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1. Introduction 
 

Engineering problems are included various 

uncertainties, which may be encountered with them in the 

design and implementation phases of structural system such 

as the material and geometric properties, and external loads. 

The probabilistic models can be used to consider these 

uncertainties (Keshtegar and Miri 2013) using the reliability 

analysis based on the analytical or simulation approaches 

(Keshtegar and Chakraborty 2018), such as the Mean-Value 

First-Order Second Moment (MVFOSM) (Liu and Peng 

2012), the First-Order Reliability Method (FORM) (Santos 

et al. 2012, Keshtegar and Miri 2014), Second-Order 

Reliability Method (SORM) (Kiureghian and Stefano 

1991), and Monte Carlo Simulation (MCS) (Keshtegar and 

Kisi 2017). The main effort of the structural reliability 

analysis is estimated the failure probability ( fP ) by a multi-

dimensional integral as (Keshtegar 2017a) 
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where,  g  is the Limit State Function (LSF), which 

separates the design domain into failure ( 0)( Xg ) and 

safe ( 0)( Xg ) regions with respect to basic random 

variables T

nxxx )...,,,( 21X . Xf  is the joint Probability 

Density Function (PDF) of random variables X. A closed 

form solution of the above integral is not available for 

general cases of nonlinear LSF with many random variables 

(Santosh et al. 2006). The MCS is generally provided  
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accurate solution for integral in Eq. (1) when a sufficient 

number of simulations are used. However, high-

computational effort is often required based on the MCS for 

complex engineering problems due to the expensive 

computations of LSF (Liu and Peng 2012, Meng et al. 

2017, Periçaro et al. 2015). FORM (Koduru and Haukaas 

2010, Liu and Der Kiureghian 1991) and SORM 

(Kiureghian and Stefano 1991) are the analytical methods to 

estimate the failure probability. The FORM method is 

typically used for the good balance between accuracy and 

efficiency for the reliability assessment (Xiao et al. 2011, 

Keshtegar and Meng 2017). In FORM, structural failure 

probability is estimated based on the reliability index (  ) 

by linearizing the LSF on the failure surface at the “most 

probable point” (MPP) i.e., *
U  i.e., )( fP ) 

(Santosh et al. 2006). The MPP search is computed by the 

following constrained optimization problem (Keshtegar 

2017a) 
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Generally, the main goal of FORM is the MPP search (
*

