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1. Introduction 
 

After the structural modal characteristics were found to 

be sensitive to damage, a significant amount of work has 

been reported in technical literature regarding the use of 

changes in modal parameters to identify the location and 

extent of damage in civil structures. Nowadays, a variety of 

structural health monitoring methods based on measurement 

data have been developed for damage detection, among 

them vibration-based damage identification and condition 

assessment methods have been mostly widely studies (Cruz 

and Salgado 2009, Alvandi and Cremona 2006, Talebinejad 

et al. 2011). However, structures are usually subjected to 

complex environmental conditions which may lead to the 

variation of modal characteristics (Li et al. 2010). A great 

deal of practical engineering test results has shown that the 

modal characteristics especially frequencies are susceptible 

to temperature for concrete structures (Zhou and Yi 2014, 

Xia et al. 2012). Some studies have found that the changes 

in structural responses due to varying environmental factors 

could be more significant than those induced by normal 

structural damage (Salawu 1997). If the effects of 

temperature are not fully understood, the state of the 

structure cannot be evaluated reliably (Kim et al. 2007). 

Timoshenko RC beams carrying various concentrated 

elements (such as linear springs, point masses and spring-

mass systems, etc.) are widely used in the civil engineering  
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structures, such as buildings, bridges, etc. Thus, it is 

meaningful to study the free vibration analysis of a 

Timoshenko RC beam carrying multiple spring-mass 

systems under the effect of temperature. 

Extensive research has been carried out with regard to 

the vibration analysis of Bernoulli-Euler beams carrying 

concentrated masses as well as spring-mass systems (Rgöze 

1985, Liu et al. 1988, Register 1994, Kukla and Posiadala 

1994, Rosa et al. 1995, Gürgöze 1996, Rossit and Laura 

2001a, b, Rosa et al. 2003, Su and Banerjee 2005). 

However, the classical one-dimensional Bernoulli-Euler 

theory of flexural motions of elastic beams has been known 

to be inadequate for the vibration of higher modes and those 

beams when the effect of the cross-sectional dimensions on 

frequencies cannot be neglected (Huang 1961). Therefore, 

Rayleigh (1945) introduced the effect of rotator inertia and 

Timoshenko (Timoshenko 1921, 1922) extended it to 

include the effect of transverse-shear deformation. Since 

then, a large number of studies on account of Timoshenko 

theory have been carried out to study free vibration of 

beams especially with spring-mass system. Bruch and 

Mitchell (1987) are the ones who presented a uniform 

cantilever Timoshenko beam carrying a tip mass with 

lumped mass moment of inertia earlier. Similar works were 

done by Abramovich and Hamburger (1991, 1992) and 

Rossi et al. (1993). Recently, Farghaly and El-Sayed (2016) 

dealt with the analysis of the natural frequencies, mode 

shapes of an axially loaded multi-step Timoshenko beam 

combined system carrying several attachments. EI-Sayed 

and Farghaly (2016) dealt with the analysis of the vibration 

of an axially loaded beam system carrying ends consisting 

of non-concentrated tip masses and three spring-two mass 

sub-systems. 

Over the last several decades, the results of experimental 

studies (Roberts et al. 1996, Wahab and Roeck 1997, He et 
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al. 2009), the primary means ever used, have indicated that 

temperature is the most significant environmental factor 

affecting structural modal characteristics. Askegaard and 

Mossing (1988) studied a three-span RC footbridge and 

observed a seasonal change of 10% in frequency over a 

three-year period. Researchers from Los Alamos National 

Laboratory (Farrar et al. 1997, Doebling and Farrar 1997, 

Cornwell et al. 1999) performed several tests on the 

Alamosa Canyon Bridge and found that the first three 

natural frequencies varied about 4.7%, 6.6% and 5.0% 

during a 24h period as the temperature of the bridge deck 

changed by approximately 22 °C. The Z24 bridge in 

Switzerland was monitored over almost one year by Peeters 

et al. (2000, 2001). The first four natural frequencies varied 

by 14%-18% as the changing environmental conditions 

while decreased by less than 10% till the final damage 

scenario (Maeck et al. 2000). Li et al. (2010) found that the 

first six frequencies varied by about 1.5-3.2% as ambient 

temperature changing from -11.5 to 3.7°C. Faravelli et al. 

