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Abstract. In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness
stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than
the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring
shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral
terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently,
the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the
computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that
the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use
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more number of variables.
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1. Introduction

The concept of functionally graded materials (FGMs)
was initially proposed in 1984 by scientists in Japan
(Koizumi 1997). FGM is a type of composite materials that
presents continuous distribution of material characteristics
from one surface to another and hence eliminates the
concentration of stress encountered in laminated structures.
Generally, the FGM is fabricated with a mixture of a metal
and a ceramic. FGMs are widely employed in different
structural applications such as aerospace, mechanical, civil,
and automotive (Zine et al. 2018, Meksi et al. 2018, Attia et
al. 2018, Sekkal et al. 2017a, Barati and Shahverdi 2016,
Bousahla et al. 2016, Kar et al. 2016, Ahouel et al. 2016,
Hadji et al. 2015, Larbi Chaht et al. 2015, Zidi et al. 2014,
Bouderba ef al. 2013). When the use of FGMs increases,
more accurate models are required to predict their
behaviors.

Since the shear deformation influences are more found
in thicker plates or plates fabricated from FGMs, shear
deformation models like FSDT (Al-Basyouni et al. 2015)
and HSDTs should be utilized to investigate FG plates. The
FSDT provides acceptable numerical results, but use a shear
correction coefficient (Mousavi and Tahani 2012,
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Malekzadeh and Monajjemzadeh 2013, Bouderba et al
2016, Bellifa et al. 2016, Arani and Kolahchi 2016,
Beldjelili et al. 2016, Kolahchi et al. 2016b, Madani et al.
2016, Zamanian et al. 2017, Kolahchi et al. 2017a, Zarei et
al. 2017, Shokravi 2017a).

Whereas, the HSDTs (Touratier 1991, Soldatos 1992,
Redd 2000, Karama et al. 2003, Zenkour 2006, Pradyumna
and Bandyopadhyay 2008, Mantari and Guedes Soares
2012, Thai and Kim 2013, Ahmed 2014, Kar and Panda
2016, Mahapatra ef al. 2016, Akavci 2016, Kolahchi et al.
20164, Bilouei et al. 2016, Baseri et al. 2016, Hachemi et
al. 2017, Klouche et al. 2017, Kolahchi and Cheraghbak
2017, Kolahchi 2017, Shokravi 2017b, ¢, d, Kolahchi and
Bidgoli 2016, Houari et al. 2016, Boukhari et al. 2016,
Bellifa et al. 2017a, b, Benadouda et al. 2017, Zidi et al.
2017, Kolahchi et al. 2017b, ¢, Haymohammad et al. 2017,
Bakhadda ef al. 2018) do not employ a shear correction
coefficient, but their governing equations are more difficult
than those generated by the FSDT. Recently, novel plate
models, which consider only four unknown variables and
yet take into consideration shear deformations, are proposed
by Tounsi et al. (2013), Barati and Shahverdi (2016) and
Bounouara e al. (2016). These theories are based on the
idea of partitioning the vertical displacements into the
bending and shear components as is firstly proposed by
Huffington (1963), and later adopted by Krishna Murty
(1987) and Senthilnathan et al. (1987). The thickness
stretching effect is recently studied by several researchers
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for beams and plates structures (Benchohra et al. 2018,
Abualnour et al. 2018, Sekkal et al. 2017b, Bouafia et al.
2017, Sekkal et al. 2017a, Akavci 2016, Bennoun et al.
2016, Draiche et al. 2016, Bourada et al. 2015, Hamidi et
al. 2015, Belabed et al. 2014, Fekrar et al. 2014, Bousahla
et al. 2014, Bessaim et al. 2013). However, a new idea is
proposed initially by Mantari and Granados (2015) by
considering undetermined integral terms in in-plane
displacements to construct a new FSDT. This idea is
improved recently by Merdaci et al. (2016), Besseghier et
al. (2017), Chikh et al. (2017), Khetir et al. (2017),
Menasria et al. (2017) and El-Haina et al. (2017) to develop
new HSDTs.

The purpose of this work is to improve the theory
proposed by Mantari and Granados (2015) by considering
the influences of shear deformation and thickness stretching
in FG plates. The kinematic of the Mantari and Granados
(2015) is modified by assuming a new hyperbolic variation
of the vertical displacement within the thickness, and thus,
the thickness stretching influence is taken into
consideration. Thus, the highlight of this theory is that, in
addition to including the thickness stretching effect (&, # 0

), the displacement field is modeled with only 5 unknowns.
Analytical solutions for bending and dynamic problems are
determined for a simply supported rectangular plate.
Numerical examples are presented to check the accuracy of
the proposed method.

