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1. Introduction 
 

Due to its high speed and accuracy in data sampling, 

Global Positioning System (GPS) is the most common and 

popular Global Navigation Satellite System (GNSS) 

technique, with many applications in a wide range of areas. 

In particular, GPS-recorded data is a unique alternative to 

continuous monitoring in health monitoring studies; 

however, it presents with certain challenges (Pehlivan et al. 

2013). For example, GPS data includes displacements, 

atmospheric faults, and antenna phase center errors, as well 

as low-frequency components due to possible multipath 

errors (Hristopulos et al. 2007, Ogaja and Satirapod 2007, 

Yi et al. 2011a). That is, real-time raw GPS sequences 

contain long- and short-periodic position changes, as well 

as a mixture of varying noisy signals at different 

frequencies (Herring et al. 2016). Distinguishing and 

interpreting periodic position changes that represent the 

movements of the structure in raw GPS data constitute an 

important problem. To eliminate this problem, researchers 

have suggested using filters before calculating semi-static 

and static displacement components from noisy time series 

(Yan et al. 2003, Roberts et al. 2004, Gikas 2012, Yi et al. 

2012, Moschas and Stiros 2013). In this context, effective 

and sensitive analytical methods are needed to distinguish 

structural changes and vibrations in noisy datasets 

(Nickitopoulou et al. 2006, Hristopulos et al. 2007). For 

this purpose, in order to calculate the periodic mode values 

representing the movements of the structure and their 

amplitudes from GPS, the data recorded in time series  

                                                      

Corresponding author, Ph.D.  

E-mail: hpehlivan@gtu.edu.tr 
 

 

should be examined as a function in time and frequency 

domains. 

Firstly, in the time domain, it is necessary to remove the 

abnormal and excessively deviated uncontrolled data from 

the series on the time axis. A general threshold value 

applied to such signals in the time dimension results in a 

significant part of the periods falling below the threshold 

(Elbeltagi et al. 2015). Thus, in the time domain, a complete 

series with a lower standard deviation is obtained before 

filtering. A low or high pass filter is applied to highlight the 

low- and high-frequency components and suppress the 

others, respectively. 

Secondly, in the frequency domain, a method known as 

spectrum analysis is used for a complete and detailed 

examination of all the periods in the signal. This method 

refers to time-series analysis in the frequency domain. In a 

broader sense, the periodic components that occur between 

observations at different points in time are examined in the 

frequency dimension. Commonly, in structural health 

monitoring studies, meaningful periodic components of 

continuous GPS signals can be determined by switching 

between Fourier transform (FT) and time-frequency 

(Welsch 1996). A considerable number of studies have been 

carried out on the displacement calculation of GPS series 

using FT (Satirapod et al. 2001, Xu et al. 2002, Li et al. 

2006, Erdoğan and Gulal 2009, Yigit et al. 2010, Goudarzi 

et al. 2012, Pehlivan et al. 2013, Yi et al. 2013a, b, Kaloop 

and Kim 2014, Yigit 2016). 

In this study, a systematic approach was adopted to 

analyze the noisy GPS data obtained from the Endem TV 

tower located in Istanbul, Turkey. Simultaneous data was 

collected from two GPS receiver antennas mounted at a 

height of 165 m at a distance of 1.20 m from the north and 

south walls of the tower. Due to the proximity of the  

 
 
 

Frequency analysis of GPS data for structural health monitoring observations  
 

Hüseyin Pehlivan 

 
Department of Geodetic and Photogrammetric Engineering, Gebze Technical University, Kocaeli, Turkey  

 
(Received September 16, 2017, Revised January 30, 2018, Accepted January 31, 2018) 

 
Abstract.  In this study, low- and high-frequency structure behaviors were identified and a systematic analysis procedure was 

proposed using noisy GPS data from a 165-m-high tower in İstanbul, Turkey. The raw GPS data contained long- and short-

periodic position changes and noisy signals at different frequencies. To extract the significant results from this complex dataset, 

the general structure and components of the GPS signal were modeled and analyzed in the time and frequency domains. 

