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1. Introduction 
 

The classic problem of infinite beams on elastic 

foundation subjected to a moving load is of great theoretical 

and practical importance (Frýba 1999), which serves as an 

idealization of the behavior of railway tracks and pavement 

under wheel loads (Gan et al. 2015).  

Over almost a century, a number of solutions have been 

proposed for this problem. However, only a few are closed-

form solutions. Kenny gave the first closed-form solution of 

an Euler-Bernoulli (EB) beam on an elastic foundation 

subjected to a quasi-static moving load (Kenney 1954). 

Later, this solution was extended by Mathew (1958) to a 

similar model subjected to a moving load of harmonic 

amplitude variation, and by Frýba (1999) to a viscoelastic 

foundation instead of the original elastic foundation. Sun 

(2001) also derived a closed-form solution to an EB beam 

on a viscoelastic foundation under harmonic line loads. 

Subsequently, he formulated a closed-form solution to a 

beam on a viscoelastic foundation under moving loads (Sun 

2002) and an explicit representation of the steady-state 

response of a beam on an elastic foundation under moving 

harmonic line loads (Sun 2003). A summary of these 

closed-form solutions is given in cases (1) to (6) of Table 1.  

The beams in the aforementioned references are the EB 

type, and thus no shear deformation is considered. The 

shear deformation is important for a short beam, which has 

been used as an idealization of multilayered pavements 

(Luo et al. 2015) and embankments of a ballasted track 

(Galvin et al. 2010). To consider both flexural deformation  
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Table 1 Closed-form solutions of a beam-foundation system 

under dynamic excitations 

Case 

No. 
Beam type 

Foundation 

type 
Load type Reference Condition* 

1 

EB 

Elastic 
Moving quasi-static 

point load 
(Kenney 1954) 

S = ∞, R = 0, 

ω = 0, and l→ 

0 

2 Elastic 
Moving harmonic 

point load 
(Mathews 1958) 

S = ∞, R = 0, 

and l→ 0 

3 Viscoelastic 
Moving harmonic 

point load 

(Frýba 1999) with no 

damping 

S = ∞, R = 0, 

and l→ 0 

4 Viscoelastic 
Non-moving harmonic 

line load 

(Sun 2001) with no  

damping 

S = ∞, R = 0,v 

= 0, and l→ 0 

5 Viscoelastic 
Moving quasi-static 

line load 

(Sun 2002) with no  

damping 

S = ∞, R = 0, 

and ω = 0 

6 Elastic 
Moving harmonic line 

load 
(Sun 2003) 

S = ∞, and R = 

0 

7 
Timoshen

ko 

Viscoelastic 
Non-moving harmonic 

line load 

(Luo et al. 2016) with no 

damping 
v = 0 

8 Elastic 
Moving quasi-static 

line load 

Section 3 of the  

present paper 
ω = 0 

*Note: S and R are the shear rigidity and the radius of 

gyration of the beam respectively; ω is the circular 

frequency of the load, l is the half-length of the load, and v 

is the load speed 

 

 

and shear deformation effects, the Timoshenko beam rather 

than the EB beam needs to be studied. However, adding 

shear deformation poses a great challenge in formulating an 

explicit solution. This challenge is attributed to the so-

called characteristic equation, the denominator of an 

integral representation of the beam deflection, is generally a 

fourth- or fifth-order polynomial with complex coefficients 

and thus its poles (or roots) usually cannot be explicitly 

expressed (Luo et al. 2015). This feature prevents the use of 

Cauchy’s residue theorem to evaluate line integrals of 

analytic functions over closed curves. Consequently, the 

problem has no closed-form solution in general. There is an 

exception for a viscoelastically supported Timoshenko 
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beam subjected to a non-moving harmonic line load, in 

which a closed-form solution exists (Luo et al. 2016). In 

that study, the characteristic equation is biquadratic with 

complex coefficients, and fourteen kinds of poles can be 

explicitly expressed with elementary functions given 

different combinations of viscous damping, frequency, and 

other sub-conditions. A closed-form solution was 

formulated by the use of the Cauchy’s residue theorem. 

If it is not restrictive to closed-form solutions, more 

advanced beam-foundation models can be adopted by using 

such as semi-analytical and numerical methods, which are 

better representations of the soil-pavement/track interaction 

problems. For example, Kargarnovin and Younesian et al. 

(2004) proposed a semi-anlaytical solution to a laminated 

composite beam resting on a Pasternak foundation 

subjected to an arbitrary moving load, in which those real 

poles were determined by using Gaussian quadrature 

method. Calim (2016) employed the Durbin’s algorithm to 

convert transform domain results of curved Timoshenko 

beams resting on a viscoelastic foundation back into real 

space. Luo et al. (2017) employed a Fast Fourier 

transformation (FFT) to study the steady-state response of a 

beam on a Pasternak foundation under vehicular loads. 

Karahan and Pakdemirli (2017) used the classical multiple 

scales and the multiple scales Lindstedt Poincare methods 

to investigate nonlinear vibrations of an EB beam resting on 

a nonlinear elastic foundation. 

This paper presents a general closed-form solution to a 

Timoshenko beam on an elastic foundation subjected to a 

moving harmonic line load. As the damping is excluded, the 

characteristic equation, as will be demonstrated later, is a 

quartic equation with real coefficients only. This kind of 

equation is the highest degree polynomial that can be 

analytically solved by radicals with no iterative techniques 

(Irving 2003). Several algorithms have been proposed for 

this purpose (Shmakov 2011). In this paper, we follow 

Ferrari algorithm to solve the quartic equation. 

Subsequently, a general closed-form solution is obtained by 

applying the Cauchy’s residue theorem. The present 

solution is general in the sense that it can be reduced to 

eight closed-form solutions with specific conditions 

summarized in the last column of Table 1. The first seven 

are available in the literature; the eighth is a byproduct of 

the present general solution and is reported for the first 

time.  

