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Abstract. This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced
Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had
been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA.
The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of
failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for
further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to
improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first
comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the
proposed equation to their predecessors where the correlation coefficient, R? was found to be 0.89 for the proposed equation.
Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both
experimental and predicted results shows that the inclination angle and the compressive strength were the most influential
parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly
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higher as compared to available design equations and its reliability index is within acceptable limits.
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1. Introduction

The nonlinear finite element analysis is one of the most
efficient approaches as a potential numerical method to
predict and understand the mechanical behavior of the
reinforced concrete members as well as the failure type,
crack propagation and stress distribution which are difficult
to measure in the experiment. There are some experimental
studies related with RCHBs carried out several researchers
(Zanuy et al. 2015, Hans et al. 2013, Tena-Colunga et al.
2017a, b, Albegmprli 2017, Tena-Colunga et al. 2008).
However, studies about the numerical and finite element
modeling of RCHBs are very limited. A study provided by
Albegmprli et al. (2015) discussed the stochastic finite
element based reliability analysis of RCHBs. The authors
proved that the RCHBs have higher sensitivity and
probability of failure than the RC prismatic beams. Yuksel
and Yarar (2015) investigated the prediction of load and
moment capacity of symmetric parabolic haunched beams
due to temperature changes by artificial neural network and
adaptive neuro fuzzy inference systems.
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haunched beams designed to fail in shear was investigated
by Godinez-Dominguez et al. (2015). Design of reinforced
concrete haunched beams with respect to American
Concrete Institute (ACI) code was assessed by Rombach et
al. (2011).

This study investigates the finite element and numerical
modeling of the simply supported RCHBs. Finite element
models were prepared by taking RCHBs that had been
tested by Albegmprli (2017) into consideration. Special
nonlinear finite element based software named as, ATENA
2D was used to simulate the behavior of the tested RCHBs.
The aims of the study are to investigate the effectiveness of
the finite element model used for RCHB and to produce
new mechanical models and design formula to predict the
shear strength of RCHBs with higher accuracy.

The experimental work carried out by Albegmprli
(2017) includes twenty-four beams consisting of four
prismatic and twenty haunched beams. These beams are
classified into three groups depending on the inclination
type. Eighteen beams were without stirrups and so
collapsed in shear, while other beams were reinforced by
shear stirrups and failed in flexure. All of the beams are
simply supported have; total length 1700 mm and span
1500 mm, shear span ratio (a/d>2.5) and width 150 mm.
However, the values of the inclination angles were 0°, 4.96°,
9.86°and 14.62°. Properties of the materials and geometries
of each beam are stated in Table 1.

This paper is composed of three parts. The first part
indicates the nonlinear finite element modeling of the
experimentally tested RCHBs. Load capacity, load-
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Fig. 1 Exponential tension softening

deflection curve, and crack propagation results of finite
element analysis are compared with the corresponding
experimental results to discuss the effectiveness of the
model. In the second part, a new comprehensive design
formula is proposed to predict the shear capacity of all
types of RCHBs with higher accuracy. In the last part,
generalization capability of the proposed formula is
investigated by parametric studies and reliability analysis.

2. Theoretical concepts of finite element modeling
2.1 Models of materials

In this study, ATENA 2D software was used to model
and simulate the behavior of RCHBs. The plain concrete is
modeled using SBETA material model which is available in
the software (Cervenka et al. 2016). The model includes the
non-linear behavior of the concrete in compression.
Fracture of concrete in tension is based on the nonlinear
fracture mechanics and takes reduction of compressive
strength after cracking, biaxial strength failure criterion,
tension stiffening and reduction of the shear stiffness after
cracking into consideration.

The behavior of concrete in tension and compression is
defined by equivalent uniaxial law proposed by Chen and
Saleeb (2013). According to the law, the strain, e IS
produced by the uniaxial stress a; (tensile or compressive)
with modulus of elasticity E, which is associated with
direction i. The relation between the equivalent strain and
stress is expressed in Eg. (1). The complete equivalent
stress-strain relationship for the concrete was proposed by
Chen and Saleeb (2013). The behavior of concrete in
tension is divided into two intervals, before and after
cracking. The concrete without cracks is assumed to
behave as behave linear elastic material and the model is
expressed according to the second part of Eq. (1). In this

equation, ft'Ef represents the effective tensile strength of
the concrete that is obtained from biaxial failure criterion.

O .
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C

Since, the mechanical behavior changes after cracking,
the crack opening in tension is modeled by a fictitious crack
model based on a crack-opening law and fracture energy.
The model derived by Hordijk (1991) was used to model
the concrete after cracking. The model is expressed in Eq.
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Fig. 3 Fixed crack model

(2). In this equation, w and w, represents the crack width
and crack width after release of all stress, respectively. This
formula gives reasonable and better results for the
prediction of the crack propagation in concrete (Fig. 1).

c w w) w
e {1+ (c, W—f}exp(— C, W—J—W—(lJf c;)

t c c C

G )
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CEB-FIP Model Code 90 is used for modeling the
concrete in descending part of the compressive stress- strain
relationship, as shown in Fig. 2. The recommended formula
in the current model is expressed in Eq. (3). In the equation,
X is normalized strain; k is shape parameter and generally
can be taken as 1 or higher. The model is appropriate for
normal as well as high strength concrete.

2
Gcef =fc'eka;x,x:£,k:—° (3)
1+ (k —2)x &,

Furthermore, the crack propagation is determined
according to the rule that the principle axis is assumed to be
fixed in the principle direction at moment of crack
initiation, which is the condition of fixed crack model and
shown in Fig. 3. The shear strength of the concrete is
considered according to the smeared crack model. The
shear modulus reduces as normal strain to the crack grows.
The shear stiffness reduction due to the crack opening is
shown in Fig. 4. The smeared crack approach for modeling
of the cracks is adopted in the model SBETA.

The stress-strain relation of the one-dimensional
reinforcement is modeled using bilinear law, in other words,
elastic-perfectly plastic behavior. The above described
stress-strain laws can be used for the discrete as well as the
smeared reinforcement.