Uncontrolled jumps and deviations involving the signal in the time domain were pre-filtered. Then, the signal was converted to 

the frequency domain after applying low- and high-pass filters, and the frequency and periodic component values were 

calculated. The spectrum of the tower motion obtained from the filtered GPS data had dominant peaks at a low frequency of 

1.15572×10-4 Hz and a high frequency of 0.16624 Hz, consistent with two equivalent GPS datasets. Then, the signal was 

reconstructed using inverse Fourier transform with the dominant low frequency values to obtain filtered and interpretable clean 

signals. With the proposed sequence, processing of noisy data collected from the GPS receivers mounted very close to the 

structure is effective in revealing the basic behaviors and features of buildings. 
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Fig. 1 Characteristics and components of the time series 

(Floyd 2017) 
 

 

receivers to the tower wall, abnormal noisy data was 

obtained at certain times of the day as a result of the effect 

of error sources such as multipath and satellite geometry 

failure. To analyze noisy data in more detail, the proposed 

filtering approach was implemented using cyclic codes that 

linearly advance in the Matlab environment. Using this 

procedure, it was possible to determine the basic natural 

frequency from noisy GPS measurements. 

Excessive deviations that originated from the receiver or 

the satellite were removed from all series using a local 

moving averages criterion (LMAC) filter. Subsequently, a 

weighted moving average (WMA) filter with an adaptively 

determined window length based on finite-impulse-

response (FIR) was used to separate low frequency 

components (Han and Rizos 2000; Press et al. 1992). The 

GPS data filtered in the time domain was calculated using 

fast Fourier transform (FFT) and was decomposed into sub-

signals. Thus, periodic and frequent repetition frequencies 

were determined, regardless of which repetitive signals 

were included in which frequency component of the raw 

signal and the type of frequency component. The signal was 

reconstructed using inverse Fourier transform (IFFT) with 

the dominant frequency values obtained in the previous step 

to acquire a filtered and interpretable clean signal. Thus, the 

positional changes in the sampling interval and the 

measurement sensitivity were modeled, depending on the 

time and variables at which the measurement took place. 

The fundamental frequency values of the tower 

displacement were obtained from the spectral analysis of 

the filtered noisy GPS signal. The results were verified with 

the values calculated from both receivers. 

 

 

2. Data analysis method 
 

2.1 The determination of displacement amplitude and 

frequency values 
 

The model of the characteristics and components of the 

raw GPS time series recorded at fixed intervals in the time 

domain were taken from Floyd (2017) and are shown in 

Fig. 1. 

The model can be considered as a GPS displacement 

vector (y) for structural health monitoring. In this case, the 

initial position and linear velocity term indicate that the 

displacements of the real dominant frequency, and annual 

and semiannual sinusoids are considered as low-frequency 

fluctuations from various sources; e.g., multipaths. White 

noise corresponds to discontinuous jumps in the signal 

caused by the receiver and/or satellite outages, cycle slips, 

etc. (Hristopulos et al. 2007). Here, the real displacement 

component of interest is suppressed by low-frequency 

fluctuations and white noise from non-stationary 

components. The actual displacement has much smaller 

amplitude than non-stationary components. For this reason, 

it is possible for low-frequency displacements to be 

accompanied by low-frequency noise. 

The raw GPS signal contains with complex information 

that can be used to determine meaningful displacement 

amplitude and frequency values (i.e., sinusoidal 

components) which reflect the motion of the structure; thus, 

it should first be examined in the time dimension. 

Furthermore, the estimation of uncertainties and deviations 

in the signal is made possible by the precise knowledge of 

the signal spectrum in order to determine the periodics 

(dynamic and semi-static displacements) in the signal. The 

GPS data analysis process recommended consists of the 

following six stages: 

Analysis in the time domain, 

Low-high pass filtering, 

Signal multiplication with the window function, 

Transformation to the frequency domain and calculation 

of sinusoids, 

Calculating the power spectrum of the signal,  

Reconstruction of the signal with IFFT.  
 

2.2 Analysis in the time domain 
 

In the first step, abnormal data random errors such as 

deviations in the series must be eliminated. Since such data 

occurs in a short period over the entire sequence, the 

separation of the faulty elements from the GPS series does 

not significantly affect the statistical properties of the series, 

but allows performing a more robust spectral analysis. 

