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Abstract. Because of sandwich structures with low weight and high stiffness have much usage in various industries such as
civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates
are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is
assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with
temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible
transversely orthotropic cores. Mathematical formulation is presented using Hamilton’s principle and governing equations of
motions are derived based on energy approach and applying variation method for simply supported edges under electro-
magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such
as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio,
nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load
of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system
stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of
micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed
that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that
the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the
sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and
mechanical properties in comparison of the other reinforcement.
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1. Introduction

In the last years, sandwich structures with high stiffness
and low weight have much usage in various industries
(Botshekanan Dehkordi et al. 2013). Usually, these
structures are made of two stiff face sheets and a soft core
such as flexible transversely materials and they used to
analyze the microplates (Batra et al. 2008a), microbeams,
microbars (Reissner (1948)) and microshells (Batra et al.
(2008b)) that they have found many applications in micro-
electro-mechanical systems (MEMS), nano-electro-
mechanical systems (NEMS) and atomic force microscopes
(AFMs). Recently, the composite materials are used to build
the sandwich skins (Ke et al. 201), therefore because of
increasing the structures stiffness, it is necessary to partake
reinforcement (Wang and Hu 2005). Carbon and boron
nitride nanotubes (CNTs and BNNTSs) are new types of
advanced reinforcement that they have promising
application in polymer composites due to their attractive
mechanical, thermal, magnetic and electrical properties
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(Lau et al. 2002, Lei et al. 2013). Thus, these nanotubes
lead to enhance the tensile strength and elastic modulus
(Thostenson 2001). Kaghazian et al. (2017) researched
about free vibration analysis of a piezoelectric nano beam
based on Euler-Bernoulli beam theory (EBT). They showed
that increasing a positive voltage leads to decrease the
natural frequencies, while increasing a negative voltage
increases them. A size dependent continuum model
developed by Rouhi et al. (2016) in order to study vibration
analysis of nano cylindrical shells based on the first order
shear deformation theory (FSDT). They concluded that
the size-dependent behaviors of nano cylindrical shell
intensify and increase as the surface residual tension
increases. In order to compare the obtained results from
experimental and numerical investigation, Ferreira et al.
(2013) presented a layer-wise finite element (FE) model for
the analysis of sandwich laminated plates and showed that
there is a good agreement between their model and
experimental results. Xu et al. (2017) considered vibration
behavior of single-layer graphene sheets (SLGSs) based on
nonlocal continuum orthotropic plate model. They predicted
that a thicker SLGS produces a higher natural frequency if
the SLGS density, remain unchanged. Wang et al. (2017)
investigated the micro structure dependent axisymmetric
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large deflection bending of pressure loaded circular FG
microplates. Their obtained results demonstrated that the
size effect on the bending deflection of simply supported
boundary conditions was not important against clamped
boundary conditions. Using FE method, Mohammadimehr
and Alimirzaei (2016a) studied nonlinear static and free
vibration response of EBT composite beam reinforced by
functionally graded single walled carbon nanotubes (FG-
SWCNTSs) with initial geometrical imperfection uniformly
load. They showed that at the specified value of thickness-
to-length ratio, the natural frequencies ratio enhances when
the values amplitude of waviness increases. Civalek et al.
(2009) studied static analysis of CNT using nonlocal EBT.
They used differential quadrature method (DQM) for
bending analysis of numerical solution of CNTs. Ergun et
al. (2016) investigated buckling and free vibration analyses
of hybrid composite beams having different span lengths
and orientation angles subjected to different impact energy
levels and compared with each other for different span
lengths, orientation angles and impact levels. Ghorbanpour
Arani and Zamani (2017) presented electro-mechanical
bending behavior of sandwich nanoplate with functionally
graded porous core and piezoelectric face sheets. Vlasov’s
model foundation is utilized to model the silica Aerogel
foundation. Two functions are considered for nonuniform
variation of material properties of the core layer along the
thickness direction such as Young’s modulus, shear
modulus, and density. Chen and Feng (2017) established a
dynamic modelling of a thin laminated plate subjected to in-
plane excitation. Farajpour et al. (2017) proposed thermal
environment buckling, vibration and smart control of
microtubules (MTs) and piezoelectric nano shells. They
showed that applied electric voltage can be used as an
effective controlling parameter for the vibration and
buckling of MTs. Based on FSDT and using FE method,
Zhu et al. (2012) presented static bending and free vibration
analyses of composite plates reinforced by various
distributions of SWCNTs. The results of their study
investigated that the effect of CNTs volume fraction on the
central axial stress can be neglected. Bahadori and
Najafizadeh (2015) examined the dynamic response of two
dimensional FG cylindrical shell. They demonstrated that
when the power law index in z direction increases, the
natural frequencies increase faster. Miraslani et al. (2017)
illustrated the mechanical instability and free vibration of
FG micro plate based on MSGT and using spline finite strip
method. Yan and Liew (2016) used analytically and
experimentally methods for ultimate strength behaviors of
steel-concrete—steel (SCS) sandwich plates. They depicted
that for the full and partial composite SCS sandwich plate,
increasing the strength of concrete core increases first and
second peak resistance. Dai et al. (2016) predicted the
nonlinear forced vibration analysis of a centilevered
nanobeam. They demonstrated that the combined effects of
the residual stress and aspect ratio on the maximum
amplitude of the nanobeam may be pronounced. Mirjavadi
et al. (2017) examined free vibration and thermal buckling
behaviors of axially functionally graded (AFG) nanobeam
under thermal environment effect and various boundary
conditions based on EBT and Eringen’s nonlocal elasticity