2. Kinematics

The displacement field of the conventional HSDT is
given by (Mahi et al. 2015)

0 (0y20=u (0302 So+ F o000

v(X,Y,2,t)=v, (X, y,t) - 2 %+ f(z)p, (x,y.t) M

w(x,y,z,t)=wo (X, ¥, 1)

Uy, Vo, Wy, @, , ¢y Are the five unknown displacement of
the mid-plane of the plate. By considering that (Fahsi et al.

2017) ¢y =J.H(x,y,t)dx and @, = J-H(x,y,t)dy and

taking into account the stretching effect, we will have
u(x,y,z,t) =u,(x, y,t) - za(;NM k, f (z)j&(x, y,t)dx
X
_ oW, 2
V(X,Y,2,t) =V, (X, y,1) - ZE+ k, f (Z)Je(x, y,t)dy

W(X, Y, Z,8) =W, (X, y, 1) + 9(2) e, (X, ¥, )
Where
k, =a?®, k,=p° 3)

The new shape function f{z) is given as follows

f(z)= ﬁzz(\3/o.135 cosh (% zj—ﬁj ()

df (z
9(z)= 12 “
dz
The kinematic relations can be obtained as follows
e | | ke ks
g, t=1&y r+ziky b+ F(2)1k;
b
7/xy 7/>(<)y kxy kiy
0 (6)
4 v
7/XZ }/XZ
g =0(z) &
z Z
Where
oug _ %Wy
_ 2
&0 X k? ox
0 Ny b 0°W,
gy = E 5 ky = - 2 (73)
0 kb 8y
ol oy | 0*Wq
oy  oX oxoy
k; k,&
k; = k,0

kS 9 9
y klay‘|‘49dx+k2 aXIde

oy [k Jody+ % (75)
{m} _ oy
0
Y 99,
k[ dx+ =

0
& =,

The integrals used in the above equations shall be
resolved by a Navier type method and can be given as
follows
%0
OXoy
0 0’0
—fe dy=B'

OX oxoy

Ide: A'&

%Iedx=A‘

Ide:B'%
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Where the coefficients A' and B' are expressed
according to the type of solution used, in this case via
Navier.

Therefore, A', B', ki and k, are expressed as follows

1 1
ky=a,k,=p ‘

AI:__zs BI:__zs (8b)

Where
e u and £ are used in Eq. (24).

3. Constitutive relations

The linear constitutive relations of a FG plate can be
expressed as

Oy Ch C, C3 0 0 0 ||
o, c, C, C,; O 0 0 |]s
G| _ Ci Cy Cy 0 0 0 )]s 9
Ty, 0 0 0 C44 0 0 Vx2 )
7y, 0 0 0 Cx 0 |7y
Ty 0 0 0 0 0 Cg |7
The Cy(ij=1, 2, 4, 5, 6) expressions in terms of
engineering constants are given below
C. _M, (i=12,3). (10a)
14
C,=A(2), (i,j=1273). (10b)
C,=u(z), (1=4,56). (10c)
E(2)
M) =—-"7F7",
D= 120) 1) (104
E(z
wu(z )—ﬁ, (10e)

4. Equations of motion

Hamilton’s principle is used herein to derive the
equations of motion. The principle can be stated in
analytical form as (Ait Amar Meziane et al. 2014, Taibi et
al. 2015, Zemri et al. 2015, Attia et al. 2015, Belkorissat et
al. 2015, Ait Yahia et al. 2015, Taibi et al. 2015, Mouffoki

energy.
The variation of strain energy of the plate is calculated

by

h/2

I I[O'X56‘X +0o,08, +0,0¢,
—-h/2 A

+T, OV vy + T, 0¥y, + 7,07, JdAdz
= [IN,&ef + N 5e) + N, 57
A

ouU =

(12)
+ N, Syp, + M5k + M5k
+ M2 k2 + Mok; + Mok

+ Mg 5k;, + S50y, +S,,67,,JdA=0

Where A is the surface; and stress resultants N, M, and S
are defined by

NX NV NXV h/2 1
My M) MY :I(O'X,O'y,z'xy) z +dz (13a)
M: MS Mg | f(2)
h/2
N, = I o, 9(z) dz (13b)
—h/2
h/2
(55.85)= [ (r4:7,,) 0@ dz (13¢)