C



Finite element and design code assessment of reinforced concrete haunched beams 425

22 reinforcing
12 ratio
0%

&

Deflection
monitoring point

T
Reaction force ! e !
monitoring point Support plate

Fig. 5 Finite element modeling in ATENA

3. FE Modeling of beams

All of the experimentally tested beams are symmetric.
Therefore, only half of beams were modeled to reduce the
total number of the elements for time and memory space
saving. Furthermore, the element size was unified along the
beam. The support and load bearing plate were modeled by
isotropic steel plates which account for steel roller in the
experiment. The constraint boundary conditions are
necessary to provide the stability and equilibrium in the
model. Therefore, the displacement of the symmetry line
was prevented to move horizontally and the supporting
plate was prevented to move vertically as shown in Fig. 5.
The material properties and the geometries of each beam
were taken the same as in the experiments for the modeling
process.

The assigned loading criteria were very similar to the
experimental loading procedure in which prescribed
displacement increments are applied in the position of the
loading point. The prescribed displacement increment was
0.2 mm at each step. The results of analyses were recorded
at specified monitoring points which correspond to the
place of measurements in the laboratory experiments. As
solution procedure, the analyses were carried out according
to Newton-Raphson method.

4. Finite element analysis results

The nonlinear finite element analysis results include;
failure load, displacement at failure load, load-deflection
curve, and crack patterns. The results for monitoring points
were recorded and displayed after each step of analysis by
the post-processor of the software. This part presents the
comparison between the analyses and the experimental
results.
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4.1 Load capacity and displacement

The results of finite element analyses and the
experimental study are presented in Table 1. The
comparison includes the load capacity and the
displacement. The displacement was compared according to
formation of first diagonal shear crack for specimens
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without stirrups and it was compared according to yielding
point on load-deflection curves for specimens with stirrups.
The calculated values by the NFEA exhibit a good experimental load capacity to the capacity resulted from the
agreement with the experimental results. The ratio of the analysis varies between 0.97-1.06, with average 1.01, and
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Table 1 Finite element modeling results of experimentally tested beams

Code a° hsa hmb A52 AS”z P V.cs fo FeXp Fpred 7':% WeXp med 4W8xp
mm mm  mm mm 10 MPa kN kN Fored mm mm Wipreg
A0-0 0 300 300 603 100 - 445 53.5 55.3 0.97 1.8 1.9 0.95
A0-2 0 300 300 603 100 6.7 58 1075 1055  1.02 4.3 4.7 0.92
Al-0 4.97 300 250 603 100 - 60 56.75 58.15 098 2.22 2.23 0.99
A2-0 9.87 300 200 603 100 - 49 56.6 57.95 0.98 25 2.18 1.14
A2-1 9.87 300 200 603 308 - 515 5765 59.7 0.97 2433 2.6 0.94
A2-2 9.87 300 200 603 100 6.7 59 1075 1059  1.02 4.53 4.39 1.03
A3-0 14.62 300 150 603 100 - 425 60.5 59.05 1.02 2.54 2.52 1.01
A3-1 14.62 300 150 603 308 - 60 56.5 59.5 0.95 3.22 3.6 0.89
A3-2 14.62 300 150 603 100 6.7 59.9 1125 108 1.04 4.82 4.72 1.02
B0-0 0 300 300 603 100 - 55 5515 547 1.01 1.96 1.84 1.07
B1-0 4.97 300 250 603 100 - 535 54.1 54.9 0.99 1.9 1.39 1.37
B2-0 9.87 300 200 603 100 - 55.1 58.5 55.3 1.06 2.24 2.16 1.04
B2-1 9.87 300 200 402 100 - 53.9 45.5 46 0.99 2.57 2.733 0.94
B3-0 14.62 300 150 603 100 - 59.5 66 6175  1.07 4.64 3.43 1.35
B3-1 14.62 300 150 402 100 - 515 61.5 59 1.04 4.57 4.23 1.08
B3-2 14.62 300 150 603 100 6.7 59 104 105 0.99 5.97 5.08 1.17

C0-0 0 250 250 603 100 -

C1-0 -4.97 300 250 603 100 -
C2-0 -9.87 350 250 603 100 -
C2-1 -9.87 350 250 402 100 -
C2-2 -9.87 350 250 603 100 6.7
C3-0 -14.62 400 250 603 100 -
C3-1 -14.62 400 250 402 100 -
C3-2 -14.62 400 250 603 100 6.7
Average
cov

60.7 47.2 46.8 1.01 2.62 2.54 1.03
58.5 54 51 1.06 5.55 5.56 0.99
44 50.5 52 0.97 5.74 6.06 0.95
61 45.9 45.7 1.00 6.53 6.66 0.98

65 87.5 825 1.06 5.4 54 1
62 52 53.5 0.97 5.33 6.3 0.85
50.1 4775 47.05 1.01 5 4.66 1.07
59 82.5 78.5 1.05 55 6.5 0.85
1.01 1.026
0.03 0.12

2hsis the depth of the support; ” hy, is the depth of the mid-span; © Stirrups by 8 mm diameter at each 100 mm

the same ratio for the deflection at mid-span is found to be
between 0.85-1.17, with average 1.026.

4.2 Load-deflection curves

Load-deflection curves of some of the beams resulted
from the numerical results versus ones of the experimental
study are shown in Figs. 6-22. In general, a noticeable good
fit is observed between the curves of experimental and
numerical studies. Moreover, better fit is observed between
experimental and numerical load-deflection curves of the
beams without stirrups till the first diagonal shear crack
appears. According to the corresponding figures, the beams
of mode A and B fail suddenly due to the diagonal shear
crack, the beams C1-0, C2-0, C2-1 & C3-1 have an early
diagonal shear crack and continue to carry higher loads as
observed from the experimental results. The numerical
curve after the first diagonal shear crack could not achieve
compatibility with the experimental curve in some
specimens, since results were extracted from only half of
the beams in the numerical analysis. However, the failure of
experimentally tested beams was unsymmetrical in both
halves of the beams. All of the beams which were

reinforced by stirrups failed in flexure. Almost exact match
is observed between the numerical and experimental curves.
A reasonable good correlation also exists between
numerical and experimental curves for the post-peak region.

4.3 Crack patterns

The crack pattern reflects the mechanical behavior and
failure type of concrete members, especially the cracks
which cause the failure are significant to research. In this
study, the formation, propagation and orientation of the
cracks were determined according to the stress and strain
values in the integration points of the elements after each
step of the analysis. The numerically predicted diagonal
shear cracks versus the experimentally observed ones for
the RCHBs without shear reinforcement are illustrated in
Fig. 22. In the figure, major crack patterns after failure are
compared.

