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Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical
shells with damping and nonlinear elastic foundation under axial compression
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Abstract.

The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened

functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by
damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation
(Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear
model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and
von Karman nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration
problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider
effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of

spiral stiffened simply supported FG cylindrical shells.
Keywords:

FG cylindrical shells; nonlinear dynamic analysis; spiral stiffeners; damping and elastic foundation

1. Introduction

The stiffened functionally graded cylindrical shells have
more application in a wide range of engineering
applications, including submarines, aircrafts, bridges, ships,
satellites and offshore structures. Study on nonlinear
behavior of these structures is important of the practical.
Then research on the dynamic analysis of these structures
has been of interest of scientists from many years ago and
great amount of studies have been done on nonlinear
dynamic analysis of stiffened shell structures under
mechanical loading.

The nonlinear vibration analysis of orthotropic FG
cylindrical shells with an elastic foundation by using the
first order shear deformation theory was investigated by
Sofiyev et al. (2017). Also, Sofiyev et al. (2017) analyzed
the nonlinear vibration response of composite orthotropic
cylindrical shells with the nonlinear elastic foundations by
using the shear deformation theory. Tang et al. (2017)
studied the free and forced vibration behavior of multi-
stepped cylindrical shells with arbitrary boundary
conditions. They used the method of reverberation-ray
matrix and Fliigge thin shell theory. The stability behavior
of compositionally graded ceramic—metal cylindrical shells
under periodic axial compressive load was studied by
sofiyev (2005). He used the Love’s shell theory and
Lagrange-Hamilton type principle. Darabi et al. (2008) by
using the large deflection theory, analyzed the dynamic
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stability of FG shells subjected to periodic axial loading.
Sheng and Wang (2008) presented the vibration behavior of
functionally graded cylindrical shell with flowing fluid and
surrounded by elastic foundation under mechanical and
thermal loads.

In the above-mentioned studies, the effects of stiffeners
on the dynamic response of cylindrical shells have not been
considered. Some studies have been done on dynamic
analysis of stiffened cylindrical shells.

Chen et al. (2015) investigated the free and forced
vibration behavior of ring-stiffened conical-cylindrical
shells with arbitrary boundary conditions by using the
Fliigge thin shell theory. The nonlinear dynamic analysis of
imperfect eccentrically stiffened FG cylindrical shells with
an elastic foundation under mechanical and damping loads
by using the first order shear deformation theory and
Runge-Kutta method was studied by Duc and Thang
(2015). Dung and Nam (2014) studied the nonlinear
dynamic analysis of eccentrically stiffened FG cylindrical
shells with an elastic foundation subjected to external
pressure by using the classical plate theory of shells and
Galerkin method. Bich et al (2013) investigated the
nonlinear static and dynamic analysis of FG cylindrical
shells with eccentrically homogeneous stiffener system.
They wused the classical thin shell theory with the
geometrical nonlinearity in von Karman-Donnell sense and
the smeared stiffeners technique to derive the governing
equations of motion of cylindrical shells.

A review of studies shows that few studies have been
done on the nonlinear dynamic analysis of simply supported
stiffened FG cylindrical shells by semi-analytical
approaches. In this study, the nonlinear dynamic behavior
of stiffened FG cylindrical shells reinforced by spiral
stiffeners with various angles, embedded in elastic media
and linear damping and subjected to axial compression is
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investigated using semi-analytic approaches. The elastic
foundations are formulated based on the two-parameter
elastic foundation (Winkler and Pasternak) and a nonlinear
model, which is a three-parameter elastic foundation with
hardening/softening cubic nonlinearity. The material
properties of the shell and stiffeners are assumed to be
continuously graded in the thickness direction according to
a simple power law distribution in terms of volume fraction
of constituents. The formulations of the governing
equations are based on the classical shell theory and the
smeared stiffeners technique in conjunction with the
Galerkin method is used to solve the nonlinear problem. In
continue the fourth-order Runge-Kutta method is used to
find the nonlinear dynamic responses. In order to valid the
formulations, comparisons are made with the previous
researches. Results are presented to evaluate the effects of
stiffener’s angle, geometrical and material properties,
elastic foundation, damping coefficient and axial loading on
the nonlinear dynamic response of spiral stiffened simply
supported FG cylindrical shells.