In the literature, standard deviation values are used as a 

criterion for the removal of uncontrolled jumps and 

deviations in raw series. As an alternative to standard 

deviation, other robust dispersion estimates, such as median 

absolute deviation and m-estimators can be used instead of 

the standard deviation (Mertikas 1994). An iterative 

algorithm has been developed to remove all abnormal 

outliers. To separate non-normal distribution fluctuations 

and jumps revealed, the mean extreme deviation criterion 

(threshold value) is used (Hristopulos et al. 2007).  

|ykt-ỹkt|=4σkyt (1) 

where the standard deviation of yt is σyt, with ỹt being the 

average of the samples with m elements, and k represents 

the iteration order of the filter. ỹt is called the LMAC of a 

yn series with n elements which are standardized with yn = 

yt - ỹt equality. Each t ∈ {t1,…,tn} element is calculated 

as follows 

ỹt =
∑ y(t)

t−1
t−m

m
 (2) 

where every average value for t time is iteratively 

calculated with a moving average in a window of (t-m) size. 

Here, the value of m can be determined by considering the 

sampling interval of the data. The LMAC values of the 

series yt for each t value are calculated using the (t-m) 

window widths. If the value of yt is greater than 4σkyt , the 

calculated average value is assigned to this data. Otherwise,  
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Fig. 2 Noisy data and low-pass filtering 

 

 

the normal value is maintained in the series, and the 

removing process for each t is carried out using the 

following equation; 

yt = {
ỹt           ,       − |4σk

yt
|   > yt > +|4σk

yt
|

yt          ,        − |4σk
yt

|   < yt < +|4σk
yt

|
 (3) 

With this equation, the yt series are removed from the 

uncontrolled data. Thus, extreme deviations from the local 

average are successfully removed from all series. In 

addition, the standard deviation criterion can be used as a 

filtering threshold in LMAC instead of 4σkyt, depending on 

the nature of the data used in the study.  

 

2.3 Filtering 
 

In general, although the statistical and systematic 

characteristics of GPS noise are not fully known, the 

spectral distribution has been suggested as follows (Han 

and Rizos 1997): 

(1) Atmospheric noise from 5×10-5 to 8×10-4 Hz, 

(2) the multipath noise from 8×10-4 to 10-2 Hz, 

(3) the receiver noise from 8×10-4 to 2×10-2 Hz, 

(4) the noise from various sources from 0 to 10 Hz. 

Accordingly, it was hoped that by removing the non-

stationary noise component with low-frequency 

fluctuations, the stationary component including the real 

displacement and random noise would be obtained. 

Different filters were applied to clearly reveal the 

periodicities that occurred in the long- and short-time 

intervals (i.e., low- and high-frequency components); 

moving average as a low-pass filter for the former and a 

high-pass filter for the latter. 

 

2.3.1 Low-pass filtering 
The floating average method known as smoothing 

operation was used to remove the noise component in the 

time series to reveal the low-frequency periodicities and the 

trend component. Most filters that perform softening can be 

considered to be a low-pass type. Many softening 

algorithms are available including Additive, Savitzky-

Golay, Ramer-Douglas-Peucker, Moving Average, and 

Kalman filters (Duran and Earleywine 2012).  

In this study, as a convenient and simple method to 

extract static and semi-static displacements of structures, 

WMA was deemed appropriate based on observations of 

GPS data (Moschas and Stiros 2013). According to the 

weight model used in MWA, the effect of previous and 

subsequent values was weighted during the calculation of 

each variable. Thus, the potential number of variables that 

would fall outside the accuracy limits was reduced. The  

 

Fig. 3 Noisy data and high-pass filtering 

 

 

filter applied to a sample signal is shown in Fig. 2. The 

weight to be assigned was directly related to the window 

width selected. When a WMA filter with the finite-impulse-

response (FIR) structure is applied to a y series with N 

elements with a window size m, the following equation is 

use 

y(k)

=
∑ (yk−m + yk−1)m

k=m+1 + ∑ (ak+1 + ak+m)m
k=m+1

2m
 (4) 

 

2.3.2 High-pass filtering 
A differentiation (the successive extractions of serial 

elements) in a time series is undertaken to clearly reveal the 

high frequency components (dynamic displacements), and 

the consecutive differences between the periodic data are 

calculated (Fig. 3). Thus, the noise components in the 

consecutive data are partially removed. 