The paper is organized as follows. First, the deflection 

of a Timoshenko beam on an elastic foundation is derived 

in an integral representation, which is subsequently written 

in a general closed-form by applying the Cauchy’s residue 

theorem on poles of a quartic characteristic equation. The 

solution is then reduced to seven existing different sub-

problems and one new closed-form solution under zero 

speed. Finally, the solution is verified through two 

examples. 

 

 

2. Problem formulation 
 

2.1 Integral representation of beam deflection 
 

An infinite Timoshenko beam rested on an elastic  

k
y

v
m, R, E, I, SF

2l

−∞ +∞

 

Fig. 1 An infinite Timoshenko beam on an elastic 

foundation 
 

 

foundation is shown in Fig. 1. The Timoshenko beam is 

characterized by a mass per unit length m, Young’s modulus 

E, cross-sectional moment of inertia I, shear rigidity S, and 

radius of gyration R of the beam. The elastic foundation has 

a stiffness per unit length k. The governing equations of 

deflection w(y, t) and flexural rotation θ(y, t) of the beam in 

a fixed global Cartesian coordinate system (y) are given as 

follows  (Luo et al. 2015).  

𝑚𝑤̈(𝑦, 𝑡) + 𝑆[𝜃′(𝑦, 𝑡) − 𝑤′′(𝑦, 𝑡)] + 𝑘𝑤(𝑦, 𝑡)
= 𝐹(𝑦, 𝑡) (1) 

𝐸𝐼𝜃′′(𝑦, 𝑡) + 𝑆[𝑤′(𝑦, 𝑡) − 𝜃(𝑦, 𝑡)] = 𝑚𝑅2𝜃̈(𝑦, 𝑡) (2) 

The beam’s boundary conditions at infinity are 

lim
𝑦→±∞

𝑤(𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑤′(𝑦, 𝑡) = 0, lim
𝑦→±∞

𝜃(𝑦, 𝑡)

= 0, lim
𝑦→±∞

𝜃′(𝑦, 𝑡) = 0 (3) 

where 𝑖 = √−1, the dot and the prime over a variable 

denote the differentiation with respect to t and y 

respectively, and F(y, t) is a harmonic line load that moves 

rightwards with a constant speed v 

𝐹(𝑦, 𝑡) = 𝑓[𝐻(𝑦 − 𝑣𝑡 − 𝑙)
− 𝐻(𝑦 − 𝑣𝑡 + 𝑙)] exp(𝑖𝜔𝑡) (4) 

where H is the Heaviside function, f is the amplitude of the 

load per unit of length, l is the half length of the load, and ω 

is the circular frequency of the load. 

We introduce a local coordinate system y1 that attaches 

to the center of the load and moves with the load at the 

same speed v. The relationship between the two coordinate 

systems is 

𝑦1 = 𝑦 − 𝑣𝑡 (5) 

where subscript “1” indicates that the variable is in the local 

moving coordinate system.  

In a similar way, other variables are written in the local 

moving coordinate system as follows (Luo and Xia 2017) 

𝜂(𝑦, 𝑡) = 𝜂1(𝑦1, 𝑡) 
𝜂′(𝑦, 𝑡) = 𝜂1

′ (𝑦1, 𝑡) 
𝜂′′(𝑦, 𝑡) = 𝜂1

′′(𝑦1, 𝑡) 
𝜂̇(𝑦, 𝑡) = 𝜂1̇(𝑦1, 𝑡) − 𝑣𝜂1

′ (𝑦1 , 𝑡) 

𝜂̈(𝑦, 𝑡) = 𝜂1̈(𝑦1 , 𝑡) − 2𝑣𝜂1
′̇ (𝑦1, 𝑡) + 𝑣2𝜂1

′′(𝑦1, 𝑡) 

(6) 

where η represents w or θ. Note that the chain rule of 

differentiation is used in Eq. (6), and the prime now denotes 

the differentiation with respect to y1. 
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Substituting Eq. (6) into Eqs. (1)-(2) gives the following 

governing equations of w1 and θ1 in the local moving 

coordinate system 

𝑚(𝑤1̈ − 2𝑣𝑤1
′̇ + 𝑣2𝑤1

′′) + 𝑆(𝜃1
′ − 𝑤1

′′) + 𝑘𝑤1

= 𝐹1exp⁡(𝑖𝜔𝑡) 
(7) 

𝐸𝐼𝜃1
′′ + 𝑆(𝑤1

′ − 𝜃1) = 𝑚𝑅2(𝜃1̈ − 2𝑣𝜃1
′̇ + 𝑣2𝜃1

′′) (8) 

where variables y1 and t are not shown for the sake of 

brevity.  

The solutions of Eqs. (7)-(8) can be assumed in a 

harmonic form with respect to y1 and t as follows 

𝑤1(𝑦1, 𝑡) = 𝑤̃(𝜉, 𝜔) exp(𝑖𝜔𝑡) exp(𝑖𝜉𝑦1), 

⁡𝜃1(𝑦1, 𝑡) = 𝜃̃(𝜉, 𝜔)exp⁡(𝑖𝜔𝑡)exp⁡(𝑖𝜉𝑦1) 
(9) 

where ξ is the wavenumber with respect to y1, and it is 

generally a complex value with its real and imaginary parts 

representing the wavelength and the attenuation factor of a 

propagating wave respectively (Chen and Huang 2000, 

Chen et al. 2001). The tilde over a variable indicates its 

representation in the frequency-wavenumber domain. 