2. The basic formulation
2.1 FG material properties

Consider a stiffened FG cylindrical shell surrounded by
elastic foundation and linear damping with radius R,
thickness / and axial length L (see Fig. 1). The origin of the
coordinate system (x, y, z) is shown in Fig. 1, where x and y
are the axial and circumferential coordinate variables of the
cylindrical shell and z is the inward radial coordinate
variable. hg, d and s are the thickness, width and spacing of
the stiffeners, respectively. It is assumed that the cylindrical
shell and the stiffeners are made of a mixture of ceramics
and metals in two cases. In the first case with external
stiffeners, the inner surface of the cylinder is metal-rich
(z = h/2) and the outer surface (z = —h/2) is ceramic-rich
and in order to keep material continuity, the lower surface
of the stiffener is made of ceramic and the upper surface is
made of metal. In the second case, a reverse order is used
for internal stiffeners.

The FG material composition varies continuously by
following simple power law in terms of the volume
fractions of the constituents as be written as (Shaterzadeh et
al. 2015)

v, :vi(z)zizzzzhjk

V, =V,(2)=1-V,(2)

)

where —h/2 <z < h/2 and k is the material power law
index of the FG shell, which takes values greater or equal to
zero. In the first case with external stiffeners, V; =1,
and I, = V., where the parameters V,, and V. denote the
metal and ceramic volume fractions and the subscripts m
and c refer to the metal and ceramic constituents. For the
second case with internal stiffeners, V; and V, represent
the volume fraction of ceramic and metal, respectively. The
effective properties P.¢¢, such as Young’s modulus E and
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Fig. 1 Configuration of spiral stiffened FG cylindrical shell
with damping and elastic foundation

mass density p, can be determined as (Dung and Nam 2014)
Py =P, (2)V,(2)+P (2)V,(2) ()

According to the mentioned law, the Young’s modulus
and mass density of the FG shell, external and internal
stiffeners can be expressed in the following for

Shell
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where E, E; and p, pg are the Young’s modulus and
mass density of the FG shell and stiffeners, respectively.
Also K is the material power law index of the FG
stiffeners.

2.2 The theoretical formulation

2.2.1 Governing equations

According to the von Karman nonlinear strain-
displacement relations (Brush and Almrith 1975) the strain
components on the middle plane of cylindrical shells can be
expressed as
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where u = u(x,y,t), v =v(x,y,t),w =w(x,y,t) are the
displacement components along x,y,z axes, respectively.
eg and g) are the normal strains, y), is the shear strain at
the middle surface, xy, Xy, Xxy are the change of
curvatures and twist of shell.

The strain components across the shell thickness at a
distance z from the mid-surface are represented by
(Darvizeh et al. 2010)

6 =& ~ZX £, =6 ~ZX, Ve =Vy 22Xy  (5)

According to Eq. (4), compatibility equation can be
expressed in the following form
o°w 0w

- ox2 ayz

2.0 5250 52,0 2 2 2

a2 x> oxay R ox® | axoy

The stress-strain relationship for FG cylindrical shells
can be written as follows

« E(z
ST
« E(Z
o :1_(1/2 (e, +ve,) (7)
«  E(2)
Py 2(1+v)yXy

where the Poisson's ratio v is assumed to be constant
ash, a;h and T;; are normal stress in x,y direction and
shearing stress of un-stiffened shell, respectively.

The stress-strain relations of the spiral stiffeners as
follow (Shaterzadeh and Foroutan 2016)
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+2y,, (sin@cos® 0 —sin B cos® ) (8a)
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ox,05, and Ty, are the normal and shear stress
components of the stiffeners, respectively. To consider the

effect of the stiffeners on the shell the smeared stiffeners
technique is used. By integrating the stress-strain equations,
the resultant forces and moments for stiffened FG
cylindrical shells can be obtained as (Duc and Thang 2014)
Resultant forces
N, = Jngg + ‘]1233 = — Jlsly
N, =‘]21gg+‘]2253_‘]24lx_‘]251y (10)
ny = ‘]337/>(<)y - 2‘]36/’{xy
Resultant moments
M, =J,8 + 31533 —Juk —Inzy
M, :‘]2453+‘]25‘93_351Zx_‘]527(y (1D
Mxy = ‘]367>(<)y - 2‘]63/{xy
where J;; are the components of the extensional, bending
and coupling stiffness of spiral stiffened FG cylindrical

shells which are defined in Appendix A. By rearranging Eq.
(10), the strain components can be defined as

