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1. Introduction 
 

The main objective of structural engineering is safety 

assessment of structures subjected to stochastic dynamic 

processes such as earthquake ground motion, wind 

turbulence and ocean wave. The evaluation of accurate 

earthquake risk, requires a correct estimation of the seismic 

hazard and a good evaluation of the seismic vulnerability of 

structures through an appropriate earthquake damage model 

(Seyedi et al. 2010). In this framework, the seismic fragility 

curve is commonly utilized to estimate performance of 

structural and non-structural systems under seismic loads. 

Fragility curves represent the probability that the maximum 

response of structures or systems exceeds a threshold 

associated with a desired limit state, conditional on the 

seismic intensity measure (IM) (Radu and Grigoriu 2014). 

In fact, the seismic demand of a structure due to 

uncertainties in ground motion and in structural properties 

needs to be properly characterized in structural engineering 

(Yazdani and Eftekhari 2012). In this case, the structural 

response will also be a stochastic process and is described 

in probabilistic terms (Yazdani and Takada 2011). Failure 

events unavoidably involve nonlinear response and accurate 

estimation of random responses for engineering structures 

subjected to the stochastic excitation is a crucial procedure 

in their design phase. Therefore, nonlinear random vibration 

is the most logical approach for studying the nonlinear 

structures under stochastic excitation. In general, very  
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limited classes of nonlinear dynamic systems possess exact 

solutions and therefore various approximate methods were 

proposed for their solutions over the last four decades. 

Among these methods the implementation of classical 

methods such as Markov vector approach, perturbation, 

Fokker-Plank equation, stochastic averaging, moment 

closure, equivalent non-linearization and equivalent 

linearization method are inconvenient for nonlinear 

systems, let alone the arguments on their suitability and 

versatility especially in reliability analysis where the 

accurate distribution on the tails is needed (Crandall 2006). 

Furthermore, simulation-based methods such as Monte-

Carlo simulation (MCS) and importance sampling have 

been widely used often together with variance reduction 

techniques for directly solving and/or checking approximate 

solutions of stochastic dynamics problems (Au and Beck 

2003). However, some of these methods are 

computationally incompetent for large-scale reliability 

problems. In this regard, the tail-equivalent linearization 

method (TELM) is a recent alternative approach to solve 

this class of problems by improving the accuracy in the tail 

region. This method has been developed based on the first-

order reliability method (FORM) and applied to time 

domain analysis for inelastic systems (Fujimura and Der 

Kiureghian 2007, Der Kiureghian and Fujimura 2009) and 

frequency domain analysis in the context of marine 

structures (Garrè and Der Kiureghian 2010). The general 

idea behind the method is to present a first-order 

approximation of the tail probability of the nonlinear 

system which is equal to the tail probability of the linear 

system. These studies have shown that the tail-equivalent 

linear system (TELS), which is characterized in terms of its 

frequency response function (FRF) or unit-impulse-

response function (IRF) for a specified threshold can be 

used to compute various statistical quantities of interest for 
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the nonlinear response. The presented procedures based on 

random vibration theory can be applied to fragility analysis 

when the ground motion is specified as a stochastic process. 

More recently, time- and frequency-domain TELMs were 

developed for analysis of stochastic dynamical systems 

(Alibrandi and Der Kiureghian 2012, Broccardo and Der 

Kiureghian 2013, 2015, Raoufi and Ghafory-Ashtiany 

2016). 

During the last decade, seismic fragility analyses have 

been investigated by numerous researchers and have been 

developed for a large number of structural and nonstructural 

systems (Schotanus et al. 2004, Sung Kwon and Elnashai 

2006, Ellingwood et al. 2007, Mitropoulou and 

Papadrakakis 2011, liu et al. 2010, Ju et al. 2013, Mehani et 

al. 2013, Lallemant et al. 2015, Mandal et al. 2016, 

Khorami et al. 2017). Most of these researches are based on 

incremental dynamic analysis (IDA) (Vamvatsikos and 

Cornell 2002) that is developed to compute structural 

response through repeated time-history dynamic analysis 

and scaled ground motions. However, process of selecting 

and scaling of ground motion records requires many 

repetitive and time-consuming computations.  

