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1. Introduction 
 

The stiffened functionally graded cylindrical shells have 

more application in a wide range of engineering 

applications, including submarines, aircrafts, bridges, ships, 

satellites and offshore structures. Study on nonlinear 

behavior of these structures is important of the practical. 

Then research on the dynamic analysis of these structures 

has been of interest of scientists from many years ago and 

great amount of studies have been done on nonlinear 

dynamic analysis of stiffened shell structures under 

mechanical loading. 

The nonlinear vibration analysis of orthotropic FG 

cylindrical shells with an elastic foundation by using the 

first order shear deformation theory was investigated by 

Sofiyev et al. (2017). Also, Sofiyev et al. (2017) analyzed 

the nonlinear vibration response of composite orthotropic 

cylindrical shells with the nonlinear elastic foundations by 

using the shear deformation theory. Tang et al. (2017) 

studied the free and forced vibration behavior of multi-

stepped cylindrical shells with arbitrary boundary 

conditions. They used the method of reverberation-ray 

matrix and Flügge thin shell theory. The stability behavior 

of compositionally graded ceramic–metal cylindrical shells 

under periodic axial compressive load was studied by 

sofiyev (2005). He used the Love’s shell theory and 

Lagrange-Hamilton type principle. Darabi et al. (2008) by 

using the large deflection theory, analyzed the dynamic  
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stability of FG shells subjected to periodic axial loading. 

Sheng and Wang (2008) presented the vibration behavior of 

functionally graded cylindrical shell with flowing fluid and 

surrounded by elastic foundation under mechanical and 

thermal loads. 

In the above-mentioned studies, the effects of stiffeners 

on the dynamic response of cylindrical shells have not been 

considered. Some studies have been done on dynamic 

analysis of stiffened cylindrical shells.  

Chen et al. (2015) investigated the free and forced 

vibration behavior of ring-stiffened conical–cylindrical 

shells with arbitrary boundary conditions by using the 

Flügge thin shell theory. The nonlinear dynamic analysis of 

imperfect eccentrically stiffened FG cylindrical shells with 

an elastic foundation under mechanical and damping loads 

by using the first order shear deformation theory and 

Runge-Kutta method was studied by Duc and Thang 

(2015). Dung and Nam (2014) studied the nonlinear 

dynamic analysis of eccentrically stiffened FG cylindrical 

shells with an elastic foundation subjected to external 

pressure by using the classical plate theory of shells and 

Galerkin method. Bich et al. (2013) investigated the 

nonlinear static and dynamic analysis of FG cylindrical 

shells with eccentrically homogeneous stiffener system. 

They used the classical thin shell theory with the 

geometrical nonlinearity in von Kármán-Donnell sense and 

the smeared stiffeners technique to derive the governing 

equations of motion of cylindrical shells. 

A review of studies shows that few studies have been 

done on the nonlinear dynamic analysis of simply supported 

stiffened FG cylindrical shells by semi-analytical 

approaches. In this study, the nonlinear dynamic behavior 

of stiffened FG cylindrical shells reinforced by spiral 

stiffeners with various angles, embedded in elastic media 

and linear damping and subjected to axial compression is 
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investigated using semi-analytic approaches. The elastic 

foundations are formulated based on the two-parameter 

elastic foundation (Winkler and Pasternak) and a nonlinear 

model, which is a three-parameter elastic foundation with 

hardening/softening cubic nonlinearity. The material 

properties of the shell and stiffeners are assumed to be 

continuously graded in the thickness direction according to 

a simple power law distribution in terms of volume fraction 

of constituents. The formulations of the governing 

equations are based on the classical shell theory and the 

smeared stiffeners technique in conjunction with the 

Galerkin method is used to solve the nonlinear problem. In 

continue the fourth-order Runge-Kutta method is used to 

find the nonlinear dynamic responses. In order to valid the 

formulations, comparisons are made with the previous 

researches. Results are presented to evaluate the effects of 

stiffener’s angle, geometrical and material properties, 

elastic foundation, damping coefficient and axial loading on 

the nonlinear dynamic response of spiral stiffened simply 

supported FG cylindrical shells. 