The differentiations are carried out by the following 

equations (Box and Jenkins 1970), 

with t=1, 2, ..., n undertaking a differentiation at a 1st 

degree; 

∆yt+1 = yt+1 − yt (5) 

and carrying out a differentiation at a 2nd degree; 

∆2yt+2 = yt+2 − yt+1 = yt+2 − 2yt+1 + yt (6) 

 

2.4 Window function 
 

In the calculation of the spectrum of a signal with 

discrete Fourier transformation (DFT), the artificial absence 

between the last values and the initial values of the signal is 

thought to be the leakage of energy into other frequencies, 

which is called spectral leakage. One way to reduce spectral 

leakage during DFT calculation is the elimination of the 

absence of the last initial values of the signal. For this 

purpose, windowing is applied to the signal before DFT 

(Walker 1996). This method predicts that the signal will be 

multiplied prior to DFT by a window function that slowly 

approaches the amplitude towards the edges. In this case, 

the discontinuity between the final values and the initial 

values of the signal is reduced. A typical Hamming window 

function for w (n) with N elements is generally used for this 

purpose (Press et al. 1992, Oppenheim, et al. 1999). 

w(n) = {0.54 − 0.46 cos (
2πn

N
) ,          0 ≤ n ≤ N − 1

0,                                        n < 0 ve n > N − 1
 (7) 
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2.5 Transformation to the frequency domain and 
calculation of sinusoids 
 

FT is an indispensable method of analysis in data 

processing and analysis. In particular, FFT routines are very 

effective in transforming large data into the frequency 

domain. The signal was examined in the time domain to 

determine whether it exhibited periodic properties. FFT was 

applied for sampling in the frequency domain, depending 

on the length of the series, and the sampling frequency, 

amplitude, frequency and phase values were calculated. 

Using these values, amplitude-frequency and power-

frequency graphs were created. All the frequency values 

contributing to the high-frequency signal to the low 

frequency can be listed in a frequency-amplitude graph. 

Thus, all the periodic motions contributing to the signal are 

determined with the amplitude and frequency values. High-

amplitude frequency values are considered as meaningful 

periodic values in the analysis of GPS data. The low or high 

frequency peak value of amplitude indicates the magnitude 

of the periodic motion that occurs. Significant low 

frequency periodicities occur over long time intervals and 

are considered to be slow movements. High frequency 

occurs at short time intervals in meaningful periods and is 

known as rapid deformations. 

For the calculation of frequency values with FT 

equations for the y signal presented in Fig. 1, the model was 

further developed as shown in Equation (8) using the series 

y(t) recorded with GPS receivers over a t time with a 

specified T sampling interval with the main angular 

frequency of ω =
2π

T
= 2πfo in the range of −π ≤ ωT ≤

π  

y(t) = ao/2 + an cos( ωnt) + bn sin(ωnt) + cnt
+ dnδ(tn) + ⋯ (8) 

where n=0,1,2,... refers to the harmonic index, ao  is a 

constant term, a, b are the Fourier coefficients, c is the 

long term trend, and d is the possible error values in the 

series. To clearly reveal the periodic components (a, b 

coefficients) of the series y(t), the error component (d) 

must be separated or suppressed using the above-mentioned 

filtering processes. In addition, the trend component (c) 

should be removed. After these operations, assuming that 

the signal length of the intermittent time series y(t) 

produced by the GPS measurements was equal to the main 

period, the following equation can be obtained using the 

Fourier series 

y(t) = ao/2 + ∑n=1
∞ ancos(ωnt)  +  bnsin(ωnt)   

                                         

= ao/2 + ∑ Ancos (ωnt + ϕn)

∞

n=1

 
(8) 

where An  is the harmonic amplitude and the phase angle 

of the ∅n Fourier series. FT involves the calculation of 

frequency values in Eq. (9). When Y (t) is a signal at time tk 

tk (k=0,1,2,...,N-1) and L is a positive integer, if N = 2L, 

then the periodic component parameters ao, an and bn , 

respectively, would be the coefficients of the real and 

imaginary components (Bracewell 2000) 

ao =
1

N
∑ y(tn)

N−1

k=0

 

an =
2

N
∑ y(tn)cos (2πnk/NN−1

k=0 )         

  bn =
2

N
∑ y(tn)sin(2πnk/N)N−1

k=0  

(10) 

where for the number of elements up to n = 1,2, ..., M, the 

N ≥ 2M + 1  condition must be provided. The periodic 

amplitude and phase angle of the n’th order element (James 

1995) are calculated using the following equations 

An = √an
2 + bn

2 ,  ∅n = tan−1(−bn an⁄ )  (11) 

 