(2011) observed variations in frequencies of the 600 m 

Guangzhou New TV Tower during a 24 h period. As 

variations in ambient temperature were about only 3 °C, 

variations in frequencies were as small as 0.5%. Kim et al. 

(2007) carried out laboratory tests on a steel plate-girder 

bridge model. The first four frequencies decreased by about 

0.64, 0.33, 0.44, and 0.22%, respectively, when temperature 

increased per unit degree. 
Since the discovery of temperature has obviously 

influence on structural modal characteristics, some methods 
have proposed for analyzing the relationship between them. 
Statistical techniques are widely applied to describe the 
relation between temperature and modal properties, which 
hoped to eliminate the temperature-induced variation of 
modal characteristics from the measured ones. Sohn et al. 
(1999) proposed a linear adaptive model (multiple linear 
regression model) to discriminate the changes of modal 
frequencies due to temperature from those caused by 
structural damage or other environmental effects. Peeters 
and De Roeck (2000) subsequently trained an 
autoregressive model with an exogeneous input (ARX) 
using the one-year monitoring data of Z24 bridge to 
distinguish normal modal frequency changes due to 
environmental effects from abnormal changes caused by 
damage. The support vector machine (SVM) technique (Ni 
et al. 2005) and principal component analysis (PCA) (Yan 
2005a, b) were also adopted to quantify the effect of 
temperature on modal frequencies. Xia et al. (2006, 2011) 
conducted a series of experiments to find the relationship of 
temperature and structural modal characteristics. In 
Reference (Xia et al. 2006), they constructed a two-span 
RC slab and built a linear regression model between modal 
properties and air temperature. It was found that frequency 
does not vary with temperature simultaneously for the 
variation of internal temperature of a structure lags behind 
the variation of the surface or air temperature. Later, an 
improved numerical method considering non-uniform 
temperature distribution was represented in Reference (Xia 
et al. 2011). A good linear correlation between the 
measured natural frequencies and the structural 
temperatures other than the air temperature or surface 
temperatures was observed. Liu et al. (2016) also proposed 
multiple linear regression models considering non-uniform 

temperature distribution and suggested that the variation of 
concrete Young’s modulus with temperature was the main 
reason resulting in the changes of modal frequencies. 

In summary, it has been widely observed that 

temperature variation has an enormous effect on structural 

modal characteristics through situ-test and laboratory. In 

addition, most of the researches focus on the statistical 

techniques (i.e., regression models, autoregressive models, 

principal component analysis, etc.), numerical models and 

experimental methods to establish the correlation between 

temperature and modal characteristics. However, these 

models and methods apply only to specific objects and are 

relatively narrow. It needs to investigate the internal 

mechanism of modal characteristics change induced by 

temperature and form a calculated method of modal 

characteristics based on the basic theory of kinetics 

equations for structures under the effect of temperature. 

For most of the construction materials, it is generally 

accepted that an increase in temperature will cause a 

decrease in Young’s modulus and the shear modulus of the 

materials (Xia et al. 2011), which was considered to be the 

main reason for the change of structural modal 

characteristics (Liu et al. 2016). Moreover, the temperature 

distribution in a structure is generally non-uniform and time 

dependent. Therefore, Young’s modulus throughout a 

structure with existence of temperature gradient is not 

identical. Under this concept, a new method was proposed 

for Timoshenko beam carrying several spring-mass systems 

under the effect of arbitrary temperature distribution of 

cross section. This method was featured by the following 

points: first, the expressions of moment, shear and shear 

coefficient of cross section under the effect of arbitrary 

temperature distribution were derived; second, in view of 

these relationships the differential equations of Timoshenko 

beam under the effect of temperature were obtained and 

solved; then, the characteristic equations of Timoshenko 

beam carrying several spring-mass systems under the effect 

of temperature were formed based on the continuity and 

force equilibrium conditions at attaching points; the 

correctness of proposed method was next verified by a 

Timoshenko laboratory beam and finite element models; 

finally, the influence law of different temperature 

distribution modes and parameters of spring-mass system 

on the modal characteristics of Timoshenko beam were 

discussed. 