Substituting Eq. (9) into Eqs. (7)-(8) yields two 

algebraic equations in the frequency-wavenumber domain 

𝑚(−𝜔2𝑤̃ + 2𝜔𝜉𝑣𝑤̃ − 𝑣2𝜉2𝑤̃) + 𝑆(𝑖𝜉𝜃̃ + 𝜉2𝑤̃)

+ 𝑘𝑤̃ = 2𝑓sin(𝑙𝜉) 𝜉⁄  (10) 

−𝐸𝐼𝜉2𝜃̃ + 𝑆(𝑖𝜉𝑤̃ − 𝜃̃)

= 𝑚𝑅2(−𝜔2𝜃̃ + 2𝜔𝜉𝑣𝜃̃ − 𝑣2𝜉2𝜃̃) (11) 

Eliminating 𝜃̃ in Eqs. (10)-(11) yields the deflection of 

the beam in the frequency–wavenumber domain 

 
(12) 

where A, B, C, D, and E are real-valued and given by A = 

(EI – mR2v2)(S – mv2), B = 2mvω[EI + R2(S–2mv2)], C = (S–

mR2ω2)(S – mv2) + (EI – mR2v2)(k– mω2)–S2 + 4v2m2ω2R2,D 

= 2mvω(kR2+ S– 2mR2ω2), and E = (k–mω2)(S–mR2ω2). 

Then the deflection of the beam can be obtained from an 

inverse Fourier transform of Eq. (12) as 

 
(13) 

The denominator of Eq. (13) is known as a characteristic 

equation of the beam-foundation system.  

 

2.2 Poles of the characteristic equation 
 

The trivial pole of the characteristic equation is ξ0= 0, 

and the other four are solutions of the following quartic 

equation with real coefficients only 

𝐴𝜉4 + 𝐵𝜉3 + 𝐶𝜉2 + 𝐷𝜉 + 𝐸 = 0 (14) 

All physical parameters are real and positive. The shear 

rigidity is assumed to be considerably large such that S > 

mv2. Furthermore, an undamped beam cannot sustain any 

wave with its velocity higher than the wave velocity of the 

axial wave, that is, 𝑣 < 𝑣𝑎 = √𝐸 𝜌⁄ = √𝐸𝐼 𝑚𝑅2⁄ . In other 

words, A and B are positive, and C, D, and E may be 

positive, zero, or negative.  

Dividing Eq. (14) by A derives the following 

𝜉4 + 𝑐1𝜉
3 + 𝑐2𝜉

2 + 𝑐3𝜉 + 𝑐4 = 0 (15) 

where c1 = B/A, c2 = C/A, c3 = D/A, and c4 = E/A. With ξ = 

x– c1/4, Eq. (15) can be reduced to the following form 

𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 (16) 

where p = – 6(c1/4)2 + c2, q = 8(c1/4)3 –c1c2/2 + c3, and r = – 

3(c1/4)4 + (c1/4)2c2–c1c3/4 + c4. This equation is usually 

called a depressed equation of Eq. (15), in which the cubic 

item of x is eliminated. 

The Ferrari algorithm is followed to solve Eq. (16), and 

its procedure is presented in Appendix A for the sake of 

completeness of the solution. Finally, the four poles of the 

quartic equation Eq. (14) are set as ξ = x– c1/4 and are 

explicitly written as 

𝜉1,2 =
−√2𝑠 ± √Δ1

2
−
𝑐1
4

 (17) 

𝜉3,4 =
√2𝑠 ± √Δ2

2
−
𝑐1
4

 (18) 

where s is given in Eq. (A.15), a real root of the resolvent 

cubic Eq. (A.2); Δ1 = −2(𝑝 + 𝑠) + √2𝑞 √𝑠⁄  and Δ2 =

−2(𝑝 + 𝑠) − √2𝑞 √𝑠⁄  are given in Eqs. (A.16)-(A.17) 

respectively.  

The characteristics of the four non-trivial poles are 

discussed based on the value of s. s = 0 is excluded 

according to the definition of determinants Δ1 and Δ2. If 

s< 0, then both determinants Δ1 and Δ2 are complex, and 

thus the four poles are distinct and complex. If s> 0, then 

the admissible poles can be categorized as follows: 

      (a) If Δ1 < 0 and Δ2 < 0, then all four poles are 

distinct and complex. 

      (b) If Δ1 > 0 and Δ2 < 0, or Δ1 < 0 and Δ2 > 0, 

then two poles are distinct and real and the other two are 

distinct and complex. 

      (c) If Δ1 > 0 and Δ2 > 0, then all four poles are 

distinct and real. 

For the condition of⁡Δ1 = 0⁡or⁡Δ2 = 0, at least two of 

the four poles are real and identical. These kinds of poles 

are not admissible because the poles cause singularity in 

Cauchy’s residue theorem and the deflection of the beam is 

infinite (Frýba 1999). The condition gives a set of equations 

to determine the critical velocity and resonant frequency of 

the beam-foundation system. However, these equations are 

high-order polynomial functions of v and ω and cannot be 

solved analytically, except for ω = 0, in which the critical 

velocity can be given in an explicit form [Eq. (26)]. For a 

general case, a search algorithm is used with the following 

objective function 

|Δ1(𝑣, 𝜔)|

|Δ1(0,0)|
< 𝑈⁡⁡⁡⁡⁡⁡or⁡⁡⁡⁡

|Δ2(𝑣, 𝜔)|

|Δ2(0,0)|
< 𝑈 

subject to s ≠ 0, v > 0, and ω > 0 

(19) 

where U is a user-defined constant tolerance (10-4 in the 
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present study). At a given frequency, a range of moving 

speeds is searched, and the one that satisfies Eq. (19) is the 

critical velocity. At a given moving speed, a range of 

frequencies is searched and the one that satisfies Eq. (19) is 

the resonant frequency. 