The diagonal shear cracks formed suddenly without any
indication before the failure in the experimental test and
these cracks were usually to be extensive. As a result of the
numerical analysis, the shear cracks occurred at the
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integration points of each adjacent element formed a bundle
of cracks along the failure path. The resulted crack patterns

show a reasonable agreement between the numerical and
the experimental studies about the orientation and the
position of the shear cracks as shown in Fig. 22.

5. Shear capacity models for RCHBs
5.1 Existing formulations

Although RCHBs are widely used in reinforced concrete
structures, most design codes do not offer any instructions
for design of the beams except the ACI code and the
German DIN code. The sections 22.5.1.9 and R22.5.1.9 of
ACI 318-14 (2014) point out the variable depth members.
These sections confirm to consider the effect of inclined
flexural compression in calculating the shear strength of
concrete where the internal shear at any section is increased
or decreased by the vertical component of inclined flexural
stresses. The section 27.4.5.3 of ACI 318-14 (2014)
discusses the inclined shear crack in the variable depth
beams and recommends measuring the depth at the mid-
length of the crack. According to the explanations stated
above it can be extracted that the code did not provide any
formula to calculate the critical depth or to consider the
effect of the inclination on the shear strength of variable
depth beams.

Debaiky and Elniema (1982) proposed Eq. (4) for the
design of RCHBs. The formula is a modification of the
ACI-318 code beam equation that is adapted to RCHBs.
The modification contributes influence of the depth
variation along the beam by the term 1+1.7 tana, and
influence of the inclined flexural reinforcement.

Vv
o (0.16\/f_c+17ps\Ic’ld)(1+l.7tana)

S

+p,f, +0.25p, f, sina

u

The German code DIN 1045-01 (2001) is the only
design code that clearly addressed the shear resistance
mechanism of RCHBs in detail. On the other hand, the code
introduced Eq. (5)-(5b) to design the shear resistance of
RCHB:s.

VEd :VEdo -V, cd _th SVEOE (5)

[

V& =0.1k(100p, f, )****bd;
(52)
k=1+ ‘/%s 2: p <0.02

M
V.. =—FF tana (5h)

Where, Vg4 is concrete shear resistance, Vggo IS Shear
force, V4 is shear resistance due to the inclination of the
compression chord, Vi is shear resistance component of
inclined longitudinal tension reinforcements and Vgp® is the
design value of the shear bearing capacity of haunched
beams at design section. Eqs. (4) and (5) are the most
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Fig. 22 Comparison of crack patterns between the experimental study and finite element analysis

famous ones in this topic. However, these equations did not
consider all cases of RCHBs. Other researchers had their
attempts to introduce formulas to predict the shear strength
of RCHBs (MacLeod and Houmsi 1994, Tena-Colunga et
al. 2008). However, these works treated only special cases
of the RCHBs and were built on limited data.

In this work, three mechanical models (A, B and C) are
proposed depending on the inclination type and mechanism
of failure as shown in Figs. 23-25. The proposed models
differ from each other according to the contribution of the
internal stresses; concrete shear resistance (V¢), transverse
shear reinforcement (V,), inclined longitudinal

5.2 Proposed mechanical models for RCHBs reinforcement (V) and compression chord (Vy). The
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inclination angle is positive in modes A and B and negative
in mode C.

5.3 Proposed shear capacity formula for RCHBs

In this study, a new formula was proposed involving all
types of RCHBs for the first time in the literature. The new
equation consists of four discrete components as stated in
Eqg. (6). These components represent the contribution of the
internal stresses to the proposed mechanical models as are
shown Figs. 23-25.

V =V, +V, +V +V, (6)

Where; V is the ultimate nominal shear strength, V¢ is
the contribution of the concrete, V, is the contribution of the
shear reinforcement, Vy is the contribution of the
compression chord, Vg is the contribution of the inclined
flexural reinforcement.

5.3.1 Contribution of the concrete

The contribution of concrete (V¢) in shear is given by
the ACI318-14 (2014, Eq. (22.5.5.1a)). This equation
predicts the shear strength of the reinforced concrete
prismatic beams without shear reinforcement. The equation
was modified to Eq. (6a) to involve also RCBHs in which
the effective depth was replaced by critical depth (d;). The
parameters p, V, and M, represent the longitudinal
reinforcement ratio, shear force and moment at the critical
section, respectively.

Ve =(0.16/f, +17p, Vud,

M

)bd, (6a)

u

where, the value of V,d./M, cannot exceed 1.0.

5.3.2 Contribution of the shear reinforcement

The experimental results did not show a significant
effect of shear reinforcement on the capacity of RCHBs.
Therefore, the corresponding equation of ACI 318-14
(2014, Eq. (22.5.10.5.3)) was used to calculate the
contribution of shear reinforcement to the capacity (V,),
except the effective depth is replaced by the critical
effective depth as introduced in Eq. (6b).

Vi, =py fybdc (6b)

5.3.3 Contribution of the compression chord

The contribution of the compression chord (Vy) is given
in Eq. (6¢). This term consists of the vertical components of
the normal stress of the concrete and reinforcement bars in
the compression chord in the beams of mode A.

f 30 E
Vy =—=| 2bd, — o ==-1]]|-tan 6

The parameters b and d. are the width and critical depth;
respectively, Ay is area of the compression reinforcement,
(Es, Ec) are the modulus of elasticity of concrete and
reinforcement; respectively and « is the inclination angle.

5.3.4 Contribution of flexural reinforcement

The contribution of the inclined flexural reinforcement
(Vg) is introduced in Eqg. (6d). However, the consideration
of the inclined flexural reinforcement (A;) is limited to the
modes B and C. This equation was derived by regression
analysis.

Ve =02Af, sina (6d)

5.3.5 Critical effective depth

The substantial challenge for the design of RCHBs is
the determination of the critical effective depth due to
variation of depth along the RCHBs. Therefore, a new and
practical formulation (Eq. (7)) was proposed to predict the
effective depth at critical section by the consideration of the
effective depth of the RCHBs on support. The range of the
inclination angle lies between -14.62° and +14.62°.
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Where d, is the effective depth at the critical section and
ds is the effective depth of the beam on the support.