theory. Their results demonstrated that enhancing thermal
expansion coefficient increases the dimensionless natural
frequency and critical buckling load of AFG nanobeam.
Mohammadimehr and Mehrabi (2017) applied generalized
DQM to analyze stability and free vibration analyses of
double-bonded micro composite sandwich moderately thick
walled cylindrical shells conveying fluid based on MCST.
Their results showed that with increasing flow velocity in
the flow-conveying micro structures, the system was
unstable. Robin et al. (2017) considered free vibration
analysis of 3D structured beams based on FEM and
experimental tests. They compared and validated the
numerical results with experimental test and showed that
the resonant frequencies generally increase due to
corrugated shape. Shen et al. (2017) studied small and large
amplitude vibrations of thermally post-buckled sandwich
plates reinforced by CNTs. The results of their research
illustrated that the core-to-face sheets thickness ratio lead to
enhance the structure stiffness. Thus, the vibration
characteristics increased when increased the thickness ratio.
Li et al. (2016) developed static and free vibration analyses
of composite sandwich structures with multi-layer cores
using  layer-wise/Solid-element  (LW/SE)  method.
Bahaadini et al. (2017) developed dynamic structural
instability of flow-conveying cantilever nanotubes resting
on a visco-Pasternak medium. Their results showed that
critical flow velocity decreased by increasing the value of
the distributed compressive tangential load. Swaminathan
and Sangeetha (2017) presented a review of applications,
various mathematical idealizations of materials, modeling
techniques and solution method that are adopted for the
thermal analysis of FG plates.

In the present work, using most general strain gradient
theory (MGSGT), the free vibration and buckling analyses
of double-bonded micro composite sandwich plates rested
in an orthotropic foundation are investigated based on
sinusoidal shear deformation theory (SSDT). This system is
simulated with four composite temperature-dependent face
sheets reinforced by CNTs (upper micro sandwich plate)
and BNNTSs (lower micro sandwich plate) and two flexible
transversely orthotropic cores. Governing equations of
motions are obtained using energy method. It is noted that
in the previous study, usually the MGSGT used for the
simple geometry such as beam and CT plates, while in this
article this theory are applied for the higher order plates.
Also, this micro structure is considered as coupled
sandwich system with temperature-dependent material
properties under various multi-physics fields that they are
the other novelty of present work.

2. Geometry and simulation

A schematic of double-bonded micro composite sandwich
SSDT plates reinforced by CNTs and BNNTSs with length a,
width b and thickness h rested in an orthotropic elastic
foundation under electro-magneto-thermo-mechanical
loadings, pre-stresses load and two-dimensional (2D) axial
buckling load are shown in Fig. 1.

It is assumed that the cores of sandwich micro plates are
made of transversely flexible orthotropic cores with thickness
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Fig. 1 Schematic of double-bonded micro composite
sandwich SSDT plates reinforced by CNTs and BNTs rested
in an orthotropic foundation under various multi-physic
fields

Fixed layer

Table 1 Mechanical properties of orthotropic core with
01=0.25, 12=0.30 (Chakrabarti et al. 2007)

ES" (GPa)  ES" (GPa) sz"' (GPa) Gf;' (GPa) G (GPa) oS (10° 1 K) a2 0® /1)
7.347 8.816 3.159 4.218 4.197 3.458 5.168

Table 2 Mechanical properties of SWCNTs (10,10) with
v=0.175 (Mohammadimehr et al. 2016c, Zhu et al. 2012)

Temperature(K) ES" (TPa) ES" (TPa) G5 (TPa) ol (10° / K) a5 (10 / k)