 

2.3 A general explicit solution to beam deflection 
 

The identification of five poles of the characteristic 

equation allows the deflection of the beam in Eq. (13) to be 

written in the following form 

 
(20) 

A distinction is made between the response in front of 

the moving load (y1 ≥ 0) and the response behind the load 

(y1 < 0). Two of four non-trivial poles contribute to the 

former and the other two contribute to the latter. The 

response in front of the load will be discussed as follows. 

The response behind the load can be treated similarly and is 

thus not given for conciseness. 

Apart from the trivial pole ξ0 = 0, suppose ε1 and ε2 are 

the two poles that contribute to the responses in front of the 

load. Eq. (20) can be evaluated in the sense of Cauchy’s 

residue theorem 

𝑤1 =
𝑖2𝑓

𝐴
{Res[𝑊(𝜀1)] + Res[𝑊(𝜀2)]} (21) 

where Res[.] represents Cauchy’s residue of the function 

(Onu 2008) 

 (22) 

The two poles are selected based on the following 

criteria: 

   (a) a pole has a positive imagery part if the pole is 

complex; 

   (b) a pole has a larger absolute value than the other one 

if only two poles are real; and 

   (c) the largest and the smallest poles are chosen if all 

four poles are real. 

The first criterion is interpreted as a propagating wave 

with attenuation in an undamped beam that must have a 

finite deflection; the other two describe a propagating wave 

with no decay in an undamped beam that must have the 

Doppler effect due to a moving load, in which the resulting 

wavelength ahead of the load is shorter than behind (Frýba 

1999).  
 

 

3. Closed-form solution to reduced cases  
 

Eq. (20) is a general closed solution to a Timoshenko 

beam on an elastic foundation subjected to a moving 

harmonic line load. This problem can be reduced to seven 

existing cases under the conditions listed in Table 1. For 

these seven existing cases, no further formulation is given 

here to avoid repetition.  

Apart from the seven existing cases, a closed-form 

solution has not yet reported for the case under the 

condition of ω = 0, which is an infinite Timoshenko beam 

resting on an elastic subgrade subjected to a moving quasi- 

Table 2 Formula of the critical velocity of a beam on an 

elastic foundation subjected to a moving quasi-static load 

Case 

No. 

Beam 

type 
Formula Reference Condition 

1 Shear 𝑣𝑐𝑟 = √
−𝐸𝐼𝑘 + 2𝑆√𝑘𝐸𝐼

𝑚𝑆
 

Eq. (16) in Kim and Cho (2006) 

with no axial force 
R = 0 

2 Rayleigh 

𝑣𝑐𝑟

= √
−2𝑘𝑅2 + 2√𝑘𝐸𝐼 + 𝑘2𝑅4

𝑚
 

Eq. (12) in Kim (2005) with no 

axial force 
S = ∞ 

3 EB 𝑣𝑐𝑟 = √
2√𝑘𝐸𝐼

𝑚
 Eq (13.11) in Frýba (1999) S = ∞ and R = 0 

 

 

static line load. This implies B = 0, C = k(EI – mR2v2) – 

mSv2, D = 0, and E = Sk and the characteristic equation (Eq. 

(14)) becomes a biquadratic equation with real coefficients 

only 

𝐴𝜉4 + 𝐶𝜉2 + 𝐸 = 0 (23) 

Let X = ξ2. Eq. (23) then becomes a quadratic equation 

of X 

𝐴𝑋2 + 𝐶𝑋 + 𝐸 = 0 (24) 

with determinant Δ3 =Δ1 =Δ2 =C2 – 4AE.  

Letting Δ3 = 0 gives rise to the critical velocity, vcr, of 

the infinite Timoshenko beam on the elastic foundation, 

which is equivalent to solving another biquadratic equation 

with respect to v 

𝐿𝑣4 +𝑀𝑣2 +𝑁 = 0 (25) 

where L = m2(S – kR2)2, M = 2km[2R2S2+EI(S – kR2)], and N 

= EI2k2 – 4EIkS2. Solving Eq. (25) (see Appendix B) gives 

the critical velocity as follows 

 
(26) 

This expression is general for a beam on elastic 

foundation subjected to a moving quasi-static line load, 

which can be simplified to three cases under specific 

conditions, as summarized in Table 2. 

According to the value of Δ3, three cases will be 

discussed as follows: 

(a) When Δ3< 0, that is, v<vcr, Eq. (24) has two 

conjugate complex roots 

𝑋1,2 =
−𝐶 ± 𝑖√−Δ3

2𝐴
 (27) 

This equation corresponds to Δ1< 0 and Δ2< 0, case (a) 

in Section 2.2, and then all four poles of Eq. (23) are 

distinct and complex 

𝜉1 = 𝑗 + 𝑖𝑑, 𝜉2 = −𝑗 − 𝑖𝑑, 𝜉3 = 𝑗 − 𝑖𝑑, 𝜉4 = −𝑗 + 𝑖𝑑 (28) 

where both j and d are real and positive, and given by 𝑗 =

√−𝐶+√𝐶2−Δ3

4𝐴
 and 𝑑 = √𝐶+√𝐶2−Δ3

4𝐴
. These complex poles 

imply that the resulting wave, generated by a moving quasi-

static line load at a speed lower than the critical velocity, is 

a propagating wave with a wavelength of 𝜆 = 2𝜋 𝑗⁄  and 

decays exponentially in a rate of exp(−𝑑𝑦1). The two 

poles that contribute to the response in front of the moving 

load are chosen based on criterion (a), that is, 𝜀1 = 𝜉1 =
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𝑗 + 𝑖𝑑  and 𝜀2 = 𝜉4 = −𝑗 + 𝑖𝑑 . Substituting these two 

poles and the trivial pole ξ0= 0 into Eq. (20) yields the 

following closed-form result 

𝑤1

=∑
𝑖𝑓sin(𝑙𝜀𝑗)[(𝐸𝐼 − 𝑚𝑅2𝑣2)𝜀𝑗

2 + 𝑆] exp(𝑖𝜀𝑗𝑦1)

4𝐴(𝐺 + 𝐻𝑗𝑖)

2

𝑗=1

,⁡ 

⁡
𝑦
1
≥ 0⁡and⁡𝑣 < 𝑣𝑐𝑟  

(29) 

where G = – 2j2d2, H1 = jd(j2 – d2), and H2= – jd(j2 – d2). 