—-h/2

The variation of potential energy of the applied loads
can be expressed as

SV =—jq5 (W (%, y, D) + (D), (X, ¥, 1))dA 4y

Where g is the distributed transverse load.
The variation of kinetic energy of the plate can be
written as

h/2
5K = j jA[uau +VOV +WoW] p(z)dA dz

-h/2

=j{| [u5u +V, 0V, + VWOV, ]

et al. 2017, Abdelaziz et al. 2017)

(1)

.
o=I(5u + 6V —SK)dt
(0]

Where oU is the variation of strain energy; JV is the
variation of potential energy; oK is the variation of kinetic

= DOV, 065w 8w05 +6w0 50,1
a X oy
[%aéw oW, 65w]
! X oy oy 15)
3[4, 850+%5 859+895v0]
OX  OX
6\/\/ 859 00 O0OW, aw 859 69 O0OW,
OX OX 6x OX 6y 6y ay oy
K [69 856’ 00 656?] 3,00, + .50 ]+
oX OX 8y oy
K;¢,00,}dA
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Where dot-superscript convention indicates the
differentiation with respect to the time variable t; and (Jo, I1,
J1, I, J2, K2, K>°) are mass inertias defined as

(Io' |1!J1vJ15- |2,J2,K2,K25):

h/2 16
f Lz, f,qg,22,2f, £2,9%)p(z)dz (16)

—h/2

Substituting the expressions of 6U, dV and JK from Egs.
(12), (14), and (15) into Eq. (11) integrating by parts, and
collecting the coefficients of duo, dvo, dwo, 06, and Jf;, the
following equations of motion of the plate are obtained

oN, ON oW, 06
Su, : Xy X -1, —-J,— (17
0 ox oy oo 1o 1o (17a)
ON ON N 2]
5V, : y Ny gy, M5 99 g,
OX oy oy oy
2MPPME OPMY
W, : d £ +2 L+—L+q
ox oxoy oy
oi ov (17¢)
o i N —_—
:Io(Wo+9)+|1(67XO+EO)_I2V2W0_329+J1(0
O*M:
§0: —kM:—k,M: —(kA+k,B)—2
Oxoy
0SS, 0S5, o
+k, A ™ +k, B 8; +q=1,(W, +6) (17d)
+J1(%+%)—JZVZWO—K2€'+JIS¢
s 9S8 ..
op, S, +—L-N, = (W, +0)+ K5 (17e)

ox oy

By substituting Eq. (7) into Eq. (9) and the subsequent
results into Eq. (13), the stress resultants are obtained as

N A B B° & L

M°t=|B D D° K> b+ L | &l

M S BS DS H° ks R (183)

S=Ay
N, =R%p+L(ep +&))+ LA (k; +kD)+R(k; +k7)  (18b)
Where
N={N,N,N_} M°={M! M} M3},
(19a)

M®={M;,M; M} |

s
S={ip5;},7={np7ﬁ},As={%4 Aé}a9m

(19¢)
s __ s S S
k® ={k3, ks, k3, |
A11 /xiz () B11 B12 ()
A= Aiz A22 0 , B= Blz Bzz 0 )
0 0 A 0 0 B
6 66 (202)
Dll D12 0
D=|D, D, O
0 0 D
B, B, O D) D, 0
B = Blsz stz 0|, D= Dlsz D§2 0 )
0 0 B 0 0 D
oo (20b)
Hll H12 0
H =|H;, H; 0
| 0 0 Hg
(L 1
La h/2 z
1 = (2) g'(z)dz  (20c
R (=, f(2) (209
R? zf (2)
Ail Bll Dll Bl’S 1 D151 H 151
A12 Blz D1z Blsz D1Sz H1Sz =
A66 BSG DGG BgG Dgﬁ H 656
1-v (20d)
hi2 14
[1@[L 2 2, f@ 4@, PO} 1 jd
—h/2 1—21/
2v
h/2
Ku=As= [ u(@) [9@F dz (20¢)

—h/2

(Ay, By, Dy, stzl Dzsz’ stz)z(An: By, Dy, Blsl’ Dlsll H1S1) (201)