In addition, one of the main sources of uncertainty in the 

estimation of probability of exceeding various damage 

levels stems from alternative seismic IMs used for fragility 

analysis (Lee and Mosalam 2005). The most typical seismic 

IM used in fragility analysis is the spectral acceleration 

(Sa), though other measures or additional measures can be 

used (Schotanus et al. 2004, Cimellaro et al. 2009, Silva et 

al. 2016, Kohrangi et al. 2017). However, most of the IMs 

used in fragility analyses are not a satisfactory measure for 

structural response. In this regard, Kafali and Grigoriu 

(2007) showed that peak ground acceleration and pseudo-

spectral acceleration completely characterizes the maximum 

relative displacement for linear single degree of freedom 

(SDOF) systems, but it is not proper IM to use within the 

fragility analysis for nonlinear oscillators.  

The objective of this study is to investigate the seismic 

reliability-based fragility curve of nonlinear systems based 

on random vibration theory by utilizing Fourier Amplitude 

Spectrum (FAS) of ground motion using information on the 

seismic source, seismic wave propagation through the earth, 

and geological site conditions that affect ground motion. 

The fragility analysis based on time-domain procedures are 

limited by the amount of available strong motion recorded 

data and by the fact that they are based on combined 

recorded data sets from different earthquakes recorded in 

different regions. As an alternative approach, in places 

where there is a lack of sufficient recorded ground motions, 

the stochastic ground motion simulation can be used in 

calculation of fragility curve. In addition, the probability of 

structural failure subjected to set of simulated ground 

motion based on different characteristic parameters, which 

has the same spectral acceleration, are compared for 

different levels of the nonlinear behavior of structures.  
 

 

2. Seismic fragility analysis 
 

From the viewpoint of performance-based earthquake 

engineering (PBEE), the seismic fragility assessment of 

structures is essential to prediction of the structural 

behaviors that are likely to occur during earthquakes. The 

seismic fragility of a structural system expresses the 

probability of occurrence of a certain level of structural 

failure due to earthquakes as a function of ground motion 

IM. Mathematically, the probability of structural failure 

corresponding to a specific threshold L should be defined as

  cIMtXLP  u,max , where  max,utX denotes the 

maximum structural response for the given intensity level 

IM=c. In reliability analysis of structural systems, the 

interest often lies in the occurrence of extreme and 

unpredictable events, which are associated with the tail part 

of probability distribution. One popular class of methods to 

estimate the tail of the response distribution for nonlinear 

systems is that of statistical linearization or equivalent 

linearization method. However, the solution of the response 

statistics other than the second moment, such as the auto-

correlation, up-crossing rate and first-passage probability by 

the statistical linearization method may not be reliable 

because it is based on the minimization of the mean square 

error (Fujimura and Der Kiureghian 2007). In order to solve 

this issue, in this paper we used the TELM that is developed 

by Fujimura and Der Kiureghian (2007). The TELM is 

based on the previous works of Der Kiureghian et al. (Koo 

and Der Kiureghian 2003, Koo et al. 2005 and Haukaas and 

Der Kiureghian 2004, 2006) using the advantages of the 

first order reliability method (FORM). Recently, this 

method has been applied and expanded by several 

researchers for PBEE problems (Wang and Der Kiureghian 

2016; Broccardo and Der Kiureghian 2017, Alibrandi and 

Mosalam 2017). This method is an appropriate approach to 

probabilistic structural analysis and reliability evaluation of 

structures in particular for softening systems under 

stochastic excitation (Broccardo 2014). 