The other two poles for the response behind the load are 

𝜀1 = 𝜉2 = −𝑗 − 𝑖𝑑  and 𝜀2 = 𝜉3 = 𝑗 − 𝑖𝑑 . The resulting 

closed-form solution can be verified as being identical with 

that ahead of the load, Eq. (29). In other words, the 

deflection of the beam is symmetric with respect to the load 

center if the speed of the load does not exceed the critical 

velocity.  

(b) When Δ3> 0, that is, v>vcr, Eq. (24) has two distinct 

real roots 

𝑋1,2 = (−𝐶 ± √Δ3) 2𝐴⁄  (30) 

The equation corresponds to Δ1>0 and Δ2>0, case (c) in 

Section 2.2, in which all four poles of Eq. (23) are distinct 

and real 

𝜉1,2 = ±√(−𝐶 + √Δ3) 2𝐴⁄ , 𝜉3,4 =

±√(−𝐶 − √Δ3) 2𝐴⁄  

(31) 

These real poles indicate that the resulting wave in the 

undamped beam subjected to a moving load at a speed 

higher than the critical velocity could only be a propagating 

wave with no attenuation. 𝜀1 = 𝜉1⁡and 𝜀2 = 𝜉2⁡are chosen 

based on criterion (c) for the response ahead of the moving 

load. Substituting these two poles and the trivial pole ξ0= 0 

into Eq. (20) yields the following closed-form solution 

 
(32) 

For the response behind the load, the two poles are 𝜀1 =
𝜉3⁡and⁡𝜀2 = 𝜉4. Substituting them and the trivial pole ξ0= 0 

into Eq. (20) gives the following closed form-solution 

 
(33) 

This solution is not the same as Eq. (32), implying that 

the beam’s deflection is not symmetric with respect to the 

center of the load when the speed of the load exceeds the 

critical velocity. 

(c) When Δ3 = 0, that is, v = vcr, Eq. (24) has two equal 

roots X1,2 = – C/2A. This leads to an infinite deflection 

(Frýba 1999), which is impractical. 

Table 3 summarizes the closed-form solution to a 

Timoshenko beam on an elastic foundation when it is 

subjected to a moving quasi-static line load. 
 

 

4. Verification 
 

This section verifies the present solution through two  

Table 3 Closed-form solution of an infinite Timoshenko 

beam on an elastic subgrade subjected to a moving quasi-

static line load 

Case Condition y1 ≥ 0 y1< 0 

1 v<vcr Eq. (29) Eq. (29) 

2 v>vcr Eq. (32) Eq. (33) 

 

 

examples. One is to reduce a classical closed-form solution 

of an EB beam on a Winkler foundation, and the other is to 

compare results of the present solution and the existing 

numerical example of a Timoshenko beam subjected to a 

moving axle load. 

 

4.1 Example 1: An EB beam on Winkler foundation 

subjected to moving point load 
 

This section demonstrates a reduction of the closed-

form solution of Section 3 into a classical closed-form 

solution of an EB beam on a Winkler foundation, which has 

been well documented in Frýba (1999) and Mathews (1958) 

and commonly used as a benchmark study (Sun 2001, Luo 

et al. 2015, Luo and Xia 2017, Onu 2008). The reduction is 

realized by setting the shear rigidity to infinity and the 

radius of gyration to zero. In this regard, Eq. (23) is reduced 

to the characteristic equation of the reduced system 

𝐸𝐼𝜉4 −𝑚𝑣2𝜉2 + 𝑘 = 0 (34) 

with a determinant of m2v4 – 4kEI. Setting this determinant 

equal to zero yields the critical velocity of the reduced 

system 𝑣𝑐𝑟 = √4𝐸𝐼𝑘 𝑚2⁄4
, which is exactly the case (3) in 

Table 2. 

Define a dimensionless speed of the load𝛼 = 𝑣 𝑣𝑐𝑟⁄ , a 

static deflection 𝜆 = √𝑘 4𝐸𝐼⁄4
, 𝑎 = √1 + 𝛼2 , and 𝑏 =

√1 − 𝛼2. In the case of α<1, 𝑗 = 𝜆𝑎 and 𝑑 = 𝜆𝑏, leading 

to a dimensionless form of four non-zero poles 𝜉1,3 𝜆⁄ =

𝑎 ± 𝑖𝑏 and 𝜉2,4 𝜆⁄ = −𝑎 ∓ 𝑖𝑏⁡according to Eq. (28). These 

expressions are consistent with Eqs. (13.18)-(13.25) in 

Frýba (1999) and are shown in Fig. 2(a). Substituting these 

poles into Eq. (29) yields 

𝑤1 =
𝜆exp⁡(−𝑏𝜆|𝑦1|)

2𝑘𝑎𝑏
[𝑎 cos(𝑎𝜆𝑦1)

+ 𝑏⁡sin⁡(𝑎𝜆|𝑦1|)], 𝛼 < 1 
(35) 

This equation is the same as the available closed-form 

solution (see Eq. (13.54) in Frýba (1999)). Note that the 

terms ⁡2𝑓sin(𝑙𝜉) 𝜉⁄  and the trivial pole 𝜉0⁡ have been 

dropped in the general explicit solution (Eq. (20)) because a 

unit point load instead of a distributed line one is under 

consideration.  