6. Verification of shear capacity models
6.1 Statistical correlations

The performance of the proposed formula was
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Fig. 29 Comparison of correlation factors between formulas

compared with the other two equations (Egs. (4) and (5)).
The comparisons are shown in Appendix part of the article
(Table A.1) and Figs. 26-28. These formulas are the most
comprehensive equations for the design of the RCHBs.
Table A.1 shows the comparison of the experimental results
that obtained from the literature and the predicted nominal
shear capacity values of the corresponding beams resulted
from the three equations. Furthermore, Figs. 26-28 illustrate
the correlation between the experimental results and
predicted values. The correlations of the results are
represented by the correlation coefficient (R®) and
coefficient of variation (CoV). The correlation factors for
the proposed formula, Eq. (6) are Vpregicted/Viest = 0.96,
CoV=0.14 and R® = 0.89; for Eq. (4) are Vredicted/Viest =
0.81, CoV=0.4 and R?® = 0.31; and for Eq. (5) are
Vpredictea/Viest = 0.62, CoV=0.26 and R? = 0.57. The statistical
parameters stated above and comparison of them, as shown
in Fig. 29, prove the efficiency and superiority of the
proposed design model for all cases of RCHBs.

6.2 Parametric study of the proposed formula

The parametric study was carried out to verify the
generalization of the proposed model and to study the
influence of each parameter on the predicted value.
Parametric study was implemented by the help of Monte
Carlo simulation. In addition to values of the parameters of
the experimental study, extra database was produced via
Monte Carlo simulation according to range and coefficient
of variation of each parameter (Table 2). Main effect plots
were extracted as a result of the parametric study as shown
in Figs. 30-32. The three categories of beams (A, B and C)
were examined separately by the parametric analysis. The
minimum and maximum values of each parameter were
utilized as identified by the experimental database. The
considered parameters are; compressive strength (f), yield
strength of the reinforcement (f), longitudinal flexural
reinforcement ratio (ps), transverse shear steel ratio (p,) and
inclination angle («).

As a result of the study, it was extracted that the
proposed model has high generalization capability for the
range of the variables. It can be observed from Figs. 30-32
that all parameters have a significant influence on the shear
capacity of the RCHBs. Although the compressive strength



432 Mehmet Eren Gulsan, Hasan M. Albegmprli and Abdulkadir Cevik
fc fy pv ps o
90
85
Z 80 /
> 757 / o _e
70 / / —
65
60
55 +— T T T T T T T T T T T T T T
20 40 60 325 400 475 0.075 0.125 0.175 225 350 4.75 0.05 0.10 0.16
Fig. 30 Parametric study results for Mod A
701 fc fy pv ps 1]
65 A
< 601 /
S 551 / / "
50 / — — —
45 A
40 +— T r

20 40 60 325 400

Fig. 31 Parametric study results for Mod B

(f) shows a significant influence on the shear capacity,
effect of yield strength of steel bars (f,) is negligibly small
for all RCHB types. The shear reinforcement ratio (p,) has
also a remarkable effect on the shear strength; especially in
Mode C. The flexural reinforcement ratio (ps) has a
positivity effect in Modes A&B and negative effect in
beams of Mode C as observed in Figs. 30-32. However,
influence of the inclination angle () is the highest among
all considered parameters.

7. Reliability analysis
7.1 Concepts

The material properties and geometric aspects of
structural members usually have uncertain values.
Therefore, it is difficult to model the real behavior of
reinforced concrete members using deterministic analysis.
Probabilistic models are required to quantify the
uncertainties of the parameters to develop realistic
representations of the output and failure state of these
systems to obtain a rational and safe design (Vorechovsky
2004). The uncertainty of the parameters is modeled as
random variables which described by the probability
distribution functions (PDF). Table 2 summarizes the
statistical parameters of material properties, member
geometries and load factors. The coefficient of variation
values of statistical parameters are taken from previous
studies (Choi et al. 2004, Strauss et al. 2006, Szerszen and
Novak 2003).

Structural reliability can be defined as the capability of a
structure or a structural member to achieve the specified
requirements for which it has been designed (EN 1990,
2002). The requirement for a structural element can be

Table 2 Uncertainty factors

475 0.075 0.125 0.175 225 350 4.75 0.05 0.10 0.16

Variable Statistical distribution Mean cov
Width, depth and inclination Normal Nominal 0.03
Reinforcement effective depth Normal Nominal 0.03
Reinforcement area Normal Nominal 0.05
Concrete compressive strength Normal Nominal 0.1
Concrete modulus of elasticity Normal Depends on strength 0.07
Yield strength Normal Nominal 0.1
Steel Modulus Beta Nominal 0.1
Dead load Normal Nominal 0.08
Live load Normal Nominal 0.18

achieved when the external applied loads (Q) do not exceed
the resistance of the element (R). The corresponding limit
state function, g for structural reliability can be expressed in
Eq. (8) as follows

g=R-Q.
(®)
R=gR (X;, Xy X, ) &Q =D+ 4, L

Where X; represents the random parameters, D is dead
load, L is live load, ¢ is reduction factor and 4 is bias factor.
The reliability of the structure is assessed by the failure
probability of limit state function which is given explicitly
in Eqg. (9).

Py =P(g <0) ©)

7.2 Reliability index

The reliability index is the shortest distance from the
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origin of the reduced variables to the failure surface as
introduced by Hasofer and Lind (1974). The reliability
index p is strongly related to the probability of failure, Pf,
as stated in Eq. (10)

B=—¢"(P;) (10)

Where ¢ is the inverse of the probabilistic distribution
function, Ps is the failure probability and f is the reliability
index. The expression of the reliability index is expressed in
Eq. (11)

B= Hr — Ho
T[22 2 (11)
A OR +04

The reliability analysis was achieved according to the
load and resistance factor design (LRFD) approach which is
specified by ASCE-7 and ACI 318-14 (Eq. (12)). ¢
represents the strength reduction factor, D and L are dead
and live loads, respectively.

12-D+16-L<¢gR

14-D < gR (12)

Due to the critical effective depth concept, reinforced
concrete haunched beams have more risk as compared to
prismatic beams regarding shear forces.

Table 3 shows the reliability indices of the predicted
shear strengths from the proposed and existing formulas
using the limit state load case in Eq. (12) for three values of
strength reduction factors (0.8, 0.75 and 0.7). Calculation
procedure of reliability index is same for all considered
equations (Egs. (4), (5) and (6)). The values in Table 3
show reliability indices of each formulation for load ratio
(D/D+L) of 0.5. According to the results, reliability indices
for the proposed formula are higher than the others. In other
words, the proposed formula gives more reliable and safer
results for the capacity of RCHBs. Acceptable reliability
index values are obtained for the strength reduction value of
0.75. Indeed, this value is also recommended by ACI code
for the structural elements which are critical regarding
shear. Therefore, the reduction factor of 0.75 is
recommended for the application of the proposed formula.