U ). The optimization schemes such as the gradient 
projection, the augmented Lagrangian and the sequential 
quadratic programming method were applied to search the 
MPP by Liu and Kiureghian (1991). Hasofer and Lind 
(1974) proposed a general iterative method for computing 
the reliability index. Later, Rackwitz and Fiessler (1987) 
extended the Hasofer and Lind iterative scheme using 
distribution information of the random variables (called as 
HL-RF method). Unlike the optimization methods (Liu and 
Kiureghian 1991), the HL-RF algorithm is widely utilized 
for structural reliability analysis (Gong and Yi 2011, 
Keshtegar 2017b). The iterative HL-RF scheme may lead to 
unstable results as periodic and chaotic solutions (Yang 
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2010, Meng et al. 2017, Keshtegar 2016a) or may converge 
very slowly in highly nonlinear problems with concave 
limit state function (Wang and Grandhi 1996, Keshtegar 
2017c). There were suggested several modifications of 
FORM formula to improve the numerical instability and 
efficiency of the HL-RF method. Liu and Kiureghian 
(1991) introduced a merit function to improve the 
convergence performance of the HL-RF method. Santosh et 
al. (2006), Santos et al. (2012) and Periçaro et al. (2015) 
improved the HL-RF method by selecting a step size based 
on Armijo rule and Wolfe conditions. The BFGS approach 
was used to extract the search direction vector for reliability 
analysis-based FORM by Periçaro et al. (2015). Wang and 
Grandhi (1994 and 1996) enhanced the HL-RF method 
using the intervening variables and considering the adaptive 
nonlinear two-point approximation. Yang (2010) applied the 
stability transformation method (STM) using chaos 
feedback control to improve the robustness of FORM 
formula. Gong and Yi (2011) a simple iterative algorithm 
proposed based on finite-step length (FSL). The FSL and 
STM algorithms are more robust than the HL-RF method. 
However, the small control factor in the STM and large step 
length in the FSL may be required more iterative numbers 
to obtain the stabilization in highly nonlinear LSFs. 
Recently, Meng et al. (2017) improved the STM using the 
directional formulation to obtain the search direction vector. 
The relaxed HL-RF method was proposed based an 
adaptive relaxed factor between 0 and 1 by Keshtegar and 
Meng (2017). Keshtegar and Meng (2017) showed that the 
directional STM may produce the unstable results or may 
slowly converge for some applicable engineering problems. 
Keshtegar and Miri (2014) introduced the conjugate 
gradient optimization method to improve the robustness of 
HL-RF with Wolfe conditions. The improved HL-RF 
methods which developed by Keshtegar and Miri (2014), 
Santos et al. (2012) and Periçaro et al. (2015) are more 
robust than the HL-RF but, are computational extensive 
approaches to determine the step size using Wolfe 
conditions. Recently, the FORM-based conjugate search 
direction was developed to search MPP using the Armijo 
rules (Keshtegar 2016a, b, Keshtegar 2017a) and sufficient 
descent condition (Keshtegar 2017b, c, Keshtegar and 
Chakraborty 2018) to improve the convergence properties 
of FORM. The hybrid conjugate FORM (Keshtegar 2017a), 
adaptive conjugate search direction (Keshtegar and 
Chakraborty 2018), relaxed-finite step size using conjugate 
search direction (Keshtegar and Bagheri 2017), limited 
conjugate search direction (Keshtegar 2017b, c) and chaotic 
conjugate search direction (Keshtegar 2016b) were 
formulated using the FR conjugate scalar factor. Generally, 
the Armijo rule was applied to compute the finite-step size 
that the efficiency of the FORM is controlled using the 
conjugate search direction based on sufficient decent 
condition in limited (Keshtegar 2017b, c), and hybrid 
adaptive conjugate FORM (Keshtegar and Chakraborty 
2018). The chaotic conjugate search direction using STM 
with complex formulations was proposed to control the 
instability of FORM using FR optimization approach 
(Keshtegar 2016a). The results by Keshtegar (2017a, b, c) 
indicated that the conjugate search direction can be used to 
improve the robustness and efficiency of FORM formula. 
However, the complex conjugate FORM formula with an 
adaptive finite-step size which is determine by Armijo rule, 

should be applied with huge computational burden to search 
the MPP of the structural problem.   

In this paper, an iterative conjugate FORM algorithm 

called conjugate finite-step length (CFSL) is proposed to 

evaluate the failure probability without Armijo rule using 

the finite-step size which is simply adjusted using the 

descent condition. The CFSL is quickly converged with 

global convergence property in the nonlinear structural 

reliability problems. The results illustrate that the CFSL 

method is more efficient than the FSL and is more robust 

than the HL-RF. 

This paper is organized as follows: The FORM is 

defined in Sec. 2. The proposed method is discussed in Sec. 

3. Five nonlinear mathematical and structural/ mechanical 

examples are given in Sec. 4 to illustrate the performances 

of the CFSL method. Then the conclusions are provided in 

Sec. 5. 

 

 

2. First-order reliability method 
 

The basic process of FORM is the MPP search to 

compute the reliability index *
U  (Keshtegar 2016a). 

Generally, the probability of failure ( )( fP ) is 

approximated using   by the three following steps; 

Step 1: Transform the basic random variables form X-

space (X is the original random variable vector) to U-space 

(U is standard normal vector with zero means, unit variance 

and independent components) by Rosenblatt transformation 

i.e., )}({1 xFu X

  as follows 

e
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where, e

x  and e

x  are the equivalent mean and the 

standard deviation of the basic random variable x , 

respectively. The e

x  and e

x  of non-normal random 

variables are determined as follows (Santosh et al. 2006, 

Keshtegar 2017b) 
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where )(xfX  and )(xFX
 are the PDF and Cumulative 

Distribution Function (CDF) of variable x , respectively. 
1  is the inverse standard normal CDF and   is the 

standard normal PDF. 