2.5.1 Determination of the frequency values of signal 
by FT equations 

Since GPS signals are discrete signals, the frequency 

values of an intermittent y(n) time series are calculated by 

the Discrete Fourier Transform (DFT). The DFT of an 

intermittent y(n) time series has been described by several 

researchers (Byrnes et al. 1989, Bracewell 2000, Li 2004, 

Hristopulos 2007) 

 Y(k) =
1

N
∑ y(n)e−j2πkn/NN−1

n=0 ,                   k = 0,1, … , N − 1 
(12) 

Using DFT, the y(n) signal, which is a function of t 

time, is converted into the frequency domain as the Y(k) 

signal. The Y(k) signal is a complex number with amplitude 

and frequency values. The FT algorithm performs N-

element series transformation with N2 complex 

multiplications and Nx(N-1) additions. The FFT algorithm 

is used to reduce this transaction intensity and achieve 

faster conversion (Cooley and Tukey 1965). Even if the 

serial length is not a multiple of two as required by the 

Nyquist Theorem, Cooley and Tukey's FFT algorithm can 

be applied to calculate the value in a short time. The use of 

FT in the MATLAB environment has greatly reduced the 

processing load and increased the number of applications 

for signal processing. Thus, effective calculation algorithms 

have been developed. 

When FFT is applied to GPS measurements, harmonic 

movements that occur in the frequency domain can be 

determined, but this does not provide any data on the time 

these movements take place. For the calculation of the 

frequency of the signal for each time t, short-time FT must 

be applied (Li et al. 2004). 

For analysis in time and frequency dimension, the 

sampling interval of the signal is important. In a time series 

recorded with the t sampling interval, the sampling 

frequency is expressed as fs = 1/∆t. From this, according 

to the Nyquist Theorem (ωNyq = π/∆t), if a standard FFT 

is used, these sampling points are located evenly across the 

frequency range ([0, 𝜔Nyq]). The highest frequency that can 

be processed is half the sampling frequency (fS/2). The 

highest calculated frequency is known as the Nyquist 

frequency. The FT operation periodically determines the 

number of N/2 repetitions in the - and + direction on a 

signal with N elements. When the frequency sampling 

range Δf=fs/N is selected, the frequency axis has frequency 

values as high as N/2. N must be multiples of the two, and  
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Table 1 RTK GPS Measurements Parameters 

RTK GPS measurements parameters Values 

Active number of satellites Minimum: 5 

Satellite height Minimum: 10 degrees 

Recording range 20 Hz 

Recording date/time 5 days in Dec., 120 hours 

Vertical Dilution of Precision 0.9 

Cut-off angle 20 

Ionospheric models 0.5-2 ppm free model 

 

 

the data sampling rate must be selected according to the 

Nyquist sampling theory for avoid a conflict in the 

frequency spectrum (Blais 1988). 

 

2.6 The power spectral density 
 

To determine the frequencies on which the signal 

concentrates on, FT is computed by squaring the absolute 

values of the resulting complex numbers. In this case, the 

signal’s power spectral density (PSD) is defined by the 

following equation (James 1995) 

PSDm = |Y(k)|2 (13) 

In this stage, amplitude-frequency and power-frequency 

graphs are created and analyzed. The maximum or 

minimum values of amplitudes indicate the magnitude of 

the periodic motion that occurs. High amplitude frequency 

values are considered significant harmonic values in the 

analysis of GPS data. However, various methods are also 

used to distinguish meaningful signals from noise, the most 

common of which are Monte Carlo simulations (Heslop et 

al. 2002). 

 
2.7 IFFT 

 
In this process, the frequency spectrum is used to 

reconstruct the signal with dominant frequency values from 

the calculated GPS data. The IFFT operation is performed 

with the following equation (Bracewell 2000) 

y(n) =
1

N
∑ Y(k)ej2πkn/N

N−1

n=0

 (14) 

 

 
3. Experimental test 

 
A test measurement was performed using a real-time 

kinematic (RTK) GPS method with dual frequency 

receivers to determine the structural behavior of a 240 m 

high television tower (Pehlivan et al. 2013, Pehlivan and 

Bayata 2016). Two rover antennas and receivers were 

installed at a height of 165 m (Fig. 4) (Yi et al. 2011b, c). 