 

 

2. Derivations of moment, shear and shear 
coefficient of cross section under the effect of 
temperature 
 

Young’s modulus E is related to the temperature 

according to reference (Xia et al. 2011) by 

 pETEE  10  (1) 

where E0 is Young’s modulus of concrete at 0°C, Tp is 

Celsius temperature, E is temperature coefficient (or 

thermal coefficient) of Young’s modulus, which is 

suggested as 0.0045 by Baldwin and North’s report 

(Baldwin and North 1973). 
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Fig. 1 Deformation of micro segment subjected to bending 

moment M 

 

 

According to Eq. (1), Young’s modulus decreases with 

increasing temperature, which agrees with macroscopic 

observations of the variations of eigenfrequencies of test 

concrete beams and slabs (e.g., Xia et al. 2011, Liu et al. 

2016) subjected to changes in temperature. 

It is assumed that temperature distributions along the 

length and width of the Timoshenko RC beam are identical. 

Then Eq. (1) after substituting the distribution function T(y) 

of the temperature along the cross-sectional height becomes 

    yfEyTEyE E 00 1)(    (2) 

where    yTyf E1 . 

Fig. 1 shows the deformation of micro segment dx 

subjected to bending moment M along the z-axis. 

Strain (y) and M could be expressed as follows 

  y
dx

d
y


   (3) 

 ydAyM
A   (4) 

Substituting Eqs. (2)-(3) into Eq. (4) gives 

  T
A

IE
dx

d
dAyyE

dx

d
M 0

2 
   (5) 

where   dAyyfI
A

T
2

 . 

According to the combination of Eqs. (2) (3) and (5), 

one obtains 

 
 

TI

yyMf
y   (6) 

A micro segment, the part in Fig. 1 below the plane at y 

which was parallel to the neutral plane, was shown in Fig. 

2, where b is the cross-sectional width, FN1 and FN2 are axial 

force,  is shearing stress along the y-axis while  is 

shearing stress along the x-axis. Then the equilibrium 

equation of force along x-axis is 

21 NN FbdxF   (7) 

where FN1 is 

 

dx

b

FN2

FN1

 

 

Fig. 2 Force analysis of the micro segment 

 

 

 *1
A

N dAF   (8) 

Substituting Eq. (6) into Eq. (8) yields 

 
 *1

A T
N dA

I

yyMf
F  (9) 

Similarly, 

   





*2
A T

N dA
I

yyfdMM
F  (10) 

Let 

    *

*

A
ydAyfyS  (11) 

According to the equivalent law of shearing stress (i.e., 

=) and substituting Eqs. (9)-(10) into Eq. (7) results in 

 
 

TbI

yS

dx

dM
y

*

  (12) 

which after substituting dM/dx=Q becomes 

TbI

yQS
y

)(
)(

*

  (13) 

Concrete assumed as isotropic material, with the 

following relationship holds 

)1(2 


E
G  (14) 

The effect of temperature on Poisson’s ratio of concrete 

seems negligible when the temperature ranges from -20°C 

to +50°C (Shoukry et al. 2011). Therefore substituting Eq. 

(2) into Eq. (14) gives 

 yfGTGyG E 00 )1()(    (15) 

Average shear modulus GT, average shear stress T and 

average shear strain T are defined as follows 

 

A

dAyG
GT


 , 

 
A

xQ
T  , 

TT

T
T

Gk


   (16) 

where kT is the shear coefficient (or shape factor) for the 

cross section. 

Strain energy U1 of cross section is related to GT and T 

by 
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2
1

2
TT

T AG
k

U   (17) 

While the strain energy of the cross section can also be 

expressed as 

 
  A

dA
yG

y
U

2

2

2

  (18) 

Inserting Eqs. (13) and (16) into Eqs. (18) and let U1=U2 

yields 

 
 

 dAyfdA
yf

yS

Ib
k

AA

T
T




2*

22  

(19) 

Then Q can be written as 

TTT AGkQ 0  (20) 

where  dAyfA
A

T  . 

 

 

3. Free vibration analysis of Timoshenko beam 
under the effect of varied temperature 
 

As it is well-known, when temperature variation T(y) is 

non-linear along the thickness of the cross-section, it caused 

a stress state with zero resultants even though the structure 

is statically determined. The statically undetermined 

structures especially beams with axial constraints were not 

considered in this paper. 

When the Timoshenko beam vibrates in one of its 

normal modes one can assume free vibration of the beam 

takes the following form 

  tieYtxy )(,   (21) 

  tietx j )(,   (22) 

where  is angular frequency, 1i , Lx /  is the 

non-dimensional coordinate normalized with respect to the 

beam length L, then )(Y  and )(  denote the 

amplitudes of total deflection  txy ,  and rotation  tx,j  

of the cross-section, respectively. 