By substituting Eq. (18) into Eq. (17), the equations of
motion can be expressed in terms of displacements (duo,
o, Owo, 00, Jf) as

2 2, 2 2 3
6[120+A128v0+A66 au20+av0 _BuaV\3/0
OX oxoy oy®  oxoy OX

3 3 3
0 W02 0 W02 N BflA'klg
oxoy oxoy OX
%0 5%
B,B'k, ——+Bgs, (A'k, + B'k
12 2 6X6’y771 66( 1 Z)axay

L9009
OX OX OX

As

- BlZ

- 2B,
(21a)




Improved HSDT accounting for effect of thickness stretching in advanced composite plates 65

6x6y axﬁy ox?

3 3 1
_Bzzavg,l ZBss 6W1 B152A'k1 629
oy X0y X"y
31 3
B;,B'k, 63/9 +Bg (A'k, +B'k,) aiy
oX

82 1 82 1 62 1 62 1 3W1
Ao tha ot % Aes[ ] B~
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000y g Moy 00
oy

oy
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Bll 30 + B12 A BZZ 30
X oxay 6x oy oy

o, 63 w0 Oy
X0y T ay Tt TP oxtey?

0y 4D668aWO DMAkaA
2 Xy’ 21¢)

4 4
+D5(Ak+Bk) a0 +DSBkae
ooy’ “ oy

0 Lo (6 ?, 52%
oy’ o ay2
, 3" /.
)-),=5-K—= 73
o Coxoy ox°oy

+2B,, (

4

DZZ

+2D5 (A'k, +B'k, )

)+a=

4

1, (W, +6)+J, (a—O

B {Xﬂ—3|41 B‘;‘”“ o
re

|RBA
&’

& na & u(

B, (u+3u

o (ak Bm““]

\1[,

+D5,B'k, +2Dg (4"

)

11

4 a4
&' aps g prn O 8
'T. *Brll‘{ ’:IB J‘! a\_:ﬁ-_j,l (2 1 d)

By (Bh) S~ Hg( B o di (k) S (B ) S0 RES 5%
cy 28y? ox cy ox”

o E Giiy OV

+4'T-{;—+q I,y +6)+ J| [_‘_t-J,&\':(_‘)l— r(-\.:(-.r'f’l‘
2 2
L(auuiv;)—waa“!% y —(R+A:4)%
X oX
—(R+A55)f+Ra¢ a Ass (21e)
:JI(W0+6’)+ K;¢

5. Exact solution for simply supported FG plate

Rectangular plates are generally classified according to
the type of support used. This paper is concerned with the
exact solutions of Egs. (21a)-(21e) for a simply supported
FG plate.

The following boundary conditions are imposed at the
edges

:WOZQZEZ:¢:NX:ME =M;=0atx=0a (22a)

26 :
Uy=Vp=0=""=p=N,=M]=M;=0aty=0p  (22b)

Table 1 Material properties of the FG plate

Metal Ceramic
Properties
Al A1203 ZrOz
E (GPa) 70 380 211
) 0.3 0.3 0.3
p (kg/m?) 2,702 3,800 4,500

Following the Navier solution procedure, the authors

assume the following solution from for uo, v, wo, 6 and f;
that satisfies the boundary conditions given in Eq. (22)

Ug U,,,e™ cos(4 x)sin(u y)
Vo | . o |V sin(4 x)cos(u y)
Wo £ =" 1w, e sin(4 x)sin(x y) 23)
O ™ X e™sin(a x)sin(u )
o’ ®,.e" sin(4 x)sin(u y)

Where Unn, Vin, Wun, Xwn and @, are arbitrary

parameters to be determined, w is the is the natural
frequency; and A, u are defined as

u=mrzl/a And f=nxlb (24)

The transverse load q is also expanded in the double-

Fourier sine series as

A0 Y) = DD G SIN(A X)sin(u y) (25a)

m=1 n=1
For the case of a sinusoidally distributed load, it is
m=n=1 and ¢, =0, (25b)

Where g¢= intensity of the load at the plate center.
For the case of a uniformly distributed load (UDL), it is
16q,

Oon = 2 (ma n=135, ) (25¢)
mnz

Substituting Eqgs. (23) and (25) into Eq. (21), the

analytical solutions can be obtained from

A, a, &3 3, a5
A, 8, Ay Ay Ay
Az 8y 8y Ay Ay U 0
Q, 8y ay q, a4 m
a a an 0
| &5 Sy Ay Ay g |
r 0 0 I Wmn = qmn (26)
m;, mg; my, X q
mn mn
0 my, my m, O ® 0
2 mn
—@" My My My My, My
m, m, My M, My
0 0 my my My