A stochastic analysis of failure requires study of the 

extreme values of the response process. For this purpose, in 

structural engineering the event of failure is usually 

described by the mean of up-crossing rate and the first-

passage probability. In case of stationary-Gaussian 

processes the mean of up-crossing rate and first-passage 

probability (Vanmarcke 1975) can be defined as  
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In this case the period of process T is the earthquake 

ground motion duration. In Eq. (2), the parameters A  and 

 are expressed as 
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In Eqs. (1) and (4)  Ln is expressed as the n-th 

spectral moment defined by 

   



0

2
)(2  dSHL mm

n
n  (5) 

where m  are sequences of equally  -spaced frequency 

points and )( mS   denotes the two-sided power spectral 

density (PSD) of the stochastic excitation. It is noted that in 

structural engineering, the PSD of the excitation, which is a 

more fundamental description of the frequency content of 

ground motion, is calculated in most practical methods of 

simulation of earthquake ground motions. )( mH   

represents the modulus of the frequency-response function 

of the linear system. In TELM with the definition of the 

TELS for a specified response threshold of the nonlinear 

system, FRF completely characterizes the system for the 

particular input-output pair )(tW  and )(tX . A 

considerable result in TELM is that the TELS is 

independent of any scaling of the excitation. That is, given 

a scaled excitation, i.e., )(. tWSF , the IRF and FRF of the 

TELS for a specific threshold  are independent of the 

scale factor FS .It is clear when the excitation is scaled by 

a factor FS  so that its PSD and all the spectral moments 

are equal to )(.2
mSS

F
  and )(.2 LS n

F
 , respectively. A 

broader and more in-depth treatment can be found in 

Fujimura and Der Kiureghian (2007). Hence, the fragility 

curve owing to the failure event during an interval of time 

(0, T) is computed by the approximate solution: 
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(6) 

As can be seen from Eq. (6), the superiority of this 

method over other methods such as IDA is that no extra 

computations are required for selecting and scaling 

excitations. However, this approach requires the 

identification of the TELS to estimate the tail of the 

response distribution for nonlinear systems under stochastic 

excitation. 

In nonlinear dynamic analysis, input stochastic 

excitation is discretized in terms of a finite set of standard 

normal random variables. Several different kinds of 

stochastic discrete representation methods have been 

developed and are available for dynamic analysis purposes 

(Li and Der Kiureghian 1993, Zhang and Ellingwood 1994, 

Sudret and Der Kiureghian 2000, He 2015, Liu et al. 2017). 

In particular, in earthquake engineering, the following 

formulation developed by Der Kiureghian (2000) is 

practical 


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where  is a time-invariant vector of standard normal 

variables, )(ts  is a time-variant row vector of basic 

functions related to the covariance structure of the 

excitation process, and n is a measure of the resolution of 

the representation. Owing to the random variables u , the 

response of a dynamical system )(tX  subjected to )(tW  

is stochastic and it can be represented as ),( utX . 

In TELM, to solve the tail probability 

]0),,([)],([  uu ntLGPtXLP  for a specified threshold 

, the first-order reliability method(FORM) is employed. 

The function u)u ,(),,( tXLtLG   defines the limit-state 

function for response threshold value of L at time t. This 

function is approximated by a hyper plane at the nearest 

point to the origin of the standard normal random variables 

space, so-called design point 
*

u . Design point plays an 

essential role in reliability analysis. In the simple case of a 

linear system that the limit state is a hyperplane with 

gradient )(ta , the reliability index and corresponding 

design point are given as )(/),( tLtL a  and

2* )(/)(.),( ttLtL aau  . Furthermore, simple manipulation 

of design point  yields 
2

** ),(/),(.)( tLtLLt uua   

(Fujimura and Der Kiureghian 2007). The tail probability 

has the approximate solution 

)],,([)],([ tLtXLP  u  (8) 

where ][•  is the standard normal cumulative probability 

function. In case of a nonlinear dynamic system, limit state 

is nonlinear and the design point is given as a solution of 

constrained optimization problem as follows 

 0),,(minarg),(*  uuu tLGtL  (9) 

Gradient-based algorithm is perhaps the most popular 

algorithm used to solve the constrained optimization 

problem of Eq. (9) in structural reliability analysis (Haukaas 

and Der Kiureghian 2004, 2006). In TELM for a specified 

response threshold of the nonlinear system, the equivalent 

linear system, so called TELS, is defined as the linear 

system that has the same tail probability as the first-order 

approximation of the tail probability of the nonlinear 

system in the space of the standard normal random 

variables under the stochastic excitation. To identify TELS, 

the nonlinear limit-state function is expanded in Taylor 

series at the design point and by keeping the linear terms of 

series, the first-order approximation of )],([ utXLP   is 

obtained.  