In the case of α>1, the four non-zero poles in the 

dimensionless form are 𝜉1,2 𝜆⁄ = ±𝑎  and 𝜉3,4 𝜆⁄ =
±𝑏⁡according to a square root of Eq. (30). Again, these 

poles are identical with Eqs. (13.18)-(13.27) in Frýba 

(1999) and are shown in Fig. 2b. Substituting the first two 

poles into Eq. (32) and the latter two into Eq. (33) yields the 

response of the beam ahead and behind the load 

respectively 
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ξ1
ξ4

ξ2 ξ3

Im(ξ)

Re(ξ)

 
(a) v < vc 

ξ1

ξ4

ξ2

ξ3

Im(ξ)

Re(ξ)

 
(b) v > vcr 

Fig. 2 Poles of the characteristic equation (ξ1 to ξ4) of an 

infinite EB beam on a Winkler foundation 

 

 

𝑤1 =
−2𝜆sin⁡[(𝑎 − 𝑏)𝜆𝑦1]

2𝑘(𝑎 − 𝑏)√𝛼4 − 1
, 𝛼 > 1⁡and𝑦1 > 0 (36) 

𝑤1 =
−2𝜆sin⁡[(𝑎 + 𝑏)𝜆𝑦1]

2𝑘(𝑎 + 𝑏)√𝛼4 − 1
, 𝛼 > 1⁡and𝑦1 < 0 (37) 

Again, these two solutions are consistent with Eq. 

(13.55) in Frýba (1999). 

 

4.2 Example 2: A Timoshenko beam subjected to 
moving axle load 
 

In the second example, the present explicit solution is 

compared with the existing numerical solution of a 

Timoshenko beam on an elastic foundation subjected to a 

moving axle load, which has been studied in Kim and Cho 

(2006) and Kim (2005). The system is a concrete pavement 

with the following mechanical properties: EI = 2.3 kNm2, m 

= 48.2 kg/m, k = 68.9 MPa, R = 0.1 m, and S = 20 MN. The 

axle load is a uniformly distributed line load of 2l = 0.1524 

m and f = 262.5 kN/m, representing a design equivalent  

 

Fig. 3 Deflected shape of a Timoshenko beam on an elastic 

foundation subjected to a moving axle load of 2 Hz 
 

 

axle load of 40 kN in a contact area of a typical tyre. Two 

load frequencies, 2 and 10 Hz, are considered, which 

correspond to the vehicle bounce frequency and the wheel 

hop frequency respectively (Hao and Ang 1998). 

At a given moving load of 2 Hz, the critical velocity is 

identified by Eq. (19) for a range of load speeds from 1 m/s 

to 100 m/s with a step of 0.01 m/s. Two critical velocities, 

vcr1 = 66.04 m/s and vcr2 = 67.02 m/s, are found under the 

conditions of Δ1→ 0 and Δ2→ 0 respectively. 

Assume the load moves at a speed of 10 m/s. In the 

case, Δ1 = – 350.54 and Δ2 = – 351.73, resulting in four 

distinct and complex poles 𝜉1,2 = – 9.35 ± 9.36i and 𝜉3,4 

= 9.32 ± 9.38i according to Eqs. (17)-(18). The first and 

third poles are selected to compute the response in front of 

the moving load according to criterion (a); the other two 

poles are for the response behind the load. These poles are 

substituted into Eq. (21), and the deflection of the beam is 

obtained and shown in Fig. 3(a). The deflection pattern is 

similar to that under a non-moving harmonic load, that is, it 

is the maximum at the center of the load and symmetric 

with respect to the center. The result is compared with a 

reference computed by the exponential window method 

proposed for computing the forced responses of undamped 

structures (Kausel and Roësset 1992). Both results agree 

very well. The agreement is also observed for other load 

speeds lower than the first critical velocity. As the load 

speed increases, the deflection pattern is wider with a larger 

fluctuation. Meanwhile, the maximum deflection increases 

and not necessarily locates at the center of the load.   

The load speed higher than the first critical velocity is 

impractical in the present example, but it would be 

interesting from a theoretical point of view because it 

allows us to see how the deflection of the beam will become 

for such a high load speed. As an example of v = 66.5 m/s, 

Δ1 = 141.15 and Δ2 = – 140.34, thus yielding two distinct 

and real poles ξ1 = – 32.48 and ξ2 = – 20.60 and two distinct 

and complex poles 𝜉3,4 = 24.14 ± 5.92i according to Eqs. 

(17)-(18). The two real poles represent a propagating wave 

along the beam with no attenuation, shown as “Wave 1” in 

Fig. 4. The wave ahead of the load has a shorter wavelength 

𝜆1 = 2𝜋 |𝜉1|⁄  = 0.19 m and a higher amplitude than behind 

(𝜆2 = 2𝜋 |𝜉2|⁄  = 0.31 m). The two complex poles represent 

the other propagating wave with a wavelength 𝜆2 =
2𝜋 24.14⁄  = 0.26 m and exponential attenuation of exp(– 

5.92 y1). The shape of the wave is shown as “Wave 2” in  
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Fig. 4 Deflected shape of a Timoshenko beam on an elastic 

foundation subjected to a moving axle load of 2 Hz at a 

speed of 66.5 m/s 

 

 

(a) ω = 4π Hz 

 
(b) ω = 20π Hz 

Fig. 5 Maximum deflection versus load speed 

 

 

Fig. 4. The wave is symmetric with respect to the center of 

the load and has the maximum deflection at the center. The 

combination of these two propagating waves gives rise to 

the deflection of the beam in Fig. 4. It is no longer 

symmetric, and it tends to coincide with the shape of “Wave 

1” as the distance is further away from the load center. A 

reference result is also superimposed in the figure, agreeing 

very well with the present one. 