Taking into account bending moment and shear force of 

Eqs. (5) and (20), the problem under consideration, 

similarly to reference (Abramovich and Elishako 1990), is 

governed by the following differential equations 

0)( 2222)4(  YpYbrpY  (23) 

0)( 2222)4(   pbrp  (24) 

where 

TIE

LA
p

0

42
2 
  (25) 

)/( 22 ALIr   (26) 

)/( 2
00

2 LGAkIEb TTT  (27) 

 is the beam material density, I is the cross-sectional 

moment of inertia and the prime denotes differentiation 

with respect to . 

The general solutions of Eqs. (23)-(24) are 

 


pCpC

pCpCY
sincos

sinhcosh

43

21



 (28) 

 




pCpC

pCpC

sincos

sinhcosh

43

21













 (29) 

where  
2/1

2/1222222 /4)()(
2

1







  pbrbr , 

 
2/1

2/1222222 /4)()(
2

1







  pbrbr . 

One just needs to know half of the constants in Eqs. 

(28)-(29) for they are related as 

211 CC  , 112 CC  , 423 CC  , 324 CC  . 

where 





22

1

b

L

p 
 , 






22

2

b

L

p 
 . 

 

 

4. Vibration analysis of Timoshenko beam carrying 
several spring-mass systems under the effect of 
temperature 
 

Fig. 3 shows a uniform Timoshenko beam elastically 

supported carrying N spring-mass systems. The ith spring-

mass system was located at xi, where xi is the spatial 

coordinate along the length of beam L. Then the whole 

beam is divided into N+1 segments by N spring-mass 

systems. zi, mi, and ki are displacement, mass and spring 

stiffness of the ith spring-mass system, respectively; kz1 and 

kz2 are the translational stiffness while kz3 and kz4 are 

rotational stiffness. 
 

 
m1

k1
z1

mi

ki
zi

mN

kN
zN

... ...

kz1

kz3

kz2

kz4

xi

xN

y

x

o

L

x1

 

Fig. 3 A uniform Timoshenko beam elastically supported 

carrying N spring-mass systems 
 

 

For the ith segment which was divided by the ith spring-

mass system, let Lx /  according to Eqs. (28)-(29), one 

has 

 



pDpC
pBpAY

ii

iii
sincos

sinhcosh



 (30) 
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 



pDpC
pBpA

ii

iii
cossin

coshsinh

22

11



 (31) 

where ii  1  (i=1, 2, …, N+1, and 00  , …, 

Lxii / , …, 11 N ), i denotes the ith “attaching 

point” and Ai, Bi, Ci and Di are the integration constants. 

 

4.1 Equations at the ith attaching point 
 

The continuity equations of the beam at the position 

i   are 

)()( 1 iiii YY    (32a) 

)()( 1 iiii    (32b) 

   iiii  1  (32c) 

The equation of motion for the ith spring-mass system is 

   0)(),(  iiiiii zmtztyk   (33) 

Similar to Eq. (21), free vibration of the ith spring-mass 

system is assumed as 

ti
ii eZtz )(  (34) 

where Zi is the amplitude of the ith spring-mass system. 

Substituting Eqs. (21) and (34) into Eq. (33) gives 

  01)( 2  ivii ZY   (35) 

where 

2

2
2

v

v



   (36) 

iiv mk /  (37) 

From the force equilibrium at i  , one has 

     
  0)

(

1

10















mii

iiiiiiT

FLY

LYAkG




 (38) 

where mF  is the interactive force between the beam and 

the ith spring-mass system, it can be given by 

)(
1 2

2

ii

v

v
im YkF 






  (39) 

The substitution of Eqs. (30)-(31) into Eqs. (32), (35), 

and (38) leads to 

   0ii IT  (40) 

where 

 T
iiiiiiiiii DCBAZDCBAI 1111   (41a) 

 

(41b) 

where  ip cosh1  ,  ip sinh2  , 

 ip cos3  ,  ip sin4  ,  pL  11 , 

 pL  22 , 
 2

0

2

1 vTT

vi

AGk

Lk







 . 