The GPS base receiver data was continuously transmitted to 

these two receivers. The position values of both antennas 

were recorded in a disc with a 20 Hz sampling rate. All the 

GPS observations was used at the RTK method with a  

 

Fig. 4 Locations of tower GPS measuring equipment 

 

 

Fig. 5 The five-day records of the original east observation 

series in R1 and R2 

 

 

NovAtel GPS OEM4 and using the NovAtel CDU software 

were recorded into the control unit. RTK GPS measurement 

parameters are presented in Table 1.  

All the data was obtained in the Earth-Centered Earth-

Fixed (ECEF) coordinate system and was manually 

converted to the local topocentric coordinate system for 

more convenient evaluation. As a result, four datasets (x1, 

y1; x2, y2) for north and east directions were obtained for 

further analysis. The five-day records of the original raw 

data series of east (x1, x2) observations in R1 (Rover-1) and 

R2 (Rover-2) are presented in Fig. 5. 

 

 

4. Data analysis 
 

Noisy raw signals were obtained due to the inadequate 

number of satellites, multipaths, etc. These errors probably 

resulted from the proximity of the rover receivers to the 

tower walls (up to 120 cm). As shown in Fig. 2, it there was 

a significant number of excursions outside the range of ± 5 

cm. Particularly at certain times of day, it was observed that 

the - and + direction had significant deviations. Prior to the 

spectral evaluation of these problematic signals, time 

dimension analysis and filtering were performed as 

described in Section 2. 

 

4.1 Analysis in the time domain 
 

First, abnormal values that were not within the specified  
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Fig. 6(a) The original and filtered time series for the east 

GPS signals and (b) zoomed signals between the hours 95 

and 96 

 

 

Fig. 7(a) The original and filtered time series for the east 

GPS signal and b) zoomed signals between the hours 95 

and 96 

 

 

range of values for the structure that was measured were 

removed from the raw data to obtain better results from the 

next filtration steps and the spectral analysis. Due to the 

slow motion of a rigid structure used for this process, 

standard deviation was assumed to be 1 cm and the 

threshold value was determined as 4 cm. Using Equation 

(2) given in Section 2, the values of LMA calculated by 

taking m = 2 (2 min) were assigned as new values for the 

data outside the lane interval determined by -4 cm and +4 

cm. Thus, both the approximate tendency and the number of 

elements in the series were maintained. After performing 

this process twice, it was seen that the abnormal values in 

the dataset had been successfully removed (Fig. 6). Of the 

four GPS series examined in the following sections, only 

the east observation series (x1, x2) are shown because the 

qualitative results were the same for all GPS signals. 

 

4.2 Filtering 
 

The low-frequency noise was removed using a WMA 

filter. To do this, for each t element on the standardized 

data, the serial was recalculated with Eq. (3) as described in 

Section 2, using an “m” element window consisting of the 

previous and next neighbor elements. The width of the “m” 

window used was set to 20, 60, 600 and 3600 seconds. The 

series calculated by four different “m” values are presented 

in Fig. 7. 

 

4.3 Signal multiplication with the window function 
 

Test GPS measurements with R1 and R2 receivers were 

performed continuously with a sampling interval (t) of 0.05 

sec at sampling frequency of 20 Hz. Continuously for five 

days, the number of observations recorded by each receiver 

was calculated as N=8.388.608 (223) and the full duration 

of the experiment was 116 hours, 30 minutes and 30.4 

seconds. (T = 419.430, 4 sec). Prior to the spectral analysis, 

the data vectors were partitioned into Nfft=512 non-

overlapping sections. A linear trend was removed from 

these sections. A Hamming window (using Equation (7)) 

was applied to reduce spectral leakage (Oppenheim et al. 

1999). 

 

 

5. Spectral analysis 
 

In this section, to determine the periodic components 

that occurred below 1 Hz (periodic components greater than 

1 second) of the structural movement, and for ease of 

operation, the entire time series were re-sampled at 1-

second intervals. Spectral analysis was performed with 218 

= 262144 pieces of data in order to comply with the Nyquist 

theorem. When applied to the vectors (GPS x1,2(t),

y1,2(t)), FT in Equation (12) gives information about the 

number of harmonics that can be obtained by half the 

number of elements. Accordingly, the harmonic (mod) 

numbers can be calculated in both series as mod = N/2 = 

262144/2 = 131072. 