In which
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Table 2 Effect of normal strain &z on dimensionless stresses and transversal displacement for isotropic square plate
subjected to uniformly distributed load (U.D.L) (a/A=10)

Theory W(a/2,b/2,0) 6,(h/2) a,(h/2) fxy(h/Z) 7,(0,0/2,0) 7,(a/2,0,0)
Present ez#0 4.628 0.268 0.268 0.194 0.491 0.491
Hebali et al. (2014) ez #0 4.631 0.276 0.276 0.197 0.481 0.481
Shimpi et al. (2003) ez #0 4.625 0.307 0.307 0.195 0.505 0.505
Exact 3D (Srinivas et al. 1970a) 4.639 0.290 0.290 — 488 —

Table 3 Effects of volume fraction exponent on the dimensionless stresses and deflections of a FG square plate subjected

to Sinusoidal Load

w(0) 6,(/2) 5,/3)
Present Hebali et al. (2014) Present Hebali et al. (2014) Present Hebali et al. (2014)
k &ez#0 &z 70 &z 70 &z 70 ez #0 ez #0
Ceramic 0.2936 0.2937 1.8599 1.9076 1.3604 13451
1 0.5685 0.5689 2.8296 2.9105 1.5176 1.4954
2 0.7220 0.7220 3.3322 3.4198 1.4195 1.3953
3 0.7980 0.7972 3.5830 3.6729 1.2975 1.2729
4 0.8421 0.8413 3.7654 3.8569 1.2021 1.1779
5 0.8732 0.8729 3.9354 4.0273 1.1285 1.1049
6 0.8991 0.8983 4.1024 4.1954 1.0692 1.0462
7 0.9215 0.9211 4.2671 4.3619 1.0192 0.9976
8 0.9424 0.9416 4.4293 4.5251 0.9763 0.9546
9 0.9614 0.9606 4.5876 4.6846 0.9396 0.9203
10 0.9796 0.9793 4.7396 4.8388 0.9077 0.8908
Metal 1.5936 1.5942 1.8599 1.9076 1.3604 1.3451
8y =—(Ana’ + A 5) And
ap =—a 8 (Ax+Aq) My =Mz =~lo

ay3 = a(Bya® +(By, +2Bg) 57) Mg = oy

a, =—a(B) Ak’ + BBk, f° + B (A'ky+B'k )ﬁz) Mha =00,

ajs = La :1‘23 j ?;1

A =P A — ba = Py

ai =—a2::—222222 Mg = 1o +1,(@” + 57)] (28)
2 2 My =lo+3,(c + 57)]
3 = B(By” + (B +2Bgg)a”) ,
a24:_ﬂ(stzB-kzﬂZ+a2(BlszA.kl+B§6(A.kl+B,k2))) m44__[|0+K2(0( +f )]
ae =L 7 Mgs = Mys = —J;

83 =—a* (Dyya” +(2Dy; +4Dg5) B ) - D5
ag, = DY A'ka® + D5, (A'ky + Bk, ) pPa®
+D35,B 'k, B +2D5s (A'ky +B'ky ) fPa®
ags = —L2(a? + %)
a4y = —(Hpa’ky + 2k B2Hgs + 2Hgsa’k, + Hipa’k,
+k B2H, +K, B2H3, + Atk + AK,)
a5 ={Aua” + K52 +R(e + )]
a5 =—(Aya’ + A2 +R%)

mgs =—K;

6. Numerical results

In this section, various numerical examples are
presented for bending and free vibration analyses of a

simply supported FG plate.