In order to introduce the idea of TELM in frequency 

domain, we first consider excitation as stationary stochastic 

L

u

L

*
u
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processes so that )(tW  is written in the following form 

(Garrè and Der Kiureghian 2010) 
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Thus, having determined the response of the linear 

system in the frequency domain, we can determine the 

steady-state response of system in the time domain by the 

inverse Fourier transform 
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where  )(),...,();(),...,()( 211 tatatatat MMM a  and for a 

specific time tn 

],...,1[       ),sin()(

)(2)(

MmtH

Sta

mmm

mnm








 (12) 

]],...,1[     ),cos()(

)(2)(

MmtH

Sta

mmm

mnmM








 (13) 

where )( mH   and m  represent the modulus and the 

phase angle of the frequency-response function of the linear 

system, respectively. Using the above Eqs. (12) and (13), 

the modulus of )( mH   and phase angle m  are 

obtained for each m  as 
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Finally, response of the linear system is obtained by 

basic principles of frequency-domain analysis. 
 

 

3. Stochastic modeling of power spectral density 
(PSD) of ground motions 
 

The main goals of engineering seismology in 

interpretation of ground motions are to improve the 

understanding of the physical processes that control ground 

motions and to develop reliable estimates of ground 

motions for use in engineering analyses (Yazdani and 

Salimi 2015). There are two options in selecting ground 

motions to assess the seismic reliability of structures; the 

use of either observed records or synthetic ground motions. 

The well-known simple Kanai-Tajimi filter (Kanai 1957, 

Tajimi 1960) and stochastic models (Brune 1970, 1971, 

Hanks and McGuire 1981, Boore and Atkinson 1987, Boore 

2003) apply a band-pass filter in the frequency domain to 

mold the FAS and the corresponding PSD of the earthquake 

ground motion. The stochastic methods that model ground 

motions as a random process and band-limited white noise 

are suitable for engineering applications for low- to 

intermediate-period structures. 

Seismological methods use stochastic models of the 

seismic source and wave propagation to simulate ground 

motions. The widely used point-source methods, which do 

not require information about the fault geometry, can 

predict high-frequency ground motions with acceptable 

accuracy (Boore 2003, 2009). To overcome the limitations 

of point-source models, stochastic finite-fault models 

should be used to simulate ground motions in the frequency 

range of engineering interest (Beresnev and Atkinson 1998, 

Motazedian and Atkinson 2005). In finite-fault simulations, 

the fault is subdivided into a number of sub-faults, each of 

which is modeled using a point-source model. The point-

source approach offers the advantages of simplicity and 

stability whereas the finite-fault model involves more 

parameters and requires to average simulations over many 

azimuths and slip distributions. Atkinson and Silva (2000) 

postulated that the use of a point-source model with a two-

corner source spectrum is equivalent to the use of a finite-

fault model comprised of point-source sub-faults. They 

indicated that two-corner point-source and finite-fault 

stochastic models will generate similar median ground 

motions, when averaged over all azimuths. Seismic ground 

acceleration at a site can be modeled using a Gaussian 

process with a spectral density )(S  as follows 

w
TYS

2
)()(    (16) 

where )(Y  is the FAS of the strong ground motion at the 

site and Tw is the earthquake ground motion duration. In 

seismological simulation techniques, the ground motion 

duration is the summation of source rupture duration which 

is proportional to the inverse corner frequency, and the 

propagating time of the radiated waves from source to the 

station. A simplified form of the distance-dependent term 

(0.05R) is adopted in this study, and the rupture duration 

part is assumed to be predicted by a /  (Boatwright and 

Choy 1992) where a  is the lower corner frequency. In a 

seismological model, the FAS can be expressed as the 

product of a number of functions (Boore 2003) 