 

 

2. The basic formulation 
 

2.1 FG material properties 
 

Consider a stiffened FG cylindrical shell surrounded by 

elastic foundation and linear damping with radius R, 

thickness h and axial length L (see Fig. 1). The origin of the 

coordinate system (x, y, z) is shown in Fig. 1, where x and y 

are the axial and circumferential coordinate variables of the 

cylindrical shell and z is the inward radial coordinate 

variable. ℎ𝑠, d and s are the thickness, width and spacing of 

the stiffeners, respectively. It is assumed that the cylindrical 

shell and the stiffeners are made of a mixture of ceramics 

and metals in two cases. In the first case with external 

stiffeners, the inner surface of the cylinder is metal-rich 

(𝑧 = ℎ/2) and the outer surface (𝑧 = −ℎ/2) is ceramic-rich 

and in order to keep material continuity, the lower surface 

of the stiffener is made of ceramic and the upper surface is 

made of metal. In the second case, a reverse order is used 

for internal stiffeners. 

The FG material composition varies continuously by 

following simple power law in terms of the volume 

fractions of the constituents as be written as (Shaterzadeh et 

al. 2015) 

( )

( )

2

2

1 ( )

k

i i

o o i

z h
V V z

h

V V z V z

+ 
= =  

 

= = −

 (1) 

where −ℎ/2 ≤ 𝑧 ≤ ℎ/2 and 𝑘 is the material power law 

index of the FG shell, which takes values greater or equal to 

zero. In the first case with external stiffeners, 𝑉𝑖 = 𝑉𝑚 

and 𝑉𝑜 = 𝑉𝑐, where the parameters 𝑉𝑚 and 𝑉𝑐 denote the 

metal and ceramic volume fractions and the subscripts m 

and c refer to the metal and ceramic constituents. For the 

second case with internal stiffeners, 𝑉𝑖 and 𝑉𝑜 represent 

the volume fraction of ceramic and metal, respectively. The 

effective properties P𝑒𝑓𝑓 , such as Young’s modulus 𝐸 and  

 

Fig. 1 Configuration of spiral stiffened FG cylindrical shell 

with damping and elastic foundation 
 

 

mass density 𝜌, can be determined as (Dung and Nam 2014) 

( ) ( ) ( ) ( )P P Peff o o i iz V z z V z= +  (2) 

According to the mentioned law, the Young’s modulus 

and mass density of the FG shell, external and internal 

stiffeners can be expressed in the following for 

Shell 

 

(3a) 

External stiffeners 

 

(3b) 

Internal stiffeners 

 

(3c) 

where 𝐸 , 𝐸𝑠  and 𝜌 , 𝜌𝑠  are the Young’s modulus and 

mass density of the FG shell and stiffeners, respectively. 

Also 𝐾  is the material power law index of the FG 

stiffeners. 
 

2.2 The theoretical formulation 
 

2.2.1 Governing equations 
According to the von Kármán nonlinear strain-

displacement relations (Brush and Almrith 1975) the strain 

components on the middle plane of cylindrical shells can be 

expressed as 

 

(4) 
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where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑣 = 𝑣(𝑥, 𝑦, 𝑡), 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) are the 

displacement components along 𝑥, 𝑦, 𝑧 axes, respectively. 

𝜀𝑥
0 and 𝜀𝑦

0 are the normal strains, 𝛾𝑥𝑦
0  is the shear strain at 

the middle surface, 𝜒𝑥 , 𝜒𝑦 , 𝜒𝑥𝑦  are the change of 

curvatures and twist of shell. 

The strain components across the shell thickness at a 

distance 𝑧  from the mid-surface are represented by 

(Darvizeh et al. 2010) 

 
(5) 

According to Eq. (4), compatibility equation can be 

expressed in the following form 
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 (6) 

The stress-strain relationship for FG cylindrical shells 

can be written as follows 
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(7) 

where the Poisson's ratio 𝜈  is assumed to be constant 

𝜎𝑥
𝑠ℎ, 𝜎𝑦

𝑠ℎ and 𝜏𝑥𝑦
𝑠ℎ are normal stress in 𝑥, 𝑦 direction and 

shearing stress of un-stiffened shell, respectively. 