The maximum deflections due to a moving axle load of 

2 Hz are shown in Fig. 5(a) for a range of load speeds of 

40-100 m/s. As the load speed increases, the maximum 

deflection increases and reaches infinity at the first critical 

velocity; it then drops down sharply and increases again to 

infinity at the second critical velocity. A reference 

maximum reflection in Luo et al . (2015) is also 

superimposed, which is obtained through an evaluation of 

Eq. (20) by a FFT with hysteretic damping of 1%. Given  

 

Fig. 6 Deflected shape of a Timoshenko beam on an elastic 

foundation subjected to a moving axle load at a speed of 30 

m/s 

 

 

(a) v = 10 m/s 

 
(b) v = 30 m/s 

Fig. 7 Maximum deflection versus load frequency 
 

 

that the damping is included, the peaks of the reference 

maximum deflection are finite in amplitude and are less 

sharp. From both curves of the maximum deflection, the 

first critical velocity can be picked and is almost the same 

as the identified one (vcr1 = 66.04 m/s). 

The maximum deflections for the load at a frequency of 

10 Hz are shown in Fig. 5(b). As a reference, the two 

critical velocities obtained by Eq. (19) are 63.91 and 68.81 

m/s for a range of load speeds of 1-100 m/s with a step of 

0.001 m/s, corresponding to Δ1→ 0  and Δ2→ 0 

respectively. The same critical velocities can be found in 

both curves of the maximum deflections. The first critical 

velocity is lower than that for the load of 2 Hz, but the 

second one is higher. 

Two load speeds, 10 and 30 m/s, are considered, which 

represent the low and high speeds of a vehicle respectively.  

393



 

Wei-Li Luo, Yong Xia and Xiao-Qing Zhou 

 

 

(a) ω = 4π Hz 

 
(b) ω = 20π Hz 

Fig. 8 Effects of the radius of gyration and the shear rigidity 

on the first critical velocity 
 

 

The corresponding resonant frequencies are identified by 

Eq. (19) as 120.52 and 99.96 Hz for a range of frequencies 

1-150 Hz with a step of 0.001 Hz. Both appear under a 

condition of⁡Δ1→ 0. In this particular example, the resonant 

frequency is rather high, while the normal axle load of a 

vehicle will never reach the same degree of frequency, thus 

only the deflection at a frequency lower than the resonant 

frequency is investigated. Fig. 6 shows the deflection of the 

beam due to the load with a speed of 30 m/s for three 

representative frequencies. The deflection is symmetric 

with respect to the load center and reaches the maximum at 

the center. As the load frequency increases, the maximum 

deflection is higher and the deflection is more fluctuated. In 

the three cases, the agreement between the present explicit 

solution and the reference one is excellent. Similar 

conclusions can be drawn from the cases with a load speed 

of 10 m/s; thus, these cases are not given for conciseness. 

The maximum deflections due to the two load speeds 

are shown in Fig. 7 for a range of frequencies 50–150 Hz. 

As the load frequency increases, the maximum deflection 

increases steadily at first, reaches infinity at the resonant 

frequency, and then decreases sharply. The resonant 

frequency picked from the maximum deflection curves is 

the same as that computed by Eq. (19), and its value is 

lower as the load speed increases.  

The first critical velocity is investigated in Fig. 8 for a 

range of radii of gyration (0.1-0.18 m) and two shear 

rigidity values (20 and 1 MN). The critical velocity 

decreases almost linearly with the increasing radius of 

gyration and is insensitive to the variation of shear rigidity 

regardless of the load frequency. It decreases slightly from 

the load of 2 Hz to that of 10 Hz. These observations are  

 

(a) v = 10 m/s 

 
(b) v = 30 m/s 

Fig. 9 Effects of the radius of gyration and the shear rigidity 

on the resonant frequency 

 

 

consistent with Luo et al. (2015). 

The resonant frequency at a given load speed is also 

discussed in Fig. 9 for various radii of gyration and shear 

rigidity. A linear decrease in the resonant frequency is 

observed with the increasing radius of gyration. Meanwhile, 

a constant value of decrease is found as the shear rigidity 

decreases and the value is narrowed down as the load speed 

is higher. A large drop is observed in the resonant frequency 

from the load speed of 10 m/s to that of 30 m/s. Similar 

observations have been found in Luo et al. (2015). 

 

 

5. Conclusions 
 

In this paper, a general closed-form solution to a 

Timoshenko beam on elastic foundation is formulated when 

it is subjected to a moving harmonic line load. The 

formulation is based on the feature that the characteristic 

equation of the problem is a quartic equation with real 

coefficients only. The poles of the equation can be written 

in an explicit form. With these poles, the general closed-

form solution of the beam’s deflection is finally deduced by 

applying Cauchy’s residue theorem. The solution can be 

reduced to seven existing closed-form solutions under 

specific conditions and to a new closed-form solution to a 

Timoshenko beam on an elastic foundation subjected to a 

moving quasi-static line. The solution is consistent with the 

classical closed-form solution to an EB beam on an elastic 

foundation under a point moving load, and is verified by a 

comparison with the existing numerical solutions. 
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Appendix A 
 

This section solves Eq. (16) by the classic Ferrari 

algorithm. 

We introduce an arbitrary variable s and regroup Eq. 