)
2

exp())(exp()()(),()( 0


  RAGMEY  (17) 

where   and M0 are the angular frequency and the seismic 

moment, respectively. R is equal to 22 hdR  with d 

being closest distance to the fault plane and the equivalent 

point-source depth, h , is a function of fault size, and hence 

earthquake magnitude (Atkinson and Silva 2000). The 

terms ),( 0 ME , )(G  and )(A  are the earthquake 

source spectrum, the geometric spreading function and the 

upper crust amplification factor, respectively. The anelastic 

attenuation, )( , is determined from the regional wave 
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transmission quality factor, namely, the Q factor. The high-

frequency amplitudes are reduced by near-surface 

attenuation, which is assumed to be independent of 

distance, through the kappa factor. The two-corner source 

spectrums can be described using the following functional 

form (Atkinson 1993) 

]))/(1/[])/(1/[)1((
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22
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The constant C indicates the effect of the radiation 

pattern, the partition of total shear wave energy into 

horizontal components, the effect of the free surface, and 

the density and shear-wave velocity in the vicinity of the 

earthquake source. In this equation, the lower corner 

frequency, a , is related to the size of the finite fault and 

is determined by the source duration, and the higher corner 

frequency, b , is related to the sub-fault size and is the 

frequency at which the spectrum attains 1/2 of the high-

frequency amplitude level (Atkinson 1993). The parameter 

  is a relative weighting parameter whose value lies 

between 0 and 1. These two corner frequencies and   can 

be derived by regression analysis using recorded data, after 

correcting for path and site effects in different regions. 

 
 

4. Hysteretic SDOF system excited by a stationary 

Gaussian process 
 

This section presents the importance of frequency 

content of ground motions on structural failure probability. 

This assertion is illustrated, numerically, for a SDOF 

system with inelastic material behavior under stationery 

stochastic excitation. For instance, for an inelastic SDOF 

system (Fig. 1) the equation of motion is expressed as 

follows 

   tWxxfxmxm n   ,2   (19) 

where x is the displacement and a dot indicate the derivative 

with respect to time.  tW  is input excitation and  xxf ,  

is the restoring force. In this equation, m , n  and   are 

the mass, the natural circular frequency and the damping 

ratio within the linear range, respectively. In this work, we 

consider the hysteretic Bouc-Wen model to describe the 

inelastic material behavior (Bouc 1967, Wen 1976). In this 

case, Eq. (19) can be rewritten as 

    tWtzxkxmxm n  )( 1 2    (20) 

where k ,   and )(tz are the initial elastic stiffness, the 

post- to pre-yielding stiffness ratio and the hysteretic force, 

respectively. The restoring force is obtained from 

combining the linear component and a hysteresis 

component )(tz . The hysteretic component )(tz can often 

be modeled by a first order differential equation as 

xAxtztztzxtz
nn  


)()()()(

1
  (21) 

In which  ,   and n  determine the hysteresis shape, 

and  determines the tangent stiffness. Table 1 shows the  

 

Fig. 1 Inelastic SDOF system subjected to stochastic 

excitation (T=1.0 sec) 

 

Table 1 System and hysteretic component properties 
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Table 2 Set of earthquake ground motion variables 

Variable Mean value 

Density, s  2.8 )/( 3cmgr  

Shear-wave velocity, s  3.5 )/( cmkm  

Quality factor, )(Q  45.072.78   

lower corner frequency, a  wa M496.0979.2log   

Upper corner frequency, b  wb M408.0208.3log   

Weighting parameter,   wM255.0605.0log   

Seismic moment, 0M  05.165.1log 0  wMM  

Duration, )(sTw   

High-frequency attenuation 

parameter, )(s  0.03 

Geometrical attenuation 
)40(

)40(

5.0

1

kmR

kmR









 

Amplification factor, )(V  
NEHRP class C 

( )/52030 smV   

 

 

selected value set for the system and hysteretic component 

variables. To describe the input excitation at the specific 

site, we applied the stochastic method of ground-motion 

simulation based on the seismological methods. In this 

study the stochastic point-source model with a two-corner 

source spectrum is used.  