When switching from the time domain to the frequency 

domain using FFT, the frequency increase is ∆f =
1/262144 = 0.000000238418579 Hz  and the data 

includes the sampling frequency (∆t) for 1 second, fNyq =

1/2∆t = 0,5 Hz, which shows the Nyquist frequency, and 

The frequency resolution of df =
fc

Nfft
= 9,8 mHz . The 

signaling frequency spectra include 131072 periodic mode 

values ranging from -0.5 Hz to + 0.5 Hz. Here, there are 

131072 significant component values between 0 Hz and 0.5 

Hz. 
 

5.1 Power spectral density 
 

5.1.1 Low-frequency spectrum 
The low-pass filter (WMA) was applied according to 

Eq. (4) to determine the low-frequency and long-period 

components from all series. Then, after FFT transformation 

using Eq. (12), each frequency value, and real and 

imaginary (bn) coefficients of the series were calculated by 

Eq. (10). The amplitude and phase angle values 

corresponding to each frequency value were calculated by 

Eq. (11) and the power spectrum by Eq. (13). 

The standardized form of the signal and its power 

spectral density are shown in Fig. 8(a) and (b), respectively. 

Since the spectrum was stationary over 0.0001 Hz, the 

range of 0.00012 to 0.5 Hz is not shown in the figure. It can 

be seen that periods with high amplitude concentrated at  
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Fig. 8(a) Standardized low-pass filtered signals (x1 and x2) 

and (b) their PSD 

 

Table 2 Dominant mode values with low frequency 

calculated from all GPS series 

Mode 
Frequency 

Computed 
Frequency (Hz) 

Period 
(Hour) 

Amplitude 
(cm) 

First 0.00001157 24 0.6 

Second 0.000023 12 0.4 

Third 0.000007 36 0.4 

fourth 0.0000023 72 0.37 

 

 

Fig. 9(a) Standardized high-pass filtered x1 and x2 signals 

and their (b) PSD 

 

 

low frequency values between 0 Hz and 0.00002 Hz.  

In Fig. 8(b), the dominant peak value of x1 and x2 series 

was 0.0000115572 Hz (fx1, fx2). The peak points and 

positions in all series were in agreement. The GPS-RTK 

accuracy was 4 mm (Brownjohn 2005) with the root mean 

square error (RMS) values of the displacement series being 

below this value (Fig. 8(a)). 

Table 2 presents the common mode values calculated 

from all GPS series sorted by the amplitude value. The first 

frequency value with the highest amplitude was the 

dominant frequency that contributed to the signal. The 

dominant frequency included the sum of different amplitude 

signals of the same frequency repeated in the signal. 

In R1 and R2 GPS signals, the meaningful periodic 

components concentrated at low frequencies. The 

significant and long periodic components of these signals 

are large-amplitude first mode values (fx1, fx2). Table 2 

gives the following information; Mod 1 value: 24 h, Mode 2  

 

Fig. 10 GPS series reconstructed with dominant frequency 

values 

 

 

value: 12 h, Mode 3 value: 36 h, and Mode 4 value: 72 h, 

which represents the variation in the dominant periodicities. 

These values indicate the presence of a clear main period 

that repeats every 24 hours. 

 

5.1.2 High frequency spectrum 
Vibration and noise components representing building 

movements are of high frequency. When a high-pass filter 

was applied using Eq. (5), it was seen that the frequency of 

0.16624 Hz (Fx1, Fx2) was predominant in all series (Fig. 

9). This shows that the structure was moving every 6 

seconds.  

 

 

6. Reconstruction of the signal using IFFT  
 

To clearly evaluate the periodic movements of the 

structure and the change over time, observation orders were 

reconstructed using IFFT with dominant mode values. 

During the reconstruction of the GPS signals for the ‘t’ time 

by Eq. (14) using the dominant mode values given in Table 

2, the fluctuations (periodics) in the main signal were 

modeled and the raw GPS signal was filtered. Fig. 10 shows 

the variation of the GPS quasi-static and static displacement 

amplitude over a three-day periods and the apparent ripple 

of a first mode frequency component every hour. 

 

 

7. Conclusions 
 

GPS receivers may have to be installed in locations 

where the sky is not easily visible or is obstructed by the 

architectural design of some structures and other physical 

obstacles. In these situations, the data obtained can be noisy 

and unstable due to error factors in the multipath, satellite 

geometry and visibility because of the proximity of the 

receivers to the structure. In this article, the data recorded 

by two receivers, mounted at a 165 m height and at a 

proximity of 1.20 m to the tower wall, was examined. An 

analysis procedure was proposed to determine the structural 

modes with the test GPS observations and the results of the 

current study were found to be consistent with those of 
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previous studies (Hyristopoulos 2007, Pehlivan 2013). 