 

4.2 Equations at the ends of the beam 
 

At the condition of 0 , the left boundary conditions 

are 

0)0()/)0()0(( 10  YkLYAkG zT   (42a) 

0)0()0( 30  YkIE zT  (42b) 

At the condition of 1 , the right boundary 

conditions are 

 
(43a) 

0)1()1( 40  YkIE zT  (43b) 

Hence from Eqs. (30), (31) (42) and (43) one can obtain 

   0LL IT  (44a) 

   0RR IT  (44b) 

where 

25
15

4321

132013110

201101























N
N

kIEkIE

AkGLkAkGLk
T

zTzT

TzTz
L 

  
(45a) 

45
35

45352515

82074720846105451064

728
0

2
827

0

2
516

0

2
615

0

2

























N
N

NNNN

IEkIEkIEkIEk

AkG

Lk

AkG

Lk

AkG

Lk

AkG

Lk

T

TzTzTzTz

T

z

T

z

T

z

T

z

R



  (45b) 

   1111 DCBAIL   (45c) 

and 

   1111  NNNNR DCBAI  (45d) 

where   pcosh5  ,   psinh6  ,   pcos7  , 

  psin8  . 

For three general boundary conditions, one only needs 

to change the values of kz1-kz4 in Eq. (44), i.e., 

(1) Simply supported beam 

1zk , 2zk , 03 zk , 04 zk  (46) 

(2) Clamped-clamped beam 

1zk , 2zk , 3zk , 4zk  (47) 

393



 

Hanbing Liu, Hua Wang, Guojin Tan, Wensheng Wang and Ziyu Liu 

 

(3) Cantilever beam 

1zk
, 

02 zk
, 

3zk
, 

04 zk
 (48) 

 

4.3 Solutions of eigenvalues and mode shapes 
 
Note that the total number of equations are 5N+4 

(including 5N equations at N attaching points and 2 

equations at each boundary) in the case of a Timoshenko 

beam carrying N spring-mass systems. The right numbers 

and top numbers, as shown on the right side and top side of 

the matrix defined by Eqs. (41b), (45a) and (45b), represent 

the line numbers and column numbers of corresponding 

elements in an overall matrix  T . Accordingly, one can 

take  iT ,  LT  and  RT  in an overall matrix  T  and 

replace the 5N+4 equations as 

   0IT  (49) 

where 

   111111111  NNNNiiiii DCBAZDCBAZDCBAI   (50) 

Non-triviality condition of the problem requires that 

  0det T  (51) 

As Eq. (51) is a complicated function of . The half-

interval technique (Faires and Burden 2002) may be used to 

obtain the eigen-values i (i=1, 2, …). Then one can take 

each i in Eq. (49) and derive the values of  I . Among the 

Eqs. (30)-(31), the corresponding mode shapes  iY  and 

  i  could be obtained. Eq. (49) also applies to the 

Timoshenko beam without any spring-mass systems, only 

when the mass of the spring-mass systems are zero. 

 

 

5. Experiment results and parameter discussions 
 

5.1 Comparison with the experiment 
 

A simply supported RC beam, as an illustrated model 

shown in Fig. 4, was constructed on 25th June, 2015 which 

measures 400 cm long, 30 cm wide and 40 cm high with 15 

cm overhang at each end. Two laminated rubber bearings 

were chosen as supports. Grade C40 concrete was selected 

in accordance with the GB 50010-2010 (2010). The length 

of beam is much larger than its height and width and solar 

intensity along the length direction of beam is uniform, so 

temperature along the length direction could be assumed to 

be uniformly distributed. Seven thermocouples embedded 

in the cross section of mid-span were uniformly-spaced 

along the width as well as height before pouring concrete, 

as shown in Fig. 5. 

After the beam curing 28 days, modal tests were carried 

out. The beam was excited by an impact hammer and the 

vibration responses were collected by 2 accelerometers in 

the positions shown in Fig. 6. Then DH5922 system 

produced by DongHua Testing Technology Company 

Limited sampled about 24-second data at a sampling rate of  

400 cm

4
0
 c

m

Laminated rubber bearing Concrete pier

A

A
A-A

4F15 mm 

F10 mm

@50 mm

 

Fig. 4 The simply supported RC Timoshenko beam 

 

Preformed 

concrete strips
Thermocouples

 

Fig. 5 Positioning thermocouples inside the beam 

 

15 cm 111 cm 74 cm 74 cm 111 cm 15 cm

3
0
 c

m

Support Support1# Accelerometer 2# Accelerometer Impact point

Center line

 

Fig. 6 Accelerometers layout on the RC Timoshenko beam 

 

 

Fig. 7 Acceleration time-history curves on 18th 

September 2016 at 8:00 am 

 

 

5120 Hz. The first three modal frequencies were extracted 

by the Hilbert-Huang Transform (HHT) which is a popular 

time-frequency method. 