The proposed model for bending and free vibration of
FG plate will be first validated through the comparison with
the existing data available in literature. For this, two types
of FGMs plates are considered: AI/Al,O3 and Al/ZrO».
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Table 3 Effect of normal strain oz on dimensionless in-plane longitudinal & stresses and displacement W for FG

square plate subjected to Sinusoidal Load

&,(h/3) w(a/2,b/2,0)

k Theory ah=4 ah=10 a/h=100 alh=4 alh=10 a/h=100
Present £z £0 0,6018 1,5180 15,200 0,6965 0,5685 0,5438

Carrera et al. (2011) &z =0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625

1 Carrera et al. (2011) &z 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Neves et al. (2012) &z 0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624

Hebali ef al. (2014) & #0 0.5952 1.4954 14.963 0.6910 0.5686 0.5452

Present £z £0 0,4581 1,2020 12,120 1,1080 0,8421 0,7912

Carrera et al. (2011) ez =0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286

4 Carrera et al. (2011) £z £0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Neves et al. (2012) &z #0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286

Hebali ef al. (2014) &z #0 0.4507 1.1779 11.871 1.0964 0.8413 0.7926

Present £z £0 0,3380 1,9077 9,2060 1,3500 0,9796 0,9090

Carrera et al. (2011) &z =0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361

10 Carrera et al. (2011) £z £0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Neves et al. (2012) &z 0 03227 1.1783 11.932 1.3490 0.8750 0.8286

Hebali et al. (2014) & #0 03325 0.8889 8.9977 1.3333 0.9791 0.9114

The material properties of FG plates are reported in 05 7
Table 1. 041
For convenience, the following dimensionless forms are 039ckramic |ke1 -1 k=10 Metal

used

_ 1z a _ 10E, ,ab_ . 100E ,ab _
Z=—, S=—, W= W(=,=,7), W= W=, -, 2),
h h g,as® 2 2 g,hS* 22

_ 1 ab_, . 1 ab _
x = x(_'_'z)' x = 2 x(_7_!z)
q,S 2 2 0,S 2 2
_ 1 ab_, . 1 ab _
== _!_IZ ] = _l_lZ
Y d,S y(2 2 ) Y q082 y(2 2 )
1
= 7,(0,0,2), 7, =——1,(0,0,7
Xy qOS xy( ) y qosz y( )
Z_-yz = ! Tyz(g7017)1 T, = L Z'XZ(O,B,T)
0,S 2 0S 2

2
a_)za)arwlpc/Ec,aA):a)h p/E

6.1 Bending analysis

The Young’s modulus and Poisson’s ratio used for this
example are 210 GPa and 0,3 respectively.

In order to prove the validity of the present improved
higher shear deformation theory, comparisons are made
between the results obtained from this theory and those
obtained by Hebali et al. (2014), Shimpi et al. (2003), exact
solution developed by Srinivas et al. (1970a), quasi-3D
theory given by Neves et al. (2012) and finite-element
approximations presented by Carrera et al. (2011).

As a first example, an isotropic plate subjected to a
uniformly distributed load is studied.

Displacement results and stress are compared with the
quasi-three-dimensional (3D) hyperbolic shear deformation
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Fig. 1 The transverse displacement w through the
thickness of FG plate (a/h=4) subjected to sinusoidal load
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Fig. 2 Variation of axial stress O, through-the-thickness of
square FG plate (a/h=4) subjected to sinusoidal load

theory given by Hebali er al. (2014), solutions given by
Shimpi et al. (2003), and the exact solution presented by
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Srinivas et al. (1970a).

It can be observed from the results listed in Table 2 that
our results are in a good agreement with the others.

The second example studied is that of a thick AL/AL>O3
plate subjected to a sinusoidal load.

The results of the stresses and displacement are given
for three values of the power index & as shown in Table 3.

According to the results presented in this table, it can be
seen that the results of the present improved method are in
very great agreement with those of the solutions taking into
account the stretching effect (¢,#0) namely those of Carrera

Table 4 Natural frequencies g = ph, | p/E of an Isotropic Plate
with v=0.3, a/h=10 and a/b=1

m n Present Hebali et al. Srinivas et al. Reddy and Whitney and
(2014) &, #0 (1970b) (3D)  Phan (1985) Pagano (1970)
11 0.0930 0.0933 0.0932 0.0931 0.0930
1 2 0.2229 0.2228 0.2226 0.2222 0.2220
2 2 0.3425 0.3422 0.3421 0.3411 0.3406
1 3 0.4176 0.4173 0.4171 0.4158 0.4149
2 3 0.5243 0.5240 0.5239 0.5221 0.5206
3 3 0.6893 0.6890 0.6889 0.6862 0.6834
2 4 0.7513 0.7512 0.7511 0.7481 0.7447
1 5 0.9270 0.9268 0.9268 0.9230 0.9174

1.0891

1.0890

1.0889

1.0847

1.0764

et al. (2011) and Hebali et al. (2014) and whether it is for
displacement or stress. Also, an existing difference between
the results of this method and those of Carrera ez al. (2011)
for the case where the stretching effect is neglected (¢,=0) is
noted. This can be explained by the fact that the stretching
effect has great influence in the results of thick plates.