The stress-strain relations of the spiral stiffeners as 

follow (Shaterzadeh and Foroutan 2016) 
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(9) 

𝜎𝑥
𝑠, 𝜎𝑦

𝑠  and 𝜏𝑥𝑦
𝑠  are the normal and shear stress 

components of the stiffeners, respectively. To consider the 

effect of the stiffeners on the shell the smeared stiffeners 

technique is used. By integrating the stress-strain equations, 

the resultant forces and moments for stiffened FG 

cylindrical shells can be obtained as (Duc and Thang 2014) 
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Resultant moments 
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 (11) 

where 𝐽𝑖𝑗 are the components of the extensional, bending 

and coupling stiffness of spiral stiffened FG cylindrical 

shells which are defined in Appendix A. By rearranging Eq. 

(10), the strain components can be defined as 

0 * * ** **

22 12 11 12

0 * * ** **

11 21 21 22
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 (12) 

By substituting Eq. (12) into Eq. (11) the resultant 

moments can be expressed as 
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(13) 

The nonlinear equilibrium equations of thin circular 

cylindrical shell based on the classical shell theory are as 

follow (Bich et al. 2013, Ghiasian et al. 2013 and Volmir 

1972) 
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(14) 

where 𝑘𝑤 , 𝑘𝑠  and 𝑘𝑛𝑙  are the Winkler, Pasternak and 

nonlinear cubic constants of the elastic foundation, 

respectively.  Also 𝑡  is the time, 𝑐  is damping 

coefficient and the mass density 𝜌1 can be calculated as 

1 2
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 (15) 
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According to the first two of Eq. (14), a stress function 

𝜑 is defined as 

 

(16) 

By substituting Eq. (12) into the compatibility Eq. (6) 

and Eq. (13) into the third part of Eq. (14) and using the Eq. 

(4) and (16), the following system of equation can be 

obtained. 
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(18) 

Eqs. (17) and (18) are a system of nonlinear equation in 

terms of two unknown parameter 𝜑 and 𝑤. 

 

2.2.2 Boundary conditions 
A simply supported spiral stiffened FG cylindrical shell 

subjected to an axial compressive load 𝑃̅𝑋  is considered. 

The compressive axial load is assumed to be positive and 

can be calculated as 

X XP P h=  (19) 

where  𝑃𝑋  is the average stress on the end sections of 

shell. The applied boundary conditions are of the following 

form 

 (20) 

The deflection of the cylindrical shells is considered as 

(Volmir 1972 and Bich et al. 2012) 
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where ( )f t is the time dependent total unknown amplitude 

and 𝑚, 𝑛 are the number of half wave and full wave in the 

axial and circumferential directions, respectively. 

By substituting Eq. (21) in Eq. (17) and solving the 

system of equations, the unknown function 𝜑  can be 

obtained as 
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where the coefficients 𝜑𝑖(𝑖 = 1,2,3) are as follows 

( ) ( )( )

( ) ( )( )

( )

2 2

1 * 2 2

11

2 2

2 * 2 2

22

3

2
32 π

π
2

32

n
f t f t h

J m

m
f t f t h

J n

B
f t

A


 

 




= +

= +

=

 (23) 

Substituting Eqs. (21-23) into Eq. (18) and by applying 

the Galerkin method, the governing equation can be 

obtained as 

( ) ( )
( ) ( )

( ) ( ) ( )

2

1 2 32
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w s
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where the coefficients 𝐴, 𝐵, 𝐵∗, 𝐷  and 𝐺  are defined in 

appendix B. 

 

2.3 Nonlinear vibration analysis 
 

2.3.1 Forced vibration analysis 
Consider the spiral stiffened FG cylindrical shell 

subjected to axial compressive stress with the 𝑃𝑋 =
𝑄 sin Ω𝑡, Eq. (24) become 

( ) ( )
( ) ( )

( ) ( ) ( )
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3
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2

Ω 0

w s

nl

d f t df t
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
 

+ + + +  
 

+ + − =

 (25) 

where 𝑄  is amplitude of excitation force and Ω  is 

excitation frequency. 