The test aims to investigate the variation of the 

structural modal characteristics with respect to different 

temperatures. Accordingly, a 24-hour modal testing was 

carried out hourly from 8:00 am on 18th September, 2016 

(Fig. 7 shows acceleration time-history curves on 18th 

September 2016 at 8:00 am and the corresponding lowest 

three modal frequencies extracted by HHT are shown in 

Fig. 8). Meanwhile, the temperatures were automatically 

recorded by TP700 data recorder at a rate of one sample per 

minute (Fig. 9 shows variation of test temperature at cross-

sectional centre point in a 24-hour period). According to the 

measured temperature and the relationship between the 

Young’s modulus and temperature in Eq. (2), the modal 

frequencies of beam could be calculated by solving the 

dynamic Eq. (49). 
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Fig. 8 The lowest three frequencies on 18th September 2016 

at 8:00 am 

 

 

Fig. 9 Variation of test temperature at cross-sectional centre 

point in a 24-hour period 

 

 

As the Young’s modulus used in the proposed method 

are not exactly the same as the real ones, the calculated 

frequencies are differ from the measurements. To validate 

the proposed method the variation ratios of frequency 

(FVR) between test and calculation results are compared 

and plotted in Fig. 10. FVR is defined as 

%100
0




iFVR  (52) 

where i  is the frequency at time i, 0  is the frequency 

at initial time, i.e., 8:00 am on 18th September.  

The results referring to Euler model could be easily 

obtained when the moment of inertia and shear deformation 

of the cross section are ignored. And the results are also  

 
(a) The first order frequency 

 
(b) The second order frequency 

 
(c) The third order frequency 

Fig. 10 Comparison of the frequency variations between the 

test values, Euler and Timoshenko model at different times 

 

 

plotted in Fig. 10 for comparative purposes. 

The FVR based on Timoshenko model showed good 

agreement with test values as well as Euler model, which 

verifies correctness of the proposed method with respect to 

variation of temperature. 

It should be noted that FVR obtained by Timoshenko 

model are very close to those of Euler model when 

temperature changed little. However, there are some 

differences at a time (e.g., the areas in the red circle in Fig. 

10) when temperature changed more obviously (see Fig. 9). 

And the results of Timoshenko model maybe closer than 

those of Euler model (e.g. from 15:00 to 19:00 in Fig. 10(a), 

from 15:00 to 18:00 in Fig. 10(b) and from 15:00 to 22:00 

in Fig. 10(c)). 

 
5.2 Comparison with FEM results 

 

In order to check the reliability of the theory presented, 

the lowest three frequencies and modal shapes of 

Timoshenko beam carrying one, two and three spring-mass 

systems are compared with FEM, respectively. The 

dimensions and physical properties of the Timoshenko 

beam are given as: length of beam is 5 m, cross-sectional 

width is 0.2 m, cross-sectional height is 0.5 m, Young’s 

modulus E0=3.25×1010 MPa at 0 °C, Poisson ratio =0.3, 

mass density of beam material is 2500 kg/m3. 

2D finite element models in ANSYS shown in Fig. 11 

are constructed by axial symmetry element PLANE 183.  
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Fig. 11 Finite element model of a simply supported 

Timoshenko beam carrying three spring-mass systems 

 

Table 1 Lowest three frequencies of bare beam carrying 

zero, one, two and three spring-mass systems compared 

with FEM 

 

Locations 

of spring-

mass 

systems 

Magnitudes 

of masses 

(kg) 

Magnitudes of springs’ stiffness (N/m) Method 

Natural frequencies(Hz) 

f1 f2 f3 

Case 

1 
Bare beam 

Present 32.13 122.74 257.21 

FEM 32.09 121.97 255.04 

 
(0.0012) (0.0063) (0.0085) 

Case 

2 
ξ1=0.5 m1=100 k1=3.24×106 

Present 36.88 122.74 257.86 

FEM 36.84 121.97 255.28 

 
(0.0012) (0.0063) (0.0101) 

Case 

3 

ξ1=0.2 

ξ2=0.6 

m1=100 

m2=100 

k1=3.24×106 

k2=3.24×106 

Present 37.67 123.42 257.92 

FEM 37.64 122.66 255.35 

 
(0.0009) (0.0062) (0.0101) 