In Table 4, a third comparison of the results of the
present method with those of Hebali ef al. (2014).

The displacement and the calculated stresses are those
of a rectangular FG plate subjected to a sinusoidal load.

Again, the results of this improved method are very
consistent with those of Hebali et al. (2014).

After this series of results comparison, it can be said that
the present method is accurate for the analysis of the
bending of FG plates.

The influence of the volume fraction index £ on the
variation of the transverse displacement W through the
thickness direction is showed in Fig. 1 for a FG plate
subjected to sinusoidal load. It can be seen from this figure
that the displacement of metal plates is larger than the
corresponding one of ceramic plates and that the
displacement increases as the power law index k increases.

Fig. 2 plots the variation of axial stress O , through the
thickness of square FG plate (a/h=4) subjected to sinusoidal
load. It can be observed that the axial stress O, is tensile at

the top surface and compressive at the bottom surface and
the homogeneous ceramic or metal plate gives the
maximum stresses at the bottom surface and the minimum
tensile stresses at the top surface of the plate.

In Fig. 3, we present the variation of transverse shear

stress 7, «z through the thickness of square FG plate (a/h=4)

subjected to sinusoidal load.
As can be seen in Fig. 3, the distribution of the

transverse shear stresses 7,, is parabolic for the cases of

homogeneous ceramic or metal and this is not the case for
other types of plates.
Fig. 4 depicts the variation of the stress Ty through the

thickness of square FG plate subjected to sinusoidal load.
The same observation establishes for the case of axial stress

o , remains valid for this case namely, the stresses T, xy are
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J=0 k=0.5
Mode(m,n) Present Hebali et al. (2014) Tha et al. (2012) Shahg%‘fli)e’ al. Present Hebali et al. (2014)  Tha et al. (2012) Shahg%rf'li)‘” al
1(1,1) 3.6628 3.6959 3.6911 3.6983 3.3584 3.3877 3.3664 3.3713
2(1,2) 5.7889 5.8392 5.8323 5.8498 5.3118 5.3564 5.3238 5.3359
3(2,1) 11.8820 11.9752 11.965 12.0345 10.9247 11.0079 10.946 10.9940
4(2,2) 13.8275 13.9324 13.921 14.0144 12.7212 12.8149 12.745 12.8103
5(2,3) 16.9850 17.1070 17.096 17.2325 15.6408 15.7500 15.668 15.7660
6(3,2) 25.8985 26.0579 26.051 26.3462 23.9071 24.0503 23.941 24.1494
7(3,3) 28.7071 28.8754 28.871 29.2257 26.5186 26.6697 26.554 26.8100
Table 5b Natural frequencies of rectangular FG (a/h=10 and a/b=0.5)
k=1 k=2
Mode(m,n) Present Hebali et al. (2014)  Jha et al. (2012)  Shahrjerdi ef al. (2011) Present Hebali ef al. (2014)  JTha et al. (2012) Shahgeorldli)"’ al
10,1) 3.2262 3.2550 3.1291 3.1354 3.1484 3.1757 3.1291 3.1354
21,2) 5.1021 5.1460 4.9434 4.9594 49747 50157 4.9434 4.9594
32,1 10.4907 10.5720 10.137 10.1985 102037 102776 10.137 10.1985
4(2,2) 12.2147 12.3062 11.794 11.8784 11.8721 11.9543 11.794 11.8784
5(2,3) 15.0162 15.1225 14.481 14.6092 14.5786 14.6726 14.481 14.6092
63,2) 22,9453 23.0833 22,059 223273 222125 22.3285 22,059 223273
7(3,3) 25.4494 25.5947 24.446 24.7781 24.6163 24.7361 24.446 24.7781
tensile at the top surface and compressive at the bottom 3
surface and the isotropic ceramic or metal plate gives the 3
maximum stresses at the bottom surface and the minimum 344
tensile stresses at the top surface of the plate. 121\ a0
In Fig. 5, we have plotted the through the thickness 204 e
distributions of the transverse shear stresses O, . & el T
It can be concluded from this figure that the transverse 261
normal component O , cannot be neglected for the present 27
problem. “] i
: " % )

6.2 Free vibration analysis

Other examples to verify the accuracy of the present
theory in predicting the natural frequency of FG AL/ZrO,
plates are reported in Tables 4 and 5.