Step 2: Search the MPP ( T

nuuuU ),...,( **

2

*

1

*  ) using an 

iterative process as:  

 

2.1 The HL-RF method 
 

The HL-RF iterative formula is written as (Gong and Yi 

2011, Keshtegar 2017a) 
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where, 
1k  is negative unit normal vector at point kU , 

which is computed as 
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where, T

nugugugg ]/,...,/,/[)( 21  U  is the gradient 

vector of the LSF. The HL-RF method may fail to converge 

with the oscillating points for highly nonlinear LSF.  

 

2.2 Finite-step length algorithm 
 

Gong and Yi (2011) proposed a robust iterative 

algorithm using finite-step length based on the improved 

negative unit normal vector in Eq. (6) as follows 
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in which, point 
1kU  is point whose is calculated as  

)(1 kkk g UUU    (9) 

where, 0  is the finite-step length. It can be concluded 

from Eq. (9) that 
kk UU 


1

when the step length is given as 

0  thus 
kk  1

. This means that point 
1kU is a 

fixed point. Thus, if kkkk UUUU   112 , set 

c/   where, 1.2c1.5 is the adjusting coefficient. 

Step 3: Estimate the probability of failure.  

Based on MPP i.e., *
U , it is approximated the failure 

probability as )( *
UfP .  

 

 

3.  Conjugate finite-step length algorithm  
 

Concavity degree of the LSF is an essential factor for 

convergence performances including robustness and 

efficiency of the HL-RF and FSL algorithms. The HL-RF 

and FSL methods may be inefficiently converged for highly 

nonlinear performance function. In order to reduce the 

parallel risk of the unit normal vector   with the 

normalized search direction vector k , a conjugate unit 

normal vector is proposed based on as follows 

kkk

C

k dUU  1  (10) 

where, point C

k 1U  is along the conjugate search direction at 

point 
kU  and kd

 is the conjugate gradient vector which 

is computed as follows 
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The above conjugate gradient vector is formulated using 

the conjugate scalar factor of 
2
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in which the previous conjugate gradient i.e., 
1kd , new 

i.e., )( kg U  and previous gradient i.e., )( 1 kg U  vectors 

are applied to adjust the new conjugate gradient vector i.e. 

kd . However, the conjugate scalar factors of the existing 

conjugate FORM formula including chaotic conjugate STM 

(Keshtegar 2016a), chaotic conjugate chaos control 

(Keshtegar 2016b), enriched FR (Keshtegar 2017b), limited 

FR (Keshtegar 2017c), relaxed-finite conjugate method 

(Keshtegar and Bagheri 2017) and hybrid adaptive 

conjugate method (Keshtegar and Chakraborty 2018) are 

extracted based on new and previous gradient vectors as 

2
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2
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k

k

g

g

U

U
. The participation factor of the previous 

conjugate gradient vector in Eq. (11) is directly computed 

without a condition while the limited (Keshtegar 2017b, c) 

and adaptive hybrid conjugate (Keshtegar and Chakraborty 

2018) factors are applied to satisfy the sufficient descent 

condition in the conjugate FORM. The iterative formula 

(10) is used to compute the conjugate unite normal vector 

based on the conjugate gradient vector (11) as 
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The iterative formula of FORM (6) can be computed 

based on the conjugate finite-step length method (CFSL) in 

terms of Eq. (12). Fig. 1 shows a cycle of the conjugate 

search direction vector in two-dimension normal standard 

space, schematically. It is illustrated that conjugate gradient 

vector kd  is not located along direction the negative unit 

normal vector (
1k ). This means that unit normal vector is 

not parallel to the normalized conjugate search direction 
C

k 1 .  

 

 

 

Fig. 1 Schematic the iterative procedure of the CFSL 

algorithm 

 

 

If the step length   is well-defined then the CFSL 
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algorithm is efficiently converged. Thus, the descent 

condition is considered to adjust maximum step length as 
2

1 )()( kkk

T gcg UdU   and 10 1  c . Consequently, 

if 
kk dd 1

 then the step size is defined as follows 
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

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k
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where, 1.2 c 1.5. According to above equations, the steps 

of the CFSL scheme for MPP search are stated as follows. 