Fig. 33 presents change of the reliability indices of the
three formulas according to different load ratios (D/D+L)
for strength reduction factor of 0.75.

8. Nominal design capacity

The new formulation is proposed to extend the application

4
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b 2.5 -
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Fig. 33 Reliability index for different ratio of loading
(D/ID+L)

Table 3 Resulting reliability indices,

Strength Eq. (6) (Proposed

Reduction Eq. (4) Eq. (5) )
factor (¢) Formulation)
0.8 1.04 2.32 32
0.75 1.1 2.45 3.45
0.7 1.17 2.59 3.74

of shear design formula which is adopted by ACI318 to
involve all types of RCHBs. The proposed formulation adopts
the factors based on the Eq. (12) for load combinations and the
strength reduction factor, @ =0.75. Therefore, nominal design
capacities (V) are calculated according to Eq. (12). The load
ratio of, D/(D+L), 0.5 was considered for the calculation. The
nominal design capacities of RCHBs which are resulted from
Egs. (4), (5) and (6) are given in Table A.1. For instance, the
nominal design capacity of the beam named as, A1-0 was
calculated according to Eq. (6) as follows;

The resulting capacity of the beam resulted from the
proposed formulation is 59.62 kN. This value is placed in Eq.
(12) (R). Since, 0.5 value is considered as D/(D+L) ratio,
Nominal design capacity of the beam;

0.75%59.62
(1.2*0.5+1.6*0.5)

— 31.94kN (13)

The safety factor was also determined using the following
equation
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(14)

Where, Ve, is the experimental shear capacity and V,, is the
design capacity. The average values of the safety factor are
equal to 2 with COV=0.16 for the proposed formula, 3.35 with
COvV=1.11 for Eg. (4), and 2.88 with COV=0.68 for Eq. (5).
Therefore, it can be concluded that when resulting reliability
index, safety factors and COV wvalues are taken into
consideration, the proposed formula gives more reliabile and
economic results for the design of all types of haunched beams
as compared to other formulations.

9. Conclusions

In this study, the experimentally tested RCHBs were
modeled by ATENA 2D program to simulate the
mechanical behavior of the RCHBs. Also, a new
formulation was proposed for the prediction of the shear
strength capacity of RCHBs. The noticeable conclusions are
summarized as follows:

» The predicted values of the NFEM exhibited a good
agreement with the experimental results. The ratio of
predicted capacities of RCHB to the corresponding
experimental results was found to be in the range of 0.97 —
1.06, with average 1.01. Moreover, the ratio of the predicted
result to the experimental result for mid-span deflection at
failure load was found to be between 0.85-1.17, with
average 1.026.

» A reasonable similarity was observed about the
orientation and position of the diagonal shear cracks
between the NFEA and the experimental study.

» A comprehensive formulation was proposed for the
prediction of failure load and design of all cases of RCHBs
and new parameters were taken into account in the equation
for the first time in literature.

» The proposed formula exhibited better agreement with
the experimental results as compared to the existing design
equations for RCHBS.

» The parametric analysis indicated that the proposed
model had the capability of determination of the capacity of
RCHBs for wide ranges of variables. Moreover, the
inclination angle («) and the compressive strength (f.) were
the most influential parameters on the shear strength of
RCHBs.

* As a result of reliability analysis, the safety margin of
the proposed model is found to be higher and more reliable
as compared to existing design formulas for uncertain
material and geometric properties of RCHBs.

* The safety factor of the proposed model for the design
of RCHBs is found to be 2.

References

ACI 318 (2014), Building Code Requirements for Structural
Concrete and Commentary, American Concrete Institute;
Farmington Hills, Michigan, U.S.A.

ASCE 7-98 (1998), Minimum Design Load for Buildings and

Albegmprli and Abdulkadir Cevik

Other Structures, Washington, U.S.A.

Albegmprli, H.M., Cevik, A., Gulsan, M.E. and Kurtoglu, A.E.
(2015), “Reliability analysis of reinforced concrete haunched
beams shear capacity based on stochastic nonlinear FE
analysis”, Comput. Concrete, 15(2), 259-277.

Albegmprli, H.M. (2017), “Experimental investigation and
stochastic FE modeing of reinforced concrete haunched beams”,
Ph.D. Dissertation, Gaziantep University, Gaziantep, Turkey.

Cervenka, V., Jendele, L. and Cervenka, J. (2016), ATENA
Program Documentation: Theory, Cervenka Consulting,
Prague, Czech Republic.

Cervenka, V. (1985), “Constitutive equations
concrete”, ACI J. Proc., 82(6), 877-882.

Chen, W.F. and Saleeb, A.F. (2013), Constitutive Equations for
Engineering Materials, Elsevier, Amsterdam, the Netherlands.
Choi, B.S., Scanlon, A. and Johnson, P.A. (2004), “Monte Carlo
simulation of immediate and time-dependent deflections of
reinforced concrete beams and slabs”, ACI Struct. J., 101(5),

633-641.

Debaiky, S.Y. and El-Niema, E.I. (1982), “Behavior and strength
of reinforced concrete haunched beams in shear”, ACI Struct. J.,
79(3), 184-194.

DIN 1045-01 (2001), Tragwerke aus Beton, Stahlbeton und
Spannbeton, Teil 1Bemessungund Konstruktion, Beuth Verlag
GmbH, Berlin, Germany.

El-Niema, E.I. (1988), “Investigation of concrete haunched t-
beams under shear”, ASCE-J. Struct. Eng., 114(4), 917-930.

EN 1990 (2002), Basis of Structural Design, European Committee
for Standardization, European Union.

Godinez-Dominguez, E.A., Tena-Colunga, A. and Juarez-Luna, A.
(2015), “Nonlinear finite element modeling of reinforced
concrete haunched beams desihned to develop a shear failure”,
Eng. Struct., 105, 99-122.

Hans, LA.A., Arturo, T.C. and Alejandro, G.V. (2013), “Behavior
of reinforced concrete haunched beams subjected to cyclic shear
loading”, Eng. Struct., 49, 27-42.

Hasofer, A.M. and Lind, N.C. (1974), “An exact and invariant
second-moment code format”, J. Eng. Mech. Div., 100(1), 111-
121.