Table 4 gives a comparison of the natural frequencies

@ of square rectangular think plates (a/h = 10) between
the present results and those of the quasi-three-dimensional
(3D) hyperbolic shear deformation theory given by Hebali
et al. (2014), the three-dimensional (3D) elasticity solutions
developed by Srinivas et al. (1970b), the higher-order shear
deformation theory presented by Reddy and Phan (1985),
and with the first shear deformation theory of Whitney and
Pagano (1970).

An excellent agreement between the different results is
obtained, particularly between the present theory and 3D
hyperbolic shear deformation theory and the 3D elasticity
solutions.

It should be noted that the slight difference that exists
between the present solution and the two other amounts to
the fact that the latter neglect the stretching effect.

Fig. 6 Variation of the Non-dimensional fundamental

natural frequency ¢ of simply supported FG plate
rectangular plates (b=2a) versus the power law index &
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In Table 5 (¢ and b), we present a comparison of the
nondimensional frequencies @ of a think AL/ZrO, FG
plates predicted by the present theory and the solution
presented by Hebali et al. (2014), the higher-order shear
and normal deformation theory given by Jha et al. (2012)
and the second-order shear deformation theory developed
by Shahrjerdi ef al. (2011).

Once again, a good agreement between the results is
obtained for all vibration modes which confirm the
accuracy of the present theory.

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency @@ of simply
supported FG plate rectangular plates versus the power law
index k and for three values of the side-to-thickness ratios
a/h. Tt has seen a rapid increase of the non-dimensional
fundamental natural frequency until a value of k£ = 2, Once
exceeding this value, the natural frequency tends to keep a
more or less constant shape. On the other hand, the increase
in the A/h ratio tends to decrease frequencies. In other
words, the thicker the plate becomes, the lower the
frequencies.

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency @ of simply
supported FG plate rectangular plates versus the power law

index k and for three values of the side-to-thickness ratios
al/h. 1t has seen a rapid increase of the non-dimensional
fundamental natural frequency until a value of £ = 2, Once
exceeding this value, the natural frequency tends to keep a
more or less constant shape. On the other hand, the increase
in the A/h ratio tends to decrease frequencies. In other
words, the thicker the plate becomes, the lower the
frequencies.

The Fig. 6 illustrates the variation of the non-

dimensional fundamental natural frequency @ of simply
supported FG plate rectangular plates versus the power law
index & and for three values of the side-to-thickness ratios
al/h. Tt has seen a rapid increase of the non-dimensional
fundamental natural frequency until a value of £ = 2, Once
exceeding this value, the natural frequency tends to keep a
more or less constant shape. On the other hand, the increase
in the A/h ratio tends to decrease frequencies. In other
words, the thicker the plate becomes, the lower the
frequencies.

Fig. 7 plots the variation of the non-dimensional

fundamental natural frequency @ of simply supported FG
plate rectangular plates as a function the side-to-thickness
ratio (a/h). As can be seen, the increase in the a/h ratio
increases the frequency and the increase in the power index
k reduces them. Also, the homogeneous ceramic plate has
the highest frequency.

In Fig. 8 we present the variation of the non-

dimensional fundamental natural frequency @ of simply
supported FG plate versus the aspect ratio b/a and for
different values of the side-to-thickness ratios a/h. The
highest frequencies are obtained for a square plate (b/a = 1).
The more rectangular the plate becomes, the frequencies
relapse.

In Fig. 9, we have plotted the same variation but for
different values of the power law index k.

The highest frequencies are obtained for a homogeneous
ceramic plate and the lowest for a metal plate. The increase
in index k decreases the frequencies.

7. Conclusions

In this study, bending and free vibration analysis of
functionally graded plate is carried out by an improved
higher shear deformation theory taking into account the
influence of stretching effect.

The kinematic of the present improved theory is
modified by considering undetermined integral terms in in-
plane displacements which results in a reduced number of
variables compared with other shear deformation theory of
the same order. Navier solution was used to find the
different parameters governing the bending and free
vibration of these plates. Verification examples demonstrate
that the developed theory is not only more accurate than the
refined plate theory, but also comparable with the HSDTs
which use more number of variables.
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