(16) as a perfect square in the left-hand side 

(𝑥2 +
𝑝

2
+ 𝑠)

2

= 2𝑠𝑥2 − 𝑞𝑥 + 𝑠2 + 𝑠𝑝 +
𝑝2

4
− 𝑟 (A.1) 

The value of s can be chosen, such that the right-hand 

side of Eq. (17) is a perfect square. This implies that the 

determinant in x of this quadratic equation is zero, that is, s 

is a root of the equation 

𝑠3 + 𝑝𝑠2 + (𝑝2 4⁄ − 𝑟)𝑠 − 𝑞2 8⁄ = 0 (A.2) 

This is the resolvent cubic of Eq. (16). According to the 

intermediate value theorem, Eq. (18) at least has a real root 

(Irving 2003). With the real root, Eq. (17) becomes 

(𝑥2 +
𝑝

2
+ 𝑠)

2

= (√2𝑠𝑥 −
𝑞

2√2𝑠
)
2

 (A.3) 

This results in two quadratic equations 

𝑥2 + √2𝑠𝑥 +
𝑝

2
+ 𝑠 −

𝑞

2√2𝑠
= 0 (A.4) 

𝑥2 − √2𝑠𝑥 +
𝑝

2
+ 𝑠 +

𝑞

2√2𝑠
= 0 (A.5) 

Thus far, solving the quartic equation Eq. (15) is 

equivalent to seeking a real root of the resolvent cubic 

equation Eq. (A.2) and then solving two quadratic equations 

Eqs. (A.4)-(A.5).   

In the first step, a depressed equation of Eq. (A.2) is 

obtained by a change of variable s = z–p/3 

𝑧3 + 𝑔𝑧 + ℎ = 0 (A.6) 

where g = –r–p2/12, and h = –p3/108 + pr/3 –q2/8. Let z = u 

+ v, then Eq. (A.6) becomes 

𝑢3 + 𝑣3 + ℎ + (3𝑢𝑣 + 𝑔)(𝑢 + 𝑣) = 0 (A.7) 

As one more variable is introduced, another condition 

3uv + g = 0 is imposed. This gives the following 

𝑢3𝑣3 = −
𝑔3

27
 (A.8) 

Then Eq. (A.7) can be rewritten as follows 

𝑢3 + 𝑣3 = −ℎ (A.9) 

The combination of Eqs. (A.8)-(A.9) leads to a 

quadratic equation of Z with its roots as u3 and v3 

𝑍2 + ℎ𝑍 −
𝑔3

27
= 0 (A.10) 

The determinant of the above equation is⁡Δ =
ℎ2

4
+

𝑔3

27
. 

Solving this quadratic equation results in 

𝑢3 = −
ℎ

2
+ √Δ, 𝑣3 = −

ℎ

2
− √Δ (A.11) 

A cubic root of Eq. (A.11) gives three roots of Eq. (A.6) 

(Irving 2003) 

𝑧1 = 𝑢0 + 𝑣0 (A.12) 

𝑧2 = −
1

2
(𝑢0 + 𝑣0) +

𝑖√3

2
(𝑢0 − 𝑣0) (A.13) 

𝑧3 = −
1

2
(𝑢0 + 𝑣0) −

𝑖√3

2
(𝑢0 − 𝑣0) (A.14) 

where 𝑢0 = √−
ℎ

2
+ √Δ

3
 and 𝑣0 = √−

ℎ

2
− √Δ

3
.  

The characteristics of the three roots are determined by 

the value of Δ.  

(a) If Δ ≥ 0, then all three roots are real numbers. 

Without loss of generality, we may choose z1 as an input 

real root for Eqs. (A.4)-(A.5).  

(b) If Δ < 0, then z1 is a real number because 𝑢0 =

√−
ℎ

2
+ 𝑖√−Δ

3
 and 𝑣0 = √−

ℎ

2
− 𝑖√−Δ

3
 are a complex 

conjugate pair; the other two are complex conjugate roots. 

Thus, the real root of Eq. (A.2) is s = z1–p/3 and is 

explicitly expressed as 

𝑠 = √−
ℎ

2
+ √

ℎ2

4
+
𝑔3

27

3

+ √−
ℎ

2
− √

ℎ2

4
+
𝑔3

27

3

−
𝑝

3
 (A.15) 

With this root, we can then start to solve Eqs. (A.4)-

(A.5). The two determinants are defined as follows 

Δ1 = −2(𝑝 + 𝑠) +
√2𝑞

√𝑠
 (A.16) 

Δ2 = −2(𝑝 + 𝑠) −
√2𝑞

√𝑠
 (A.17) 

The corresponding two roots of the quadratic equation 

are 

𝑥1,2 =
−√2𝑠 ± √Δ1

2
 (A.18) 

𝑥3,4 =
√2𝑠 ± √Δ2

2
 (A.19) 
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Appendix B 
 

This section demonstrates the procedure to obtain the 

critical velocity of a system with an infinite Timoshenko 

beam on an elastic foundation subjected to a moving quasi-

static line load.  

Let Y = v2. Thus, Eq. (25) becomes a quadratic equation 

of Y 

𝐿𝑌2 +𝑀𝑌 +𝑁 = 0 (B.1) 

The determinant Δ4 is 

Δ4 = 16𝑘𝑚2𝑆3[𝑘𝑅4𝑆 + 𝐸𝐼(𝑆 − 𝑘𝑅2)] (B.2) 

As the shear rigidity is assumed to be considerably 

large, the determinant is positive. Thus, Eq. (B.1) has two 

distinct real roots 

 
(B.3) 

As 

𝑌1𝑌2 =
𝐸𝐼𝑘(𝐸𝐼𝑘 − 4𝑆2)

𝑚2(𝑆 − 𝑘𝑅2)2
< 0 (B.4) 

One real root is positive and the other is negative. 

Letting Y1> 0 and Y2< 0, the solutions of Eq. (25) are 

𝑣1,2 = ±√𝑌1, 𝑣3,4 = ±𝑖√−𝑌2 (B.5) 

Given that a real-valued root is of interest, v1 is the 

critical velocity of the present beam-foundation system and 

its explicit form is given in Eq. (26). 
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