Hordjik, D.A. (1991), “Local approach to fatigue of concrete”,
Ph.D. Dissertation, Delft University of Technology, the
Netherlands.

MacLeod, 1.A. and Houmsi, A. (1994), “Shear strength of
haunched beams without shear reinforcement”, ACI Struct. J.,
91(1), 79-89.

Nghiep, V.H. (2010), “Shear design of straight and haunched
concrete beams without stirrups”, Ph.D. Dissertation,
Technischen Universitat Hamburg, Hamburg, Germany.

Rombach, G.A., Kohl, M. and Nghiep, V.H. (2011), “Shear design
of concrete members without shear reinforcement-a solved
problem?”, Proc. Eng., 14, 134-140.

Stefanou, G.D. (1983), “Shear resistance of reinforced concrete
beams with non-prismatic section”, Eng. Fract. Mech., 18(4),
643-666.

Strauss, A., Mordini, A. and Bergmeister, K. (2006), “Nonlinear
finite element analysis of reinforced concrete corbels at both
deterministic and probabilistic levels”, Comput. Concrete, 3(2),
123-144.

Szerszen, M.M. and Novak, A.S. (2003), “Calibration of design
code of buildings (ACI 318): Part 2-Reliability analysis and
resistance factors”, ACI Struct. J., 100(3), 383-391.

Tena-Colunga, A., Urbina-Californias, L.A. and Archundia-
Aranda, H.I. (2017a), “Assessment of the shear strength of
continous reinforced concrete haunched beams based upon
cyclic testing”, J. Build. Eng., 11, 187-204.

Tena-Colunga, A., Urbina-Californias, L.A. and Archundia-
Aranda, H.I. (2017b), “Cyclic behavior of continuous reinforced

for cracked



Finite element and design code assessment of reinforced concrete haunched beams 435

concrete haunched beams with transverse reinforcement

designed to fail in shear”, Constr. Build. Mater., 151, 546-562. We
Tena-Colunga, A., Hans, L.A. and Oscar, M.G. (2008), “Behavior
of reinforced concrete haunched beam subjected to to static a
shear loading”, Eng. Struct., 30(2), 478-492.
Vorechovsky, M. (2004), “Stochactic fracture mechanics and size e

effect”, Ph.D. Dissertation, Brno University of Technology,

Czech Republic.

Yuksel, S.B. and Yarar, A. (2015), “Neuro-fuzzy and artificial €
neural networks modeling of uniform temperature effects of eq
symmetric parabolic haunched beams”, Struct. Eng. Mech., €

56(5), 787-796.
Zanuy, C., Gallego, J.M. and Albajar, L. (2015), “Fatigue behavior Pec
of reinforced concrete haunched beams without stirrups”, ACI

Struct. J., 112(3), 371-381.

cC

Abbreviations

Ps
Py
Oci
ef
Shear span o
Beam width ¢

Effective depth at the critical section

The effective depth at the support

Dead Load

Live Load

Secant modulus of elasticity

Initial elastic modulus

Elasticity modulus of reinforcement
Compressive strength of concrete

Concrete effective compressive strength

The effective tensile strength

Reinforcement yield strength

The fracture energy

Moment force at the critical section

Nominal ultimate shear capacity for considered egs.
Shear force at the critical section

The nominal design capacity for haunched beams

The crack opening

The crack opening at the complete release of stress
Inclination angle

Strain

Strain at the peak stress

The equivalent uniaxial strain
Reinforcement ratio at the critical section
Flexural reinforcement ratio

Shear reinforcement ratio

The uniaxial stress

The effective tensile stress

Concrete compressive stress

Resistance reduction factor
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Appendix

Table A.1 Experimental database of RCHBs and comparison of models

Beam Mode a a e A As b d AS Vap - © @ O
MPa mm*> mm’ mm mm mm kN Vo g Vw  Safety V, Bias  Vw Safety Vi, Bias  Vw Safety
kN kN factor kN kN factor kN kN factor

Albegmprli (2017)