 

 

Step 0 

Define 0)( Ug , Given μ , σ  and constants 

]5.1,2.1[c , step length 0  and stopping 

criterion  , Let 0k , Choose an initial point 

μX 0
 

Step 1 Normalize random variable in terms of Eqs. (3)-(5) 

Step 2 

Compute the LSF, gradient vector and conjugate 

gradient vector 

Adjust step size based on Eq. (13), 

Determine point C

k 1U  by Eq. (10) and normalized 

conjugate search direction vector using Eq. (12) 

Determine the new point as follows: 
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Step 3 

If  1kk UU  then stop, print 
1

*

 kXX , 

1

*

 kUU , *
U , and )( fP , else 

1 kk  and Go to Step 1. 

 

 

 

Fig. 2 framework of FORM for the CFSL method 

 

 

The framework of the iterative procedure of the CFSL 

method is given in Fig. 2. The step size is adjusted using the 

conjugate gradient information while step sizes in chaotic 

conjugate gradient (Keshtegar 2016b) and the enriched FR 

(Keshtegar 2017b) methods are adapted using Armijo rule  

 
Fig. 3 Iterative history comparison of reliability index for 

Example 1 

 

Table 1 Iterations of the FSL and CFSL algorithms respect 

to various λ for Example 1 

Algorithm 
λ 

 
 

FSL 

CFSL 



 



 

 

using new and previous points. The normalized conjugate 

vector is applied to compute the search direction in 

proposed CFSL while the search direction of HL-RF and 

FSL methods are extracted from the gradient vector.   

 

 

4.  Examples and comparative studies 
 

Computational performance of the FSL and CFSL 

algorithms on a set of six nonlinear limit state functions are 

evaluated. Effectiveness and robustness of the CFSL are 

compared with the FSL and HL-RF methods that 150   

and c =1.4 are taken in FSL and CFSL. The gradient vector 

)(Ug  is computed using central finite difference and 

also, all algorithms are implemented the same stopping 

criterion i.e., 610 . 

Example 1: highly nonlinear performance function as 

(Wang and Grandhi 1994) 

202)( 4

2

4

11  xxXg  (15) 

where, x1 and x2 are independent normal random variables 

with 1021    and 521  . The reliability 

index is extracted from Wang and Grandhi (1994) and 

Santos et al. (2012) which is equal to 2.3654 and 2.3655, 

respectively. The convergence history of reliability index is 

shown in Fig. 3 on the basis of the HL-RF, FSL and CFSL 

algorithms. It shown that the stable solution is captured 

based on the CFSL, i.e.,  = 2.3654347 more efficient than 

the FSL. Nevertheless, the HL-RF algorithm yields the 

periodic-2 solutions i.e., {0.9267, 0.9863}. The convergent 

results of the FSL and CFSL algorithms are obtained after 

108 and 45 iterations as *
U = [-1.63679, -1.70771] and  
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Table 2 Statistical properties of the random variables for 

rotating disk example  

Random 

variable 
Mean Standard deviation Distribution 

m  0.9378 0.04655 Weibull* 

uS (lb/in2) 220000 5000 Normal 

 (lb/in3) 0.29 0.00577 Uniform** 

 (rpm) 21000 1000 Normal 

oR (in) 24 0.5 Normal 

iR (in) 8 0.3 Normal 

*Scale parameter=25.508; shape parameter=0.958 

**Uniformly distributed in interval (0.28-0.3) 

 
 

*
U = [-1.63687, -1.70763], respectively. The CFSL 

algorithm is required much less number of iterations to 

attain stable results than FSL.  

Iterations of the FSL and CFSL algorithms to obtain 

stable results with respect to various step lengths are 

tabulated in Table 1 for Example 1. As seen, the FSL and 

CFSL schemes are converged to stable results. The result 

implies that iterations are depended on the search direction 

vector in FORM. The CFSL scheme is more efficient than 

FSL algorithm and the CFSL is converged almost twice 

faster than the FSL algorithm. Therefore, the conjugate 

search direction based on Eq. (11) can be improved the 

efficiency of the FORM compared to FSL method.  

Example 2: a burst margin of rotating disk with inner 

radius Ri and outer radius Ro is considered as follows (Rao 

and Chowdhury 2009) 

37473.0]

)()
60

2
(

))(82.385(3
[

332
2 






io

io
um

RR

RR
Sg




  
(16) 

The disk is subject to an angular velocity   about an 

axis perpendicular to its plane at the center. uS  is the 

ultimate strength material,   is the density and m  is 

the material utilization factor whose the statistical 

properties are listed in Table 2. 