By using this equation, the nonlinear forced vibration 

response of spiral stiffened FG cylindrical shell is taken into 

account. The second order nonlinear governing differential 

equation (Eq. (25)) is solved by the fourth order Runge-

Kutta method. 

 

2.3.2 Free vibration analysis 
In order to validate the present formulation, the free and 

linear vibration analysis of spiral stiffened FG cylindrical 

shells without damping, the Eq. (25) is obtained as 

( )
( ) ( )

2

1 2 32
0w s

d f t
a a k a k f t

dt
+ + + =  (26) 

The fundamental frequency of natural vibration of spiral 

stiffened FG cylindrical shells can be determined by 

( )1 2 3mn w sa a k a k = + +  (27) 

where 𝜔𝑚𝑛 is fundamental frequency of natural vibration 

of shell. 
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Table 1 Comparison on the natural frequency of un-

stiffened cylindrical shells with Winkler foundation (𝑚 =
1, 𝐿 = 1 m, 𝑅 = 0.5 m, 𝐸 = 7 × 1010 N m2,⁄ 𝜈 = 0.3, 𝑑 =
0.0025 m, ℎ𝑠 = 0.01 m) 

𝑛 present Sofiyev et al. (2009) Paliwal et al. (1996) 

  Error(%) Error(%) 

1 0.67480 0.67921 0.65 0.67882 0.60 

2 0.36223 0.36463 0.66 0.36394 0.47 

3 0.20670 0.20804 0.65 0.20526 0.70 

4 0.13747 0.13824 0.56 0.12745 7.29 

 

 

3. Numerical results 
 

3.1 Validation of the present approach 
 

To validate the present formulation, in Table 1, the 

obtained the natural frequencies of isotropic cylindrical 

shell surrounded by an elastic foundation are compared 

with those present by Sofiyev et al. (2009) and Paliwal et 

al. (1996). These comparisons show that the good 

agreements are obtained. 

 
3.2 Nonlinear dynamic responses  

 

In this section, nonlinear dynamic analysis of spiral 

stiffened FG cylindrical shells with damping and 

linear/nonlinear elastic foundation are investigated. The 

effects of different geometrical and material parameters 

such as angle of stiffeners, radius and thickness of the FG 

shell, volume fraction of FG material, damping coefficient 

and also elastic foundation parameters on nonlinear 

dynamic responses of spiral stiffened FG cylindrical shells 

are evaluated. Two different types of stiffened FG 

cylindrical shell are examined. In the first case, external 

stiffeners exist on the outer surface of the FG cylindrical 

shell and the exterior surface of the cylindrical shell is 

metal rich while the interior surface is ceramic rich. The 

second case, FG material direction is vice versa and the 

stiffeners are located on the interior surface of the FG 

cylindrical shell. In the present study, unless defined, the 

number of stiffeners is assumed to be thirty which are 

distributed uniformly along the length of the FG cylindrical 

shell. The FG cylindrical shell is assumed to be made of 

aluminum (Al) and alumina (Al2O3) with following material 

properties. 

𝐴𝑙:   𝐸𝑚 = 70 GPa,    𝜌𝑚 = 2702 
kg

m3 ,   𝜈𝑚 = 0.3,    

𝐴𝑙2𝑂3:   𝐸𝑐 = 380 GPa,    𝜌𝑐 = 3800 
kg

m3 ,   𝜈𝑐 = 0.3.    

Since the Poisson’s ratio is assumed to be equal for 

ceramic and metal, thus in all solved examples the 

Poisson’s ratio is defined by 𝜈  i.e. 𝜈 = 𝜈𝑚 = 𝜈𝑐 = 0.3 

also, number of half waves in axial direction (𝑚) are 

assumed to be equal to 1. 

The geometrical parameters of the FG shell and 

stiffeners are considered as follow 

𝑆ℎ𝑒𝑙𝑙:   𝑅 = 0.5 m, 𝐿 = 0.75 m, ℎ = 0.002 m,  

Stiffener:  ℎ𝑠 = 0.01 m, 𝑑 = 0.0025 m, 𝑛𝑠 = 30. 