Al-0 A 0.65 497  60.00 0 603 150 210 100 56.75 59.62 1.05 31.94 177 80.11 141 4292 132 4079 072 2719 2.09
A2-0 A 0.65 9.87  49.00 0 603 150 160 100 56.6 5594 0.99 29.97 189 8610 152 46.13 123 4552 080 30.35 1.87
A2-1 A 0.65 9.87  51.50 0 603 150 160 308 57.65 57.31 0.99 30.70 188 11097 192 5945 0.97 4628 0.80 30.85 1.87
A3-0 A 0.65 14.62  52.00 0 603 150 110 100 60.5 55.05 091 29.49 205 95.98 159 5142 118 53.17 0.88 35.45 1.71
A3-1 A 0.65 14.62  46.00 0 603 150 110 308 56.5 53.72 095 2878 196 11085 196 59.38 0.95 51.04 0.90 34.03 1.66
Nghiep (2010)
2L1 A 15 3.95 4945 0 942 200 223 O 75 7080 094 3793 198 79.00 105 4232 177 6210 0.83 4140 181
2L2 A 15 3.95 49.99 0 942 200 223 O 745 7112 095 381 196 79.40 1.07 4254 175 62.30 0.84 4153 1.79
3L1 A 15 5.91 50.21 0 942 200 178 O 66.5 64.29 097 3444 193 93.80 126 5025 1.32 72.10 1.08 48.07 1.38
3L2 A 15 591 50.98 0 942 200 178 O 69.5 64.66 093 34.64 201 84.40 121 4521 154 72.50 1.04 48.33 1.44
2K1 A 0.85 3.95 54.18 0 942 200 267 O 83.5 90.47 1.08 4847 172 85.30 1.02 4570 1.83 57.10 0.68 38.07 2.19
2K2 A 0.85 3.95 54.22 0 942 200 267 O 85 90.50 1.06 48.48 175 85.30 1.00 4570 1.86 57.10 0.67 38.07 2.23
3K1 A 0.85 6.71 54.26 0 942 200 238 O 79.5 95.06 1.20 50.93 1.56 91.60 115 49.07 162 64.20 0.81 42.80 1.86
3K2 A 0.85 6.71 54.31 0 942 200 238 O 80 95.09 1.19 50.94 157 91.70 115 4913 1.63 64.20 0.80 42.80 1.87
4K1 A 0.85 10.01 54.78 0 942 200 198 O 85 9588 1.13 5136 1.65 99.70 117 5341 159 73.80 0.87 49.20 1.73
4K2 A 0.85 10.01 54.78 0 942 200 198 O 84 95.88 1.14 5136 164 99.70 119 5341 157 73.80 0.88 49.20 1.71
MacLeod and Houmsi (1994)
B2 A 0.81 4.76 37.90 0 736 150 175 157 455 41.22 091 22.08 206 41.90 0.97 2245 203 37.50 0.87 25.00 1.82
B4 A 0.9 6.36 33.50 0 736 150 175 157 455 4342 0.95 2326 1.96 50.50 0.99 27.05 1.68 40.90 0.81 27.27 1.67
B5 A 0.81 756  35.50 0 736 150 145 157 455 3986 0.88 2135 213 7370 092 3948 115 4230 089 2820 1.61
B5R A 0.81 7.56  33.00 0 736 150 145 157 455 3892 0.86 2085 218 4230 0.84 2266 201 4130 082 2753 1.65
B6 A 0.81 10.37  33.20 0 736 150 150 157 455 4820 1.06 2582 1.76 45.40 079 2432 187 47.30 0.83 3153 1.44
Stefanou (1983)
B3- la A 0.6 1339 15.72 0 226 100 100 100 275 2163 0.79 1159 237 14.77 093 7.91 3.48 17.71 064 11.81 2.33
B3-1b A 0.6 1339 15.72 0 402 100 100 100 25 2239 0.90 1199 2.08 18.45 0.74 9.88 253 21.46 0.86 1431 1.75
B4- la A 0.6 8.13 15.72 0 226 100 150 100 26.5 2161 0.82 1158 2.29 16.22 0.61  8.69 3.05 15.47 058 1031 2.57
B4-1b A 0.6 8.13 15.72 0 402 100 150 100 325 2247 0.69 1204 27 18.47 062 9.89 3.28 18.75 058 12.50 2.60
B7- las A 0.6 13.39 1572 56.55 226 100 100 100 29 3046 1.05 1632 178 2059 092 11.03 263 2556  0.88 17.04 1.70
B7-1bs A 0.6 13.39 1572 56.55 402 100 100 100 29 3122 108 1673 173 2427 090 13.00 223 29.31 101 1954 1.48
B8- las A 0.6 813 1572 56,55 226 100 150 100 275 3276 1.19 1755 157 2495 0.86 1337 2.06 2651 096 17.67 1.56
B8-1bs A 0.6 813 1572 56.55 402 100 150 100 455 33.63 0.74 1802 253 2719 0.81 1457 312 2978 065 19.85 2.29
Debaiky and EIl-Niema (1982)
A2 B 0.9 9.46 20.00 475 942 120 110 O 58 4445 077 2381 244 7248 125 38.83 149 4773 082 3182 1.82
c2 B 0.9 9.46 2820 475 942 120 110 O 72 46.80 065 25.07 287 7785 108 4171 173 5213 072 3475 2.07
D3 B 0.9 9.46 29.60 475 942 120 110 O 69 5840 085 31.29 221 9872 143 5289 130 6424 093 4283 161
D4 B 0.9 9.46 2750 1005 942 120 110 O 58.5 59.15 1.01 3169 1.85 99.78 171 5345 1.09 64.56 110 43.04 1.36
E4 B 0.9 9.46 3400 566 603 120 110 O 42 4717 112 2527 166 8397 200 44.98 0.93 5525 132 36.83 114
F3 B 0.9 9.46 2150 56.55 603 120 110 O 44 3942 090 2112 208 6846 156 36.68 1.20 45.47 1.03 3031 1.45
F4 B 0.9 9.46 21.00 56.55 763 120 110 O 455 4278 0.94 2292 199 7215 159 3865 1.18 47.82 1.05 31.88 1.43
A3 B 0.9 476 17.80 475 942 120 185 0 785 47.17 0.60 2527 311 5838 0.74 3128 251 4362 056 29.08 2.70
E5 B 0.9 476 3550 566 603 120 185 O 575 59.22 1.03 3173 1.81 7450 130 3991 144 5468 095 36.45 1.58