0
&) =IuN, =N, + 357, + 357, (12)
0

By substituting Eq. (12) into Eq. (11) the resultant
moments can be expressed as
Mx = Al*le + A;lNy - A;:Zx - A:Zy
My:NZNx+A;2Ny_AZTZx_AZ§Zy (13)
Mxy = A;Gny _ZAB*Zny
The nonlinear equilibrium equations of thin circular
cylindrical shell based on the classical shell theory are as

follow (Bich ef al. 2013, Ghiasian ef al. 2013 and Volmir
1972)
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where k,,, ks and k, are the Winkler, Pasternak and
nonlinear cubic constants of the elastic foundation,
respectively. Also t is the time, ¢ is damping
coefficient and the mass density p; can be calculated as

Pin ~ Pou Pout ~ Pin dhs
P1=(Pom+ﬁjh+2(.0m+ﬁ)? (15)
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According to the first two of Eq. (14), a stress function
¢ 1is defined as

89, 1y = (16)

By substituting Eq. (12) into the compatibility Eq. (6)
and Eq. (13) into the third part of Eq. (14) and using the Eq.
(4) and (16), the following system of equation can be
obtained.
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Egs. (17) and (18) are a system of nonlinear equation in
terms of two unknown parameter ¢ and w.

2.2.2 Boundary conditions

A simply supported spiral stiffened FG cylindrical shell
subjected to an axial compressive load Py is considered.
The compressive axial load is assumed to be positive and
can be calculated as

P, =P.h (19)

where Py is the average stress on the end sections of
shell. The applied boundary conditions are of the following
form

w=0,M =0,N =-P hN =0 ax=01L (20)

The deflection of the cylindrical shells is considered as
(Volmir 1972 and Bich et al. 2012)

mnx . ny
w= f (t)sin——sin—
(t)sin=—=sin— @1

where f(t) is the time dependent total unknown amplitude

and m, n are the number of half wave and full wave in the
axial and circumferential directions, respectively.

By substituting Eq. (21) in Eq. (17) and solving the
system of equations, the unknown function ¢ can be

obtained as

@ =@, C0S—— 2max + @, coszg—w3 sm%smn—Ry— Py h— (22)

where the coefficients ¢;(i = 1,2,3) are as follows

A )(F ()4 2uh
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?, 32J2*2n2/12 ()( ()+ ,u) (23)
B
¢3=Xf(t)

Substituting Egs. (21-23) into Eq. (18) and by applying
the Galerkin method, the governing equation can be
obtained as

[dzdftz(t) + ngfdit)}(al +ak, +ak ) f(t)
+(a, +agk, ) (1) —a,P, f (t)=0

where the coefficients 4,B,B*,D and G are defined in
appendix B.

24

2.3 Nonlinear vibration analysis

2.3.1 Forced vibration analysis

Consider the spiral stiffened FG cylindrical shell
subjected to axial compressive stress with the Py =
Q sin Qt, Eq. (24) become

[NNU+%““Q+@f%m+%&W0)

dt? dt
+(a, +agk, ) f (1)’ —a,QsinQtf (t)=

where Q is amplitude of excitation force and Q is
excitation frequency.

By using this equation, the nonlinear forced vibration
response of spiral stiffened FG cylindrical shell is taken into
account. The second order nonlinear governing differential
equation (Eq. (25)) is solved by the fourth order Runge-
Kutta method.

(25)

2.3.2 Free vibration analysis

In order to validate the present formulation, the free and
linear vibration analysis of spiral stiffened FG cylindrical
shells without damping, the Eq. (25) is obtained as

d*f (t)
dt’

The fundamental frequency of natural vibration of spiral
stiffened FG cylindrical shells can be determined by

=\J(a +ak, +ak,) @7)

where w,,, is fundamental frequency of natural vibration
of shell.

+(a, +ak, +ak, ) f(t)=0 (26)
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Table 1 Comparison on the natural frequency of un-
stiffened cylindrical shells with Winkler foundation (m =
1,L=1mR=05mE=7x%x101°N/m?v=03,d =
0.0025 m, hy = 0.01 m)

n present Sofiyev et al. (2009) Paliwal et al. (1996)
Error(%) Error(%)

1 0.67480 0.67921 0.65 0.67882 0.60

2 0.36223 0.36463 0.66 0.36394 0.47

3 0.20670 0.20804 0.65 0.20526 0.70

4 0.13747 0.13824 0.56 0.12745 7.29

3. Numerical results
3.1 Validation of the present approach

To validate the present formulation, in Table 1, the
obtained the natural frequencies of isotropic cylindrical
shell surrounded by an elastic foundation are compared
with those present by Sofiyev er al. (2009) and Paliwal et
al. (1996). These comparisons show that the good
agreements are obtained.