Table 2 shows the chosen mean value set for the 

earthquake ground motion variables for the calculation of 

the ground motion’s FAS, which is used to obtain the 

structural failure probability. In Table 1, 0yu  is the  
A

Ra 05.0/ 
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Fig. 2 Seismic sources and Location of hypothetical site 

used in this study 

 

 

Fig. 3 Seismic hazard disaggregation in terms of magnitude 

and distance of the hazard for a hypothetical site, 

corresponding to a 10% probability of exceedance of 1 Hz 

spectral acceleration Sa (1.0 sec) = 0.08 g in 50 years 

 

 

yield displacement, where m02.00   is the estimated 

standard deviation of structural response )(tx  at sT 10  

to the stationary Gaussian excitation process. As mentioned 

in the previous section, FAS is a function of the earthquake 

moment magnitude M, the source-to site distance R and the 

site soil type. This is indeed a challenge, particularly for 

identification of a critical scenario for assessing the failure 

of structures. Therefore, the results of probabilistic seismic 

hazard analysis are needed to tackle the problem of 

generating and selecting earthquake ground motion. 

Probabilistic seismic hazard disaggregation techniques 

could be an answer to these technical problems. 

Disaggregation is a process that allows the identification of 

individual earthquake scenarios that contribute to a hazard 

for a given ground motion parameter at a selected annual 

frequency of exceedance at the specific site. The assumed 

regional seismotectonic in this study is shown in Fig. 2, 

which also demonstrates seismic source model and seismic 

parameters. Each bar in the disaggregation plot represents 

the contribution of each combination of (M, R) to exceed 

spectral acceleration  nSa  at the natural frequency n . 

However, the magnitude-distance disaggregation for  

 

Fig. 4 Power spectra density for different scenario events 

 

 

Fig. 5 FRFs of the TELS for different response thresholds 

of hysteretic SDOF 
 

 

intended site associated with a 10% probability of 

exceedance of 1 Hz spectral acceleration in 50 years is 

shown from Fig. 3. The obtained disaggregation result is 

plotted in terms of M and R. Based on Eq. (16) the ground 

motion’s PSD can be generated for each scenario (M and R 

bins). For example, we considered three different 

earthquake scenarios to assess the effect of frequency 

content on structural failure probability; M=5.5 at R=20 

km, M=7.0 at R=140 km and magnitude and distance 

corresponding to modal value M=6.25 at R=30 km. Fig. 4 

show the spectral density for three different magnitude–

distance scenarios. 

In addition, the FRFs of TELS could be obtained for 

different response threshold levels. Finally, fragility curves 

for each scenario can be calculated for different response 

threshold levels.  

Fig. 5 indicates the modulus of the FRFs from simulated 

ground motion with M=6.25 and R=30 km for three distinct 

response thresholds, yuL 0.1 , yuL 0.2  and yuL 0.3  

in the range of frequencies [0, 5 Hz].  

The dotted line in Fig. 5 represent the modulus of the 

FRFs for the linear system ( 0.1 ) at the response 

threshold yuL 0.1 . As can be seen in Fig. 5, with the 

increasing response threshold, the dominant peak of the 

FRF shifts to the lower frequencies and decreases in 

intensity. However, there is always a local maximum at the 

natural frequency. The results indicate, the TELS strongly 

depends on the threshold of the nonlinear response. In 

addition, the structural responses of two ground motion  
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(a) 

 
(b) 

Fig. 6 Fragility curves for (a) linear and (b) nonlinear SDOF 

system under different scenario events at response threshold 

level yu0.1 . Circles are MCS results based on 30 000 

simulations 

 

 

processes can be very different even though the two ground 

motions have same spectral response. Hence, investigation 

of various scenarios to assess structural failure probability 

is necessary. 

Figs. 6 and 7 show the calculated fragility curves based 

on Vanmarcke’s formula for different threshold levels and 

compared with their corresponding MCS results. It can be 

seen in Figs. 6 and 7 that the fragility curves based on 

Vanmarcke’s formula closely agree with those estimated 

from the MCS method. Traces (a) and (b) in Fig. 6 show 

fragility curves for the linear ( 0.1 ) and nonlinear 

SDOF system at the response threshold yuL 0.1 , 

respectively. Moreover, these curves are plotted for 

moderate ( yuL 0.2 ) and high response ( yuL 0.5 ) 

threshold levels as shown in traces (a) and (b) in Fig. 7, 

respectively. Fig. 6 indicate that the probability of failure 

for the linear and nonlinear system for low response 

threshold level is independent of the particular value of M 

and R. In contrast, in the nonlinear system, failure 

probability depends strongly on characteristic pairs  RM ,  

when the response threshold is increased, as illustrated in 

Fig. 7. The traces in this figure demonstrate the wide 

variation that can exist between fragility curves at specific 

threshold level based on discrepancy between frequency 

content of ground motions. For example, in the case of 

inelast ic  SDOF system, for  a  fixed value of the 

  gSa n 40.0 in Fig. (7b), the probabilities of failure for  

 
(a) 