C3 B 0.9 476 2780 475 942 120 185 O 52 5155 099 27.62 188 6438 124 3449 151 4815 093 3210 1.62
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Table A.1 Continued
Debaiky and EI-Niema (1982)
B3 B 0.7 12,10 18.60 475 942 120 110 65.5 5224 0.80 27.99 234 40.36 0.62 2162 3.03 29.07 0.44 19.38 3.38
B4 B 0.5 16.70 21.00 475 942 120 110 1015 7552 0.74 4046 251 49.37 049 2645 384 29.79 0.29 19.86 5.11
Stefanou (1983)
Bl-la B 0.6 13.39  19.99 0 226 100 100 15.8 16.68 1.06 894 177 11.88 0.75 6.36 2.48 9.32 0.59 6.21 2.54
B1-1b B 0.6 13.39  19.99 0 402 100 100 25 2122 0.85 1137 22 15.56 0.62 8.34 3.00 11.29 045 753 3.32
B2- la B 0.6 8.13 19.99 0 226 100 150 26.5 17.86 0.67 9.57 277 13.61 051 7.29 3.63 11.55 044 7.70 3.44
B2-1b B 0.6 8.13 19.99 0 402 100 150 30 21.09 0.70 113 2.66 15.86 0.53 8.50 3.53 13.99 0.47 9.33 3.22
B5- las B 0.6 13.39 19.99 56.55 226 100 100 225 2551 113 13.67 1.65 17.69 0.79 9.48 2.37 17.18 0.76 11.45 1.96
B5-1bs B 0.6 13.39 19.99 56.55 402 100 100 27 3005 111 161 1.68 21.37 0.79 1145 236 19.15 071  12.77 211
B6- las B 0.6 8.13 19.99 56.55 226 100 150 29 29.02 1.00 1555 1.87 22.34 0.77 1197 242 22.58 0.78 15.05 1.93
B6-1bs B 0.6 8.13 19.99 56.55 402 100 150 33.75 3224 0.96 1727 195 24.59 0.73 1317 256 25.02 0.74 16.68 2.02
Albegmprli (2017)
B1-0 B 0.65 4.97 54.00 0 603 150 210 54.1 5343 0.99 28.62 1.89 42.91 0.79 2299 235 31.54 0.58 21.03 2.57
B2-1 B 0.65 9.85 54.00 0 402 150 160 455 4793 1.05 2568 1.77 35.96 0.79 19.26 2.36 26.97 0.59 17.98 2.53
B2-0 B 0.65 9.85 55.10 0 603 150 160 58.5 5337 0.91 2859 2.05 40.11 0.69 2149 272 31.07 0.53 20.71 2.82
B3-0 B 0.65 14.62  59.00 0 603 150 110 54.5 5335 0.98 2858 1.91 37.40 0.69 20.04 272 25.89 0.47 17.26 3.16
B3-1 B 0.65 14.62 52.00 0 402 150 110 55,5 4450 0.80 23.84 233 30.45 055 16.31 340 21.69 0.39 14.46 3.84
El-Niema (1988)
T1 B 0.9 9.45 21.80 0 625 100 110 58 50.48 0.87 27.04 214 19.07 0.33 10.22 5.68 14.35 0.25 957 6.06
T2 B 0.9 4.76 27.60 0 625 100 185 69.5 6596 0.95 3534 197 21.03 0.30 11.27 6.17 18.38 0.26 12.25 5.67
T1-1 B 0.9 9.45 23.30 0 625 100 110 475 4233 089 2268 209 19.35 041 1037 458 14.67 0.31 9.78 4.86
T2-2 B 0.9 4.76 23.70 0 625 100 185 63 5196 0.82 27.84 2.26 19.89 0.32 10.66 5091 17.47 0.28 11.65 5.41
Debaiky and El-Niema (1982)
Ad C 0.9 -476 2200 475 942 120 335 51.3 4931 0.96 26.42 194 35.10 0.68 1880 273 38.13 0.74 25.42 2.02
C5 (o} 0.9 -4.76 3140 475 942 120 335 575 5485 0.95 29.38 1.96 39.01 0.68 2090 275 40.37 0.70 26.91 214
E2 (o} 0.9 -4.76 3350 56.6 603 120 335 75 7098 095 38.03 1.97 52.97 0.71 2838 264 49.48 0.66 32.99 2.27
A5 C 0.9 -9.46 2250 475 942 120 410 57 48.02 084 2573 222 22.48 0.39 1204 473 34.78 0.61 23.19 2.46
C4 C 0.9 -946 3110 475 942 120 410 61 5370 0.88 28.77 212 25.46 042 1364 4.47 36.21 059 2414 2.53
D5 C 0.9 -946 2890 475 942 120 410 65 79.73 123 4271 152 44.78 069 2399 271 58.10 0.89 38.73 1.68
D6 [} 0.9 -946 3220 101 942 120 410 75 8523 1.14 4566 1.64 48.38 065 2592 2389 61.41 0.82 40.94 1.83
El [} 0.9 -946 3480 56.6 603 120 410 95 75.67 0.80 4054 234 43.20 045 2314 410 47.34 050 31.56 3.01
F1 [} 0.9 -946 2110 56.6 603 120 410 67 56.02 0.84 30.01 223 30.68 046 16.44 4.08 36.71 055 24.47 2.74
F2 (o} 0.9 -946 20.80 56.6 763 120 410 705 5380 0.76 2882 245 28.10 040 15.05 4.68 37.52 053 25.01 2.82
EI-Niema (1988)
T4 (o} 0.9 -4.76  24.30 0 625 100 335 88 80.98 0.92 4338 203 29.10 036 1559 5.64 68.26 0.85 4551 1.93
T5 [} 0.9 -9.45 22.70 0 625 100 410 815 8549 105 458 1.78 14.76 017 791 1031 14.25 0.16 9.50 8.58
T4-4 [} 0.9 -4.76  25.40 0 625 100 335 74 6238 0.84 3342 221 5.55 0.07 297 2489 9.74 012 6.49 11.40
T5-5 [} 0.9 -9.45 25.00 0 625 100 410 75 65.25 0.87 3496 215 15.16 020 812 9.23 14.46 020 9.64 7.78
Tena et al. (2008)
TASC1-0 [} 1.083 -3.07 3210 0 2025 220 410 675 8021 1.19 4297 157 6.26 008 335 20.13 10.06 013 6.71 10.06
TASC2-0 [} 1.083 -6.12 29.50 0 2025 220 410 60 6198 103 332 181 34.29 057 1837 3.27 35.93 0.60 23.95 2.50
TASC3-0 [} 1.083 -9.13 23.60 0 2025 220 410 375 39.09 104 2094 179 522 014 280 1341 20.66 055 13.77 2.72
TASC4-0 [} 1.083 -12.10 28.10 0 2025 220 410 30 2788 093 1494 201 -1458 -049 -781 -3.84 7.92 026 5.28 5.68
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Table A.1 Continued
Tena et al. (2008)
TASC1-1 C 1.083 -3.07 26.90 100.5 2025 220 410 200 162.01 0.81 86.79 23 139.53 0.70 7475 268 123.08 0.62 82.05 2.44
TASC2-1 (o} 1.083 -6.12 29.20 100.5 2025 220 410 170 146.28 0.86 7836 217 10342 0.61 5540 3.07 10551 0.62 70.34 2.42
TASC3-1 C 1.083 -9.13 28.80 100.5 2025 220 410 120 12563 1.05 67.3 178 66.80 056 3579 335 87.09 0.73 58.06 2.07
TASC4-1 (o} 1.083 -12.10 21.10 100.5 2025 220 410 80 9401 1.18 50.36 1.59 29.10 036 1559 513 68.26 0.85 4551 1.76
Albegmprli (2017)
C2-0 C 0.65 -9.85 44.00 0 603 150 310 389 3746 096 20.07 194 23.03 059 1234 315 13.78 035 919 423
C3-0 (o} 0.65 -14.62 62.00 0 603 150 360 3715 40.60 1.09 21.75 171 16.30 044 873 4.25 8.47 023 565 6.58
C1-0 C 0.65 -4.97 5850 0 603 150 260 39.3 44,09 112 2362 166 39.60 101 2121 185 22.30 057 14.87 2.64
C2-1 C 0.65 -9.85 61.00 0 402 150 310 3715 46.64 126 2499 149 30.25 081 1621 229 13.42 036 895 4.15
C3-1 C 0.65 -14.62 51.00 0 402 150 360 336 3912 116 2096 1.6 17.44 052 9.34 3.60 6.94 021 463 7.26
Average 0.96 2.00 0.81 3.35 0.66 2.88
cov 0.14 0.16 0.4 1.11 0.26 0.68