Also, the assumed elastic constants of the foundation are  

Table 2 Effect of  𝑅/ℎ ratio and volume-fraction index 𝑘 

on the fundamental frequency of natural vibration (rad/s) of 

spiral stiffened FG cylindrical shells 

𝑅/ℎ 𝑘 Un-stiffened Internal stiffeners External stiffeners 

150 0.2 1750.9 (7) 2720.6 (6) 2488.8 (5) 

 1 21.38.3 (7) 2468.6 (6) 2797.7 (5) 

 5 2455.6 (7) 2143.9 (5) 2829.4 (6) 

200 0.2 1490.9 (7) 2495.5 (6) 2420.5 (5) 

 1 1841.1 (7) 2365.6 (6) 2715.3 (5) 

 5 2112.9 (7) 2109.7 (5) 2716.1 (6) 

250 0.2 1353.6 (8) 2375.5 (6) 2376.5 (5) 

 1 1654.1 (8) 2323.0 (6) 2665.4 (5) 

 5 1899.5 (8) 2094.0 (5) 2675.4 (6) 

*The numbers in the parenthesis denote the number of full 

wave (n) 
 

 

Fig. 2 Nonlinear responses of un-stiffened and internal 

stiffened FG cylindrical shells without elastic foundation 

(𝑃𝑋 = 106 sin(300𝑡), 𝜃 = 0°, 𝛽 = 90°, 𝐾 = 𝑘 = 1) 

 

 

listed below 

𝑘𝑠 = 2.5 × 105  
N

m
, 𝑘𝑤 = 5 × 106  

N

m3
 , 𝑘𝑛𝑙 = 8 × 1013 

N

m5
 

The effect of variation of radius-to-thickness ratio and 

volume-fraction index on the fundamental frequency of 

natural vibration of un-stiffened and stiffened FG 

cylindrical shell is demonstrated in Table 2. According to 

this table, by increasing the radius-to-thickness ratio, the 

value of natural frequency of shell decreases. The natural 

frequency increases when the proportion of metal 

decreases. Also, the natural frequency of FG cylindrical 

shells with external stiffeners is greater than one of shell 

with internal stiffeners and without stiffeners. 

The nonlinear dynamic responses of stiffened and un-

stiffened FG cylindrical shell are investigated in Fig. 2. The 

excitation frequencies equal to 𝑃𝑋 = 106 sin(300𝑡)  are 

much smaller than fundamental frequencies of natural 

vibration. According to Fig. 2, can be show that the 

stiffeners strongly decreased the amplitude nonlinear 

vibration of the cylindrical shell when excitation frequency 

is far from natural frequency. 

The effect of angle of stiffeners on nonlinear dynamic 

response of spiral stiffened FG cylindrical shell for different 

values of amplitude-to-thicknesses ratios with internal and 

external stiffeners are demonstrated in Figs. 3 and 4, 

respectively. In the present work the effects of different  
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(a) 𝜃 = 0° (b)  𝜃 = 30° 

  
(a) 𝜃 = 60° (b)  𝜃 = 90° 

Fig. 3 Nonlinear responses of internal spiral stiffened FG cylindrical shells without elastic foundation (𝑃𝑋 = 106 sin(300𝑡), 
𝐾 = 𝑘 = 1) 

 

  
(a) 𝜃 = 0° (b)  𝜃 = 30° 

  
(a) 𝜃 = 60° (b)  𝜃 = 90° 

Fig. 4 Nonlinear responses of external spiral stiffened FG cylindrical shells without elastic foundation (𝑃𝑋 = 106 sin(300𝑡), 
𝐾 = 𝑘 = 1) 
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Fig. 5 Deflection-velocity relation of internal spiral 

stiffened FG cylindrical shell under 𝑄 = 106 N/m2 

 

 

Fig. 6 Deflection-velocity relation of internal spiral 

stiffened FG cylindrical shell under 𝑄 = 3 × 106 N/m2 

 

 

Fig. 7 Nonlinear vibration of internal spiral stiffened FG 

cylindrical shells (𝑃𝑋 = 106 sin(300𝑡) , 𝐾 = 𝑘 = 1) 

 