According to the results extracted from Rao and 

Chowdhury (2009) for this example, the reliability index is 

eq ua l  t o  3 .0 8 7 2 8  ( 00101.0fP )  and  3 .1 2 3 3 6  (

000894.0fP ) using the MCS and the FORM reliability 

analysis, respectively and also the MPP is extracted to be 
*
X = [0.81, 218989.90, 0.30, 21686.87, 24.51, 8.57]. Based 

on the reliability analysis undertaken using the CFSL 

algorithm, the converged reliability index and MPP are 

computed to be  = 3.123554 and *
X =[ 0.80851, 

217479.4, 0.29397, 22913.87, 24.36376, 8.093455] after 9 

iterations, respectively. The reliability index and iteration 

are computed to achieve stable result of this example based 

on the HL-RF and FSL as 3.123553 (11 iterations) and 

3.123576 (52 iterations), respectively. It is obvious that the 

CFSL algorithm is efficiently converged to the stable 

solution with 3 iterations less than HL-RF and 43 iterations 

less than FSL approach for this example. Therefore, the  

 

Fig. 4 Iterative history of reliability index for Example 3 

 

 

CFSL is significantly efficient than the FSL method.  

Example 3: a non-linear performance function with non-

normal variables that it is taken from response-surface 

fitting a pipeline for the reliability analysis by LSF as (Liu 

and Kiureghian 1991) 

2

4443

2

33

41423112

32

2

1

2
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339.1998.0558.00333.0226.0

0717.00611.00149.000534.00705.0

0135.000117.000157.000115.01.1
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xxxxxxxx

xxxxxxg
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(17) 

where, 
1x  to 

4x  are statistically independent basic 

random variables. The random variable 
1x  has the type-II 

largest value distribution with a mean of 10 and standard 

deviation of 5. 
2x  and 

3x  are the normally distributed 

random variables with means equal to 25 and 0.8, and 

standard deviations equal to 5 and 0.2 respectively; and the 

random variable 
4x  follows a lognormal distribution 

density function with a mean 0.0625 and standard deviation 

0.0625.  

According to the results extracted from Liu and 

Kiureghian (1991), the reliability index and the MPP are 

equal to β =1.36 and *
X = [15.09, 25.027, 0.8653, 

0.03582], respectively. Yang (2010) analyzed this example 

using the STM that the converged results are as the safety 

index of 2.3482 and the MPP of [14.906, 25.067, 0.8995, 

0.04606]. The reliability indexes are obtained by Gong and 

Yi (2011) and Santos et al. (2012) as 1.3304 and 1.3653, 

respectively. Based on the reliability analysis undertaken 

using the proposed CFSL algorithm, the safety index β 

=1.3305032 and MPP *
X  = [14.9043, 25.0673, 0.8596, 

0.04609] are attained after 14 iterations. The iterative 

histories of reliability index for different reliability methods 

are shown in Fig. 4 for nonlinear problem of Example 3. As 

seen from Fig. 4, the HL-RF produces the unstable results 

as periodic-2 solutions i.e. β = {1.0496, 1.1536}. However, 

the FSL and CFSL methods are converged to stable results, 

more efficiently. The CFSL is converged with three 

iterations less than the FSL.  

Example 4: a two degree of freedom primary-secondary 

dynamic system is shown in Fig. 5, which is a type of 

nonlinear problem with following LSF (Kiureghian and  
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Fig. 5 Two-degree of freedom dynamic system 

 

Table 3 Statistical basic random variables for Example 5 

Random 

variable 
Mean 

Standard 

deviation 

Random 

variable 
Mean 

Standard 

deviation 

pM  1 0.1 p  0.05 0.02 

sM  0.01 0.001 s  0.02 0.01 

pK  1 0.2 sF  15 1.5 

sK  0.01 0.002 0S  100 10 

 
 

Stefano 1991) 

2/12

4 ])[( sxEPKsFsg   (18) 

where, Fs denotes force capacity, P is the peak factor 

that is considered as 3 for simplicity and ][ 2

sxE  is mean-

square relative displacement of the secondary spring which 

is given as follows 

]
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 (19) 

in which, 
p

s

M

M
 is mass ratio, 

2

sp

a





  and 

2

sp

a





  are average frequency and damping ratio of 

the two systems. 
a

sp







  is a tuning parameter and 0S  

is intensity of the white noise. The means and standard 

deviations of eight random variables with Lognormal 

distributions are presented in Table 3.  