Case 

4 

ξ1=0.2 

ξ2=0.5 

ξ3=0.8 

m1=100 

m2=100 

m3=100 

k1=3.24×106 

k2=3.24×106 

k3=3.24×106 

Present 38.91 123.73 258.30 

FEM 38.88 122.97 255.72 

 
(0.0008) (0.0062) (0.0101) 

 

Table 2 The first three frequencies of the Timoshenko 

beams of different models 

Different model 1st (Hz) 2nd (Hz) 3rd  (Hz) 

Bare beam 32.13 122.74 257.21 

Temperature=20°C 

30.67 117.09 245.73 

Relative 

(-0.045) 
relative (-0.046 ) relative (-0.045) 

Single spring-mass system 

33.54 122.74 257.73 

Relative 

(0.044) 

Relative 

(0.000) 

Relative 

(0.002) 

 

 

The temperature distribution in the modal is identical 

and 0°C was adopted. The parameters of the spring-mass 

system are shown in Table 1. These are inputted into the 

ANSYS model to calculate the modal characteristics. For 

convenience, Timoshenko beam without any spring-mass 

systems attached and under the effect of a uniform 

temperature distribution of 0°C was referred to the bare 

beam. 

From Table 1 and Fig. 12, one can see that the lowest 

three frequencies and modal shapes of the Timoshenko 

beam obtained from the present study are very close to 

those calculated by FEM, which verifies correctness of the 

proposed method for Timoshenko beam carrying several 

spring-mass systems. 

 

5.3 The effect of temperature variation and spring-
mass system on modal frequencies of Timoshenko 
beam 
 

The parameters of the Timoshenko beam adopted in last  

 
(a) The first modal shape 

 
(b) The second modal shape 

 
(c) The third modal shape 

Fig. 12 Comparison of the first three modal shapes between 

theory and numerical results for the Timoshenko beam 

carrying two spring-mass systems 
 

 

section were used here as well as following parts. Table 2 

shows the first three frequencies of the Timoshenko beams 

of different models: (a) the bare beam; (b) the temperature 

changes from 0°C to 20°C; (c) the bare beam carrying 

single spring-mass system with ξ=0.5, stiffness k=1.5×106 

N/m and mass m=100 kg. 
As can be seen from Table 2, the first three frequencies 

of the Timoshenko beam are reduced by about 4.5% when 
the temperature varies from 0 to 20°C. The first order 
frequency of the Timoshenko beam increases by 4.4% 
while the other two do not change substantially when the 
bare beam carrying one spring-mass system. One can see 
that the effects of temperature and spring-mass systems on 
modal frequencies of Timoshenko beam are both of 
significance and the latter has different effects on different 
order frequencies. 
 

5.4 The effect of different parameters of single spring-
mass system on modal characteristics of Timoshenko 
beam 
 

For convenient, the Timoshenko beam which has 
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uniform material properties carries single spring-mass 

system located at mid-span was adopted. Then the modal 

frequencies were calculated by the proposed method with 

respect to different parameters of spring-mass system. The 

first-order frequency varies with the stiffness and mass of 

the spring-mass systems as shown in Fig. 13(a), where the 

stiffness and mass are logarithmic. The parameters of 

spring-mass system are divided into two regions A and B, 

as shown in Fig. 13(b) (the top view of Fig. 13(a)). From 

Fig. 13 one could see: (a) in region A, the frequencies were 

less than those of the bare beam while region B were 

opposite; (b) the frequencies increase with the stiffness 

while decrease with the mass both in A and B; (c) a change 

of frequencies appeared suddenly at the line where A and B 

meet. The fitting formula of the line in Fig. 14 is 

2
Mass

Stiffness
 (53) 

From Eqs. (37) and (53) one has  v , which 

indicates that when the frequency of the spring-mass system 

is equal to that of the bare beam, the frequency of the 

Timoshenko beam carrying one spring-mass system 

changes abruptly. 

In particular, the spring-mass system has no effect on 

the second order frequency due to it locates at the zero point 

of the second modal shape for simply supported beam. 