 
(b) 

Fig. 7 Fragility curves for nonlinear SDOF system under 

different scenario events and different response threshold 

levels (a) moderate threshold level yuL 0.2  (b) high 

threshold level yuL 0.5 . Circles are MCS results based on 

30 000 simulations 

 

 

three different scenario events M=5.5 at R=20 km, M=6.25 

at R=30 km and M=7.0 at R=140 km are 20.5%, 34.8% and 

50.6%, respectively. Accordingly, we have a maximum 

percentage difference equal to 85% between different 

scenarios. Furthermore, comparison of the results shown in 

Fig. 7 indicates that the modal event (most-likely M, R pair) 

does not necessarily have the highest probability of failure. 

Therefore, greater attention needs to select an appropriate 

set of earthquake records that can be used for fragility 

analysis of nonlinear system. 

 

 

5. Conclusions 
 

From an engineering point of view, safety assessment of 

structural and nonstructural systems, such as nuclear power 

plants, hospitals, bridges, or lifelines in an earthquake-

prone zone, implies nonlinear dynamic analysis. Many 

different methods and procedures have been developed for 

assessing seismic structural performance. Among these 

methods commonly used in recent years, are incremental 

dynamic analysis and MCS methods where extra repetitive 

and time-consuming computations must be performed for 

each scaled time history. Given these conditions, one of the 

most appropriate approaches for effectively assessing the 
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performance of structural systems is through a reliability 

analysis. In this regard, this study focuses on reliability 

based seismic performance analysis of nonlinear SDOF 

systems using the analytical fragility curves under 

simulated earthquake ground motions. The formulation of 

structural failure probability using random vibration theory, 

based on only the frequency information of the excitation, 

provides an important basis for structural analysis in places 

where there is a lack of sufficient recorded ground motions. 

The validity of the presented procedure was evaluated by 

MCS.  

The stochastic point-source model with a two-corner 

source spectrum used in this study, despite possessing some 

theoretical deficiencies, yields results similar to those 

obtained using finite-fault methods for the ground motion 

frequencies at moderate and large distances from the fault 

that are of most interest to engineers (Beresnev and 

Atkinson 1999, Atkinson and Sillva 2000, Boore 2009). It 

is noted that although a stochastic process of earthquake 

ground motion is non-stationary throughout motion both in 

time and frequency domain, it can be taken approximately 

as stationary during the time of ground motion of a typical 

earthquake, and good estimates of the response can be 

obtained by the random vibration theory (Key 1988). We 

have investigated also the issue of importance of frequency 

content on structural failure probability for different 

selected scenario earthquake events based on the seismic 

hazard disaggregation. Most developed methods to select 

input ground motions for seismic structural analysis often 

use modal causal earthquake magnitude and distance from 

disaggregation as scenario earthquake (Baker and Cornell 

2006, Haselton et al. 2009, Katsanos et al. 2010, Burks et 

al. 2015, Baker and Lee 2016). Results of this study 

indicate the probabilities of failure for linear and nonlinear 

system for low response threshold level are independent of 

the particular value of  RM , . On the other hand, when the 

response threshold is increased, failure probability depends 

strongly on characteristic  RM ,  pairs. Hence, the 

scenario events identified by the seismic risk differ from 

those obtained by the disaggregation of seismic hazard. 

Therefore, various scenario events often need to be 

considered for purposes of seismic risk analysis and failure 

probability of structures. The results obtained from this 

study are similar to those obtained by Hong and Goda 

(2006) and Lin et al. (2013). It is worth noting that although 

the investigations carried out in this study were on an 

inelastic SDOF system; its merit will be largely enhanced if 

a group of structures or a set of structures located in a 

particular region is considered. 
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