Safety index is extracted from Kiureghian and Stefano 

(1991) which is equal to 2.01. Based on the results extracted 

from Keshtegar and Miri (2014), the reliability index is 

equal to 2.01645. Recently, Keshtegar (2016a, 2017a) used 

this problem to compare the performances of iterative 

FORM formula using chaotic conjugate STM (Keshtegar 

2016a) and hybrid conjugate search direction (Keshtegar 

2017a) that the reliability indexes are extracted as β= 

2.016348 and β=2.01644, respectively. The convergence 

history of this example is shown in Fig. 6. As seen, the HL-

RF method is converged to the periodic-2 solution of the 

reliability index as {4.9807, 4.2170}. However, converged 

reliability analysis of FSL i.e., β= 2.016459and CFSL i.e., 

β= 2.016445 are shown stable convergence, which are more 

agreement with the results from literatures. Furthermore, 

this example clearly indicated robustness of the FSL and 

CFSL iterative approaches in compared with the HL-RF 

algorithm in complex limit state function. It is obvious from  

 

Fig. 6 Iterative history of reliability index for Example 4 

 

 

Fig. 7 Schematic view of cantilever beam 

 

Table 4 Statistical properties of the random variables for 

cantilever beam example  

Random 

variable 
Mean 

Standard 

deviation 
Distribution 

Random 

variable 
Mean 

Standard 

deviation 
Distribution 

1M (N-m) 50×103 5×103 Normal 1b (m) 0.75 0.001 Normal 

2M (N-m) 30×103 3×103 Normal 2b (m) 2.5 0.001 Normal 

1F (N) 18×103 4×103 
Extreme value 

type I 1c (m) 0.25 0.0005 Normal 

2F (N) 30×103 3×103 Normal 2c (m) 1.75 0.001 Normal 

1qL (N/m) 30×103 1×103 Normal 1d (m) 1.25 0.001 Normal 

1qR (N/m) 20×103 1×103 Normal 2d (m) 4.75 0.001 Normal 

2qL (N/m) 20×103 1×103 Normal w (m) 0.2 0.0001 Normal 

2qR (N/m) 1×103 10 Normal h (m) 0.4 0.0001 Normal 

1a (m) 1.5 0.005 Normal S (Pa) 80×106 8×106 Normal 

2a (m) 4.5 0.005 Normal max (Pa) 3.5×106 0.5×106 Normal 

 

 

Fig. 6 that the CFSL is more robust than the HL-RF 

algorithm and is slightly efficient algorithm compared to 

FSL with convergence rate about twice faster than the FSL 

algorithm. 

Example 5: A cantilever beam is subjected to external 

forces F1 and F2, moments M1 and M2, and distributed loads 

represented by [ 1qL , 1qR ] and [ 2qL , 2qR ] which is shown 

in Fig. 7 (Du 2010).  

Two LSFs are considered for this example as  
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3
max25    (21) 

The first LSF represents the difference between the 

maximum normal stress and the yield strength. The second 

LSF is defined as the difference between the maximum 

shear stress and the allowable shear stress. Where, the 

bending moment ( M ) is computed as 
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and the shear force ( Q ) is computed as 
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 (23) 

This example involves 20 random variables which are 

listed in Table 4. The numerical results from Liu and Peng 

(2012) were extracted that the reliability index are given by 

FORM, SORM, and MVFOSA to be 3.4793 

(Pf=2.5133×10-4), 3.4719 (Pf=2.584×10-4), and 3.4414 

(Pf=2.8933×10-4) for first LSF (Eq. 20) and also, 3.0486 

(Pf=1.1495×10-3), 3.0200 (Pf=1.2639×10-3), and 3.0262 

(Pf=1.2383×10-3) for second LSF (Eq. 21), respectively. The 

CFSL is converged to reliability indexes of 3.4686377 and 

3.0485344 for first and second LSFs after 4 and 5 iterations, 

respectively. The FSL and HL-RF algorithms are converged 

to stable results as well as the similar reliability indexes of 

CFSL for LSFs in Eqs. (20) and (21). 