 
Fig. 8 Effect of damping on nonlinear vibration of spiral 

stiffened FG cylindrical shells in the first periods 

(5 × 105 sin(2700𝑡),  𝐾 = 𝑘 = 1) 

 

 

values of stiffener’s angle are examined. The amplitude 

nonlinear vibrations of FG stiffened cylindrical shell are  

 
Fig. 9 Effect of damping on nonlinear vibration of spiral 

stiffened FG cylindrical shells in the far periods ( 5 ×
105 sin(2700𝑡),  𝐾 = 𝑘 = 1) 
 

 

less than other cases, when the angle between both series of 

stiffeners is 90° i.e., θ−β=90°. 

Clearly, the maximum amplitude nonlinear vibrations of 

cylindrical shell happen when the angle between both series 

of stiffeners is 0°. 

Fig. 5 shows the phase plane of spiral stiffened FG 

cylindrical shells. According to this figure, the deflection-

velocity relation with has the closed curve, when the 

excitation force is small (𝑄 = 106 N/m2). Also, according 

to Fig. 6., the deflection-velocity relation becomes more 

disorderly, when the excitation force increases ( 𝑄 =
3 × 106 N/m2). 

The effect of linear and nonlinear elastic foundation on 

the nonlinear dynamic response of spiral stiffened FG 

cylindrical shells is shown in Fig. 7. It can be seen that 

elastic foundation decreases the amplitude of the nonlinear 

dynamic response. 

The effect of linear damping on nonlinear dynamic 

responses is investigated in Figs. 8 and 9. As can be seen, in 

the first vibration periods, the damping influences on the 

nonlinear dynamic response are very small (Fig. 8) 

however, at the next far periods, it strongly decreases 

amplitude nonlinear dynamic (Fig. 9). Also, according to 

these figures, it can be shown that when the excitation 

frequencies are near to fundamental frequency of natural 

vibration, the interesting phenomenon like the harmonic 

beat phenomenon of a vibration is observed. The excitation 

frequency is 2700 rad/s which is near to fundamental 

frequency of natural vibration 2665.4 rad/s of external 

spiral stiffened FG cylindrical shell. 
 

 

5. Conclusions 
 

A semi-analytical method was used to study the 

nonlinear dynamic analysis of simply supported spiral 

stiffened FG cylindrical shells subjected to axial loading. 

Two different types of elastic foundation were assumed to 

encompass the FG cylindrical shell. The first model was 

formulated based on the two-parameter elastic foundation 

and the second model was a three parameter nonlinear 

elastic foundation. Also, it is assumed the cylindrical shell 

is surrounded by linear damping, too. The material 

properties of the shell and stiffeners were assumed to be 

continuously graded in the thickness direction. Based on the 
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location of the stiffeners, two different models of stiffened 

FG cylindrical shells with internal and external stiffeners 

were formulated. The problem formulation was based on 

the classical shell theory with von Kármán nonlinear terms. 

The smeared stiffeners technique and Galerkin method were 

used to solve the nonlinear problem. Also, the fourth order 

Runge-Kutta method was used to find the nonlinear 

dynamic response of the FG cylindrical shells. The effects 

of different parameters such as material properties, 

geometrical dimensions, angle of stiffeners, damping 

coefficient and elastic foundation parameters on the 

nonlinear dynamic response of spiral stiffened FG 

cylindrical shells were examined and the following 

conclusions were obtained. 

• The natural frequency of FG cylindrical shells with 

external stiffeners is greater than one of shell with internal 

stiffeners and without stiffeners. 

• The minimum and maximum value of the amplitude 

nonlinear vibrations of stiffened FG cylindrical shells with 

internal and external stiffeners happen when the angle 

between both series of stiffeners is 90ο and 0ο, respectively. 

• Linear and nonlinear elastic foundation decreases the 

value of the amplitude nonlinear vibration of FG cylindrical 

shells. 

• At the next far periods, damping strongly decreases 

amplitude nonlinear vibration. 

• When the excitation frequencies are near to 

fundamental frequency of natural vibration, the interesting 

phenomenon like the harmonic beat phenomenon of a 

vibration is observed. 
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