47.93 1.05 25.68 1.77 35.96 0.79 19.26 2.36 26.97 0.59 17.98 2.53 

B2-0 B 0.65 9.85 55.10 0 603 150 160 0 58.5 53.37 0.91 28.59 2.05 40.11 0.69 21.49 2.72 31.07 0.53 20.71 2.82 

B3-0 B 0.65 14.62 59.00 0 603 150 110 0 54.5 53.35 0.98 28.58 1.91 37.40 0.69 20.04 2.72 25.89 0.47 17.26 3.16 

B3-1 B 0.65 14.62 52.00 0 402 150 110 0 55.5 44.50 0.80 23.84 2.33 30.45 0.55 16.31 3.40 21.69 0.39 14.46 3.84 

 El-Niema (1988)                    

T1 B 0.9 9.45 21.80 0 625 100 110 0 58 50.48 0.87 27.04 2.14 19.07 0.33 10.22 5.68 14.35 0.25 9.57 6.06 

T2 B 0.9 4.76 27.60 0 625 100 185 0 69.5 65.96 0.95 35.34 1.97 21.03 0.30 11.27 6.17 18.38 0.26 12.25 5.67 

T1-1 B 0.9 9.45 23.30 0 625 100 110 0 47.5 42.33 0.89 22.68 2.09 19.35 0.41 10.37 4.58 14.67 0.31 9.78 4.86 

T2-2 B 0.9 4.76 23.70 0 625 100 185 0 63 51.96 0.82 27.84 2.26 19.89 0.32 10.66 5.91 17.47 0.28 11.65 5.41 

 Debaiky and El-Niema (1982)                  

A4 C 0.9 -4.76 22.00 47.5 942 120 335 0 51.3 49.31 0.96 26.42 1.94 35.10 0.68 18.80 2.73 38.13 0.74 25.42 2.02 

C5 C 0.9 -4.76 31.40 47.5 942 120 335 0 57.5 54.85 0.95 29.38 1.96 39.01 0.68 20.90 2.75 40.37 0.70 26.91 2.14 

E2 C 0.9 -4.76 33.50 56.6 603 120 335 0 75 70.98 0.95 38.03 1.97 52.97 0.71 28.38 2.64 49.48 0.66 32.99 2.27 

A5 C 0.9 -9.46 22.50 47.5 942 120 410 0 57 48.02 0.84 25.73 2.22 22.48 0.39 12.04 4.73 34.78 0.61 23.19 2.46 

C4 C 0.9 -9.46 31.10 47.5 942 120 410 0 61 53.70 0.88 28.77 2.12 25.46 0.42 13.64 4.47 36.21 0.59 24.14 2.53 

D5 C 0.9 -9.46 28.90 47.5 942 120 410 0 65 79.73 1.23 42.71 1.52 44.78 0.69 23.99 2.71 58.10 0.89 38.73 1.68 

D6 C 0.9 -9.46 32.20 101 942 120 410 0 75 85.23 1.14 45.66 1.64 48.38 0.65 25.92 2.89 61.41 0.82 40.94 1.83 

E1 C 0.9 -9.46 34.80 56.6 603 120 410 0 95 75.67 0.80 40.54 2.34 43.20 0.45 23.14 4.10 47.34 0.50 31.56 3.01 

F1 C 0.9 -9.46 21.10 56.6 603 120 410 0 67 56.02 0.84 30.01 2.23 30.68 0.46 16.44 4.08 36.71 0.55 24.47 2.74 

F2 C 0.9 -9.46 20.80 56.6 763 120 410 0 70.5 53.80 0.76 28.82 2.45 28.10 0.40 15.05 4.68 37.52 0.53 25.01 2.82 

 El-Niema (1988)                    

T4 C 0.9 -4.76 24.30 0 625 100 335 0 88 80.98 0.92 43.38 2.03 29.10 0.36 15.59 5.64 68.26 0.85 45.51 1.93 

T5 C 0.9 -9.45 22.70 0 625 100 410 0 81.5 85.49 1.05 45.8 1.78 14.76 0.17 7.91 10.31 14.25 0.16 9.50 8.58 

T4-4 C 0.9 -4.76 25.40 0 625 100 335 0 74 62.38 0.84 33.42 2.21 5.55 0.07 2.97 24.89 9.74 0.12 6.49 11.40 

T5-5 C 0.9 -9.45 25.00 0 625 100 410 0 75 65.25 0.87 34.96 2.15 15.16 0.20 8.12 9.23 14.46 0.20 9.64 7.78 

 Tena et al. (2008)                    

TASC1-0 C 1.083 -3.07 32.10 0 2025 220 410 0 67.5 80.21 1.19 42.97 1.57 6.26 0.08 3.35 20.13 10.06 0.13 6.71 10.06 

TASC2-0 C 1.083 -6.12 29.50 0 2025 220 410 0 60 61.98 1.03 33.2 1.81 34.29 0.57 18.37 3.27 35.93 0.60 23.95 2.50 

TASC3-0 C 1.083 -9.13 23.60 0 2025 220 410 0 37.5 39.09 1.04 20.94 1.79 5.22 0.14 2.80 13.41 20.66 0.55 13.77 2.72 

TASC4-0 C 1.083 -12.10 28.10 0 2025 220 410 0 30 27.88 0.93 14.94 2.01 -14.58 -0.49 -7.81 -3.84 7.92 0.26 5.28 5.68 
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Table A.1 Continued 

 Tena et al. (2008)                    

TASC1-1 C 1.083 -3.07 26.90 100.5 2025 220 410 0 200 162.01 0.81 86.79 2.3 139.53 0.70 74.75 2.68 123.08 0.62 82.05 2.44 

TASC2-1 C 1.083 -6.12 29.20 100.5 2025 220 410 0 170 146.28 0.86 78.36 2.17 103.42 0.61 55.40 3.07 105.51 0.62 70.34 2.42 

TASC3-1 C 1.083 -9.13 28.80 100.5 2025 220 410 0 120 125.63 1.05 67.3 1.78 66.80 0.56 35.79 3.35 87.09 0.73 58.06 2.07 

TASC4-1 C 1.083 -12.10 21.10 100.5 2025 220 410 0 80 94.01 1.18 50.36 1.59 29.10 0.36 15.59 5.13 68.26 0.85 45.51 1.76 

 Albegmprli (2017)                    

C2-0 C 0.65 -9.85 44.00 0 603 150 310 0 38.9 37.46 0.96 20.07 1.94 23.03 0.59 12.34 3.15 13.78 0.35 9.19 4.23 

C3-0 C 0.65 -14.62 62.00 0 603 150 360 0 37.15 40.60 1.09 21.75 1.71 16.30 0.44 8.73 4.25 8.47 0.23 5.65 6.58 

C1-0 C 0.65 -4.97 58.50 0 603 150 260 0 39.3 44.09 1.12 23.62 1.66 39.60 1.01 21.21 1.85 22.30 0.57 14.87 2.64 

C2-1 C 0.65 -9.85 61.00 0 402 150 310 0 37.15 46.64 1.26 24.99 1.49 30.25 0.81 16.21 2.29 13.42 0.36 8.95 4.15 

C3-1 C 0.65 -14.62 51.00 0 402 150 360 0 33.6 39.12 1.16 20.96 1.6 17.44 0.52 9.34 3.60 6.94 0.21 4.63 7.26 

Average            0.96  2.00  0.81  3.35  0.66  2.88 

COV            0.14  0.16  0.4  1.11  0.26  0.68 
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