 

 

5. Discussions  
 

The number of gradient vector evaluations )(Ug  

(Iter), number of evaluating LSF (CF) and reliability index (

 ) are used to compare the HL-RF (Eqs. (6), (7)), the FSL 

(Eqs. (6), (8)), and CFSL (Eqs. (12), (13), (14)) algorithms. 

The converged results of these methods are presented in 

Table 5. It is clear from Table 5 that the FSL and CFSL 

algorithms are the robust FORM but the HL-RF scheme 

provides the unstable results (see Examples 1, 3, 4). The 

results of Example 3 showed that the HL-RF method is 

exhibited unstable solutions as periodic-2 solutions of the 

reliability indexes i.e., β = {1.04958, 1.15364}. However, 

the FSL and CFSL algorithm is robustly converged for all 

studied examples. The highly nonlinear LSFs in Examples 

1, 3 and 4, can be analyzed using improved search 

directions using FSL and CFSL formulas to achieve the 

stabilization. The CFSL has the top speed convergence 

compared to the FSL algorithm. The proposed conjugate 

search direction in Eq. (11) performed better in terms of 

efficiency than FSL in the same case reliability examples.   

The  CFSL can be  i mproved  the  convergence 

performances of FORM formula, more efficiently in the 

first stage and more robustly in the second stage for both 

concave and convex reliability problems. It is obvious from 

Table 5 and Figs. 4 and 6 that the CFSL is significantly  

Table 5 Comparison of the convergence for the FSL, CFSL, 

and HL-RF iterative algorithms  

Example 
FSL (λ=15) 

Iter \ CF \β 

CFSL (λ=15) 

Iter \ CF \ β 

HL-RF (λ=∞) 

Iter \ CF \ β 

MCS 

CF \  

#1 108 \ 540 \ 2.365454 45 \ 225 \ 2.365435* 
Failed  periodic-2 

{0.9267, 0.9863} 
106\2.8861 

#2 52 \ 676 \ 3.123576 9 \ 117 \ 3.123554* 12 \ 156 \ 3.123553 1×106\3.0873 

#3 17 \ 153 \ 1.330537 14 \ 126 \ 1.330503* 
Failed  periodic-2 

{1.0496, 1.1536} 
2×105\1.4961 

#4 75 \ 1275 \ 2.016459 36 \ 612 \ 2.016445* 
Failed  periodic-2 

{4.2170, 4.9807} 
5×105\2.6338 

#5 

g1 6 \ 246 \ 3.468638 4 \ 164 \ 3.468638* 7 \ 287 \ 3.468638 8×106\3.4708 

g2 7 \ 287 \ 3.048534 5 \ 205 \ 3.048534* 9 \ 369 \ 3.048534 8×106\3.0156 

*Algorithm with minimum iteration or minimum cup-run 

time  

 

 

more efficient than the FSL method but its iterations are 

shown the zigzag drawbacks at the initial iterations. 

Consequently, it may increase the iterations of the CFSL to 

achieve the stable results. In order to improve the efficiency 

of the CFSL method for highly nonlinear problems, the 

conjugate search direction of the conjugate FORM using 

CFLS may also enhanced in future. 

 

 

6. Conclusions 
 

A general idea to solve a variety of highly nonlinear 

reliability problems is proposed using conjugate search 

direction combined by finite-step size, which is called as 

conjugate finite-step length (CFSL). The conjugate FORM 

satisfied the sufficient descent condition i.e.,
2

1 )()( kkk

T gcg UdU   using a step size without line 

search rules. The performance of CFSL algorithm is 

compared with the HL-RF and the finite-step length 

approaches using five nonlinear mathematical and 

structural/mechanical problems. The results demonstrated 

that the CFSL algorithm is the top performer and is quickly 

converged in comparison with the FSL method. The CFSL 

is more robust than HL-RF in highly nonlinear performance 

function. The proposed conjugate FORM using CFSL 

formula is converged about twice faster than the FSL 

algorithm in highly nonlinear performance function. 

Generally, the CFSL method is a robust method with fast 

convergence performance.  
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