 

 
(a) Axonometric view 

 
(b) Overhead view 

Fig. 13 The first order frequency varies with the stiffness 

and mass 
 

T2

h
/2

T1

T0

 

Fig. 14 Temperature distribution along the height of cross 

section 

 

 

5.5 The effect of different temperature modes on 
modal frequencies of Timoshenko beam 
 

In Fig. 14, T0, T1 and T2 represent the temperature at h/2, 

the lower edge and the upper edge of the cross section, 

respectively. The intermediate temperature is linearly 

interpolated and the following three temperature modes are 

defined as: (1) mode A, T1=-20°C, T2 changes from -20°C 

to 40°C and T0=( T1+T2)/2; (2) mode B, T0=10°C, T2 

changes from -20°C to 40°C and T1=2T0- T2; (3) mode C, 

T0=10°C, T2 changes from -20°C to 40°C and T1=T2. 

Characteristics of cross section varying with T2 under 

different temperature modes are shown in Fig. 15, where 

the variance ratio of shearing factor (SVR) is defined as 

%100
0

0 



SF

SFSF
SVR T  (54) 

where SFT and SF0 are the shear coefficients at temperature 

T2 and -20°C, respectively. 

The variance ratio of IT (IVR) is defined as 

%100
0

0 



T

TTT

I

II
IVR  (55) 

where ITT and IT0 are moment of inertia at temperature T2 

and -20°C, respectively. 

It can be seen that SVR and IVR change with the 

temperature distribution. SVR in mode A and B have 

changed little while that in mode C is up to 5%. IVR in 

mode A and C changed obviously which are basically linear 

while that in mode B is small. 

Fig. 16 shows a Timoshenko beam carrying two spring-

mass systems, where x1=1 m, x2=3 m, k1=k2=3.24×106 N/m 

and m1=m2=100 kg. FVR under different temperature modes 

are obtained in Fig. 17. 

As can be seen from Fig. 17: (1) FVR changes with 

temperature, while the second and third FVR changed more 

obviously than the first one; (2) FVR in mode A and C 

changed similarly, while that in mode B varied less than 

that in the other two. Therefore, it could conclude that the 

influence of different temperature modes on frequency is 

different. In addition, the temperature has different effect on 

every frequency in the same temperature mode. 
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(a) Mode A 

 
(b) Mode B 

 
(c) Mode C 

 
(d) Mode A 

 
(e) Mode B 

 
(f) Mode C 

Fig. 15 Characteristics (SVR and IVR) of cross section 

varying with T2 under different temperature modes 
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Fig. 16 A simply supported Timoshenko beam carrying two 

spring-mass systems 

 

 
(a) Mode A 

 
(b) Mode B 

 
(c) Mode C 

Fig. 17 The lowest three FVR for a Timoshenko beam 

carrying ‘two’ spring-mass systems under the effect of 

different temperature distributions: (a) mode A, (b) mode B, 

(c) mode C 
 

 

6. Conclusions  
 

This paper proposed a free vibration analysis method for 

Timoshenko beam carrying several spring-mass systems 

and considering the internal temperature distribution of the 

structure. Then, tests to measure the modal frequencies of a 

simply supported RC Timoshenko beam were conducted at 

varying temperatures to verify the correctness of the 

proposed method. The finite element models of 

Timoshenko beam carrying several spring-mass systems 
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were also established to illustrate the proposed method. 

Finally, the effect of different parameters of spring-mass 

systems and various temperature patterns on modal 

frequencies for Timoshenko beam have been discussed. In 

view of the results of this study the following conclusions 

could be drawn: 

• The reliability of the proposed method was verified 

through the laboratory model and finite element models. 

The comparisons of FVR between theory and experimental 

results and comparisons between theory and FEM results 

both showed a reasonably accuracy of the proposed method. 

• The modal characteristics especially frequencies are 

vulnerable to temperature for RC Timoshenko beam. It is 

mainly reflected on the effect of temperature on the elastic 

modulus and shear modulus of concrete, which lead to the 

variations of the shear coefficient and inertia of moment. 

• The modal calculation results of Timoshenko beam 

under different temperature modes reveal that the influence 

of different temperature modes on frequency is different 

and the temperature has different effect on every frequency 

even in the same temperature mode. 

• The modal calculation results of Timoshenko beam 

carrying single spring-mass systems illustrate that: (a) the 

frequencies increase with the stiffness while decrease with 

the mass; (b) the frequencies have suddenly changed when 

the frequency of the spring-mass system is equal to that of 

the bare beam. 

The change of temperature does not produce secondary 

internal force for the simply supported beam, but not for 

other structures (e.g. rigid frame structures, continuous 

beam, etc.), which will be the topics the authors further 

deliberate from now on. 
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