3.2 Nonlinear dynamic responses

In this section, nonlinear dynamic analysis of spiral
stiffened FG cylindrical shells with damping and
linear/nonlinear elastic foundation are investigated. The
effects of different geometrical and material parameters
such as angle of stiffeners, radius and thickness of the FG
shell, volume fraction of FG material, damping coefficient
and also elastic foundation parameters on nonlinear
dynamic responses of spiral stiffened FG cylindrical shells
are evaluated. Two different types of stiffened FG
cylindrical shell are examined. In the first case, external
stiffeners exist on the outer surface of the FG cylindrical
shell and the exterior surface of the cylindrical shell is
metal rich while the interior surface is ceramic rich. The
second case, FG material direction is vice versa and the
stiffeners are located on the interior surface of the FG
cylindrical shell. In the present study, unless defined, the
number of stiffeners is assumed to be thirty which are
distributed uniformly along the length of the FG cylindrical
shell. The FG cylindrical shell is assumed to be made of
aluminum (Al) and alumina (Al,03) with following material
properties.

Al: Ep =70GPa, py =2702 %, v, =03,

Al,05: E. =380GPa, p.= 3800 %, v, = 0.3.

Since the Poisson’s ratio is assumed to be equal for
ceramic and metal, thus in all solved examples the
Poisson’s ratio is defined by v ie. v=v, =v,=0.3
also, number of half waves in axial direction (m) are
assumed to be equal to 1.

The geometrical parameters of the FG shell and
stiffeners are considered as follow

Shell: R=05m, L =0.75m, h =0.002 m,

Stiffener: hy = 0.01m, d = 0.0025 m, ny, = 30.

Also, the assumed elastic constants of the foundation are

Table 2 Effect of R/h ratio and volume-fraction index k
on the fundamental frequency of natural vibration (rad/s) of
spiral stiffened FG cylindrical shells

R/h k Un-stiffened Internal stiffeners  External stiffeners
150 0.2 1750.9 (7) 2720.6 (6) 2488.8 (5)

1 21.38.3(7) 2468.6 (6) 2797.7 (5)

5 2455.6 (7) 2143.9 (5) 2829.4 (6)
200 0.2 1490.9 (7) 2495.5 (6) 2420.5 (5)

1 1841.1 (7) 2365.6 (6) 2715.3 (5)

5 2112.9 (7) 2109.7 (5) 2716.1 (6)
250 0.2 1353.6 (8) 2375.5 (6) 2376.5 (5)

1 1654.1 (8) 2323.0 (6) 2665.4 (5)

5 1899.5 (8) 2094.0 (5) 2675.4 (6)

“The numbers in the parenthesis denote the number of full
wave (1)
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Fig. 2 Nonlinear responses of un-stiffened and internal
stiffened FG cylindrical shells without elastic foundation
(Py = 10%5sin(300t),0 = 0°,8 =90°,K =k = 1)
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The effect of variation of radius-to-thickness ratio and
volume-fraction index on the fundamental frequency of
natural vibration of un-stiffened and stiffened FG
cylindrical shell is demonstrated in Table 2. According to
this table, by increasing the radius-to-thickness ratio, the
value of natural frequency of shell decreases. The natural
frequency increases when the proportion of metal
decreases. Also, the natural frequency of FG cylindrical
shells with external stiffeners is greater than one of shell
with internal stiffeners and without stiffeners.

The nonlinear dynamic responses of stiffened and un-
stiffened FG cylindrical shell are investigated in Fig. 2. The
excitation frequencies equal to Py = 10°sin(300t) are
much smaller than fundamental frequencies of natural
vibration. According to Fig. 2, can be show that the
stiffeners strongly decreased the amplitude nonlinear
vibration of the cylindrical shell when excitation frequency
is far from natural frequency.