The results and suggestions obtained from this study are 

as follows: 

The raw GPS datasets were found to contain abnormal 

data varying in time ranging from 1 min to 1.5 h and 

varying in amplitude from 10 cm to 70 m (Fig. 5). It was 

estimated that this data may have resulted from the 

proximity of the receivers to the structure, as well as other 

random sources of error. For these reasons, a sequence of 

analyses was required to determine the displacement values 

from the acquired data required. For this purpose, an 

analysis process involving six steps was proposed. In the 

first step, the abnormal data due to jumps and breaks in the 

GPS observation series was extracted from the dataset to 

perform a spectral analysis. For this process, a Matlab 

algorithm was applied iteratively and the data except for the 

average deviation criterion removed from the original noisy 

data. In the second step, the WMA filter was applied in the 

time dimension to remove noise from the GPS observations 

containing displacements components. The purpose of 

removing the non-stationary noise component with low-

frequency fluctuations is to obtain the stationary component 

including real displacement and random noise. Different 

filters were applied to clearly demonstrate the periodicities 

that occurred in the long- and short-time intervals; a low-

pass filter (MA) for the low-frequency (long-term periodic) 

components and a differentiation filter (based on FIR) for 

high-frequency (short-term periodic) components. Low- 

and high-pass filters offer a good solution for the removal 

of dynamic and frequency modes of the structures. As an 

example of the former, an MA filter is suitable and simple 

to extract static and semi-static displacements of structures 

based on GPS tracking observation. The use of a high-pass 

filter also yielded favorable results in the extraction of 

dynamic displacement and frequency modes. 

In step 3, the filtered signal was multiplied by a typical 

Hamming window function, which is generally used to 

prevent spectral leakage. In the fourth step, the sub-signal 

values of the signals filtered with low- and high-pass filters 

were calculated in the frequency domain using FFT. In the 

fifth step, the power spectrum of the signal was calculated. 

The calculated frequency spectrum demonstrated the long-

term periods at low frequencies and short-term periods 

(vibrations, noise, etc.) at high frequencies. From this 

frequency spectrum, the 24-hour long-periodical 

movements and 6-second short-periodical movements of 

the tower were determined. The sum of repeated frequency 

values in the frequency spectrum presented the dominant 

frequencies. Since the high-frequency repetitive high-

amplitude modes represented meaningful components in the 

signal, a model of the signal could be obtained with the 

selected mode values. Therefore, in the sixth step, with the 

reconstruction of the signals using IFFT with the first four 

mode values, position changes in the time domain were 

obtained. As a result, since the positional accuracy was 

limited to cm horizontally with the GPS technique, the 

positional change was modeled at the cm sensitivity level 

(Fig. 10). 
The following important conclusions can be drawn from 

the examination of the frequency spectrum: the dominant 
frequency values were similar and the amplitude was 

different in the x and y series. The data analyzed allowed 
observing the frequency spectrum in a region up to a 
duration of 72 hours. Since the motions examined were in 
the + and – direction, the greatest periodic motion was 
found at 36 hours, which was half the observation period. 
The dominant frequency value from the whole dataset 
showed a periodic motion of 24 hours. Finally, the analysis 
of the Endem TV tower in the time and frequency domains 
indicated safe oscillation expected under current loads. 

The RTK-GPS method can provide significant 

displacement data in the time and frequency domains of 

building components. The results clearly showed that a 

series of long observations is needed to determine 

movement over a long time, and a high sampling rate is 

necessary for recording data at short time intervals to 

demonstrate repetitive movements. In measurements at a 

high sampling rate, the separation of short-time deviations 

does not disturb the overall course of the measurements. 

Long–time deviations of data result in the loss of positional 

information. Due to the long-term nature of the 

observations in this study, it is possible that the general 

movement of the structure was not detected. 

This study aimed to determine the steps for the spectral 

analysis process and the displacement parameters of noisy 

RTK GPS data used in structural health monitoring. In this 

sense, this work presents a process of mathematical 

modeling in this area and provides a detailed visualization 

of the steps to be followed for the spectral analysis of GPS 

data. 
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