The effect of angle of stiffeners on nonlinear dynamic
response of spiral stiffened FG cylindrical shell for different
values of amplitude-to-thicknesses ratios with internal and
external stiffeners are demonstrated in Figs. 3 and 4,
respectively. In the present work the effects of different
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Fig. 3 Nonlinear responses of internal spiral stiffened FG cylindrical shells without elastic foundation (Py = 10° sin(300¢),
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Fig. 4 Nonlinear responses of external spiral stiffened FG cylindrical shells without elastic foundation (Py = 10° sin(300t),

K=k=1)
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Fig. 5 Deflection-velocity relation of internal spiral
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Fig. 6 Deflection-velocity relation of internal spiral
stiffened FG cylindrical shell under Q = 3 X 10° N/m?
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Fig. 7 Nonlinear vibration of internal spiral stiffened FG
cylindrical shells (Py = 10°sin(300t),K = k = 1)
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Fig. 8 Effect of damping on nonlinear vibration of spiral

stiffened FG cylindrical shells in the first periods
(5 X 10°sin(2700¢t), K = k = 1)

values of stiffener’s angle are examined. The amplitude
nonlinear vibrations of FG stiffened cylindrical shell are

Without damping With damping

T
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4 . . .
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Fig. 9 Effect of damping on nonlinear vibration of spiral
stiffened FG cylindrical shells in the far periods (5 X
10°sin(2700t), K =k = 1)
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less than other cases, when the angle between both series of
stiffeners is 90° i.e., 3—£=90°.

Clearly, the maximum amplitude nonlinear vibrations of
cylindrical shell happen when the angle between both series
of stiffeners is 0°.

Fig. 5 shows the phase plane of spiral stiffened FG
cylindrical shells. According to this figure, the deflection-
velocity relation with has the closed curve, when the
excitation force is small (Q = 10° N/m?). Also, according
to Fig. 6., the deflection-velocity relation becomes more
disorderly, when the excitation force increases (Q =
3 X 106 N/m?).

The effect of linear and nonlinear elastic foundation on
the nonlinear dynamic response of spiral stiffened FG
cylindrical shells is shown in Fig. 7. It can be seen that
elastic foundation decreases the amplitude of the nonlinear
dynamic response.

The effect of linear damping on nonlinear dynamic
responses is investigated in Figs. 8 and 9. As can be seen, in
the first vibration periods, the damping influences on the
nonlinear dynamic response are very small (Fig. 8)
however, at the next far periods, it strongly decreases
amplitude nonlinear dynamic (Fig. 9). Also, according to
these figures, it can be shown that when the excitation
frequencies are near to fundamental frequency of natural
vibration, the interesting phenomenon like the harmonic
beat phenomenon of a vibration is observed. The excitation
frequency is 2700 rad/s which is near to fundamental
frequency of natural vibration 2665.4 rad/s of external
spiral stiffened FG cylindrical shell.

5. Conclusions

A semi-analytical method was used to study the
nonlinear dynamic analysis of simply supported spiral
stiffened FG cylindrical shells subjected to axial loading.
Two different types of elastic foundation were assumed to
encompass the FG cylindrical shell. The first model was
formulated based on the two-parameter elastic foundation
and the second model was a three parameter nonlinear
elastic foundation. Also, it is assumed the cylindrical shell
is surrounded by linear damping, too. The material
properties of the shell and stiffeners were assumed to be
continuously graded in the thickness direction. Based on the
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location of the stiffeners, two different models of stiffened
FG cylindrical shells with internal and external stiffeners
were formulated. The problem formulation was based on
the classical shell theory with von Kédrman nonlinear terms.
The smeared stiffeners technique and Galerkin method were
used to solve the nonlinear problem. Also, the fourth order
Runge-Kutta method was used to find the nonlinear
dynamic response of the FG cylindrical shells. The effects
of different parameters such as material properties,
geometrical dimensions, angle of stiffeners, damping
coefficient and elastic foundation parameters on the
nonlinear dynamic response of spiral stiffened FG
cylindrical shells were examined and the following
conclusions were obtained.

* The natural frequency of FG cylindrical shells with
external stiffeners is greater than one of shell with internal
stiffeners and without stiffeners.

* The minimum and maximum value of the amplitude
nonlinear vibrations of stiffened FG cylindrical shells with
internal and external stiffeners happen when the angle
between both series of stiffeners is 90° and 0°, respectively.

* Linear and nonlinear elastic foundation decreases the
value of the amplitude nonlinear vibration of FG cylindrical
shells.

» At the next far periods, damping strongly decreases
amplitude nonlinear vibration.

* When the excitation frequencies are near to
fundamental frequency of natural vibration, the interesting
phenomenon like the harmonic beat phenomenon of a
vibration is observed.
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