300 5.6466  7.0800  1.9445 3.4584 5.1682
400 5.5308  6.9348  1.9643 4.5361 5.0189
500 5.4744  6.8641 1.9644 4.6677 4.8943

Table 3 Mechanical properties of SWBNNTs (5,5) with
©=0.34 (Ghorbanpour Arani et al. (2012), Mohammadimehr et
al. 2016b)

BT (10 /K)

B ZELT(PR) IRl (10°/K) % 7T (10°F /m)

1.799 0.6720 0.600 1.200 1.106

h. that the material properties of these cores are showed that in
Table 1 with details (Chakrabarti et al. 2007). It is noted that
these cores generally do not use in common applications
because they have large density and should not use as a core
material. Thus, in the present study the effect of foam core is
considered with Ec=10 Mpa, 0=0.3, p~40 Kg/m? and
a=1.8x107(1/K) (Zhao et al. 2017).

Moreover, the micro structure face sheets are chosen as
smart composite materials with thickness h, and ht that they
are reinforced by various nanotubes. In the other hand, in this
work, the face sheets are made of composite material consist
of a matrix and reinforcements that the upper and lower
microplates reinforced by CNTs and BNNTS, respectively.
The CNTs and BNNTs material properties are defined in
Tables 2 and 3 (Ghorbanpour Arani et al. 2012,
Mohammadimehr et al. 2016b, Mohammadimehr et al.
2016c, Zhu et al. 2012), respectively.

In Table 2, the material properties of CNTs are considered
temperature-dependent and the relation between this
properties and temperature are described in Eq. (1) as the

following form (Mohammadimehr and Mehrabi 2017)

ESY = (7.425x10°T ?) - (L173x10°T ) + (5.9317x10")

E5'™ =(9.3125x10°T *) - (1.471x10°T ) +(7.4375x10"%)

G =(-2.4625x10°T *) +(2.96x10°T ) + (1.8779x10%) @
o = (~1.1826x107'T ?) + (14850 10°°T ) +(6.7913x10™°)

o7 = (3.0875x10°°T ?) - (9.9350 10T ) + (5.4385x10™°)

Also, the temperature-dependent material properties of
polymeric matrix (PmPV) can be written as follows
(Mohammadimehr et al. 2016d)

E. =(3.51-0.0047T )GPa

= 45(1+0.0005AT )x10° / K
p, =1150kg / m*

=034

@

Finally, in order to calculate the equivalent mechanical
and thermal properties of face sheets the Mori-Tanaka
approach applied to derive the equivalent properties as follows
(Mohammadimehr et al. 2016d)

En =0 xur EﬁNT tVaE,
B Vo e
E, EJT E
M _ Vit +V
G, GéNT G
P =Vinr Pxnr TV P
-V XNT )/
Uy, xNT V12 mOm
dy =V aﬁNT +Va"

_ XNT m
Oy =Vinty TVua

m

CNT 3
BNNT ©)

m
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where Ep, pm, um and o™ are the elasticity modulus, density,
Poisson’s ratio and expansion thermal coefficient for the

matrix, respectively that they are defined in Eq. (2). Also,

CNT BNNT CNT BNNT CNT BNNT CNT
EST EBWT EQT EEWT GO G T

BNNT CNT

BNNT . , .
U, 0 andaq, introduce Young’s modulus in

various directions, shear modulus, Poisson’s ratio and thermal
expansion coefficient for the CNTs and BNNTS, respectively.

Moreover, Vi, Vent and Vet are the volume fractions of
matrix, carbon nanotubes and boron nitride nanotubes,
respectively that there is linear relation between them as the
following form (Ghorbanpour Arani et al. 2012)

m +VCNT =1
{\;m +V BNNT =1 (4)
In the Eq. (3), 71, 72 and #3 are the transformation forces

between matrix and reinforcement that the values of them are
depicted in Table 4.

3. Formulation

In the present study, in order to mathematical simulation
of double-bonded micro composite sandwich plates
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Table 4 Transformation forces between matrix and nanotubes
(Mohammadimehr et al. 2016d)

Table 5 y, and y, coefficients for the upper and lower micro
sandwich SSDT plates

Nanotubes volume Fractions n n2 73 y1 coefficient y2 coefficient
0.1 0.149 0.934 0.934 Upper micro 0 |
ndwich pl
0.14 0.150 0.941 0.941 sandwic Pate
Lower micro 1 0
0.17 0.149 1.381 1.381

sandwich plate

reinforced by CNTs and BNNTs, the higher-order
sinusoidal shear deformation plate theory (SSDT) is used
based on the equivalent single layer sandwich (ESL) and
MGSGT theories. Thus, at first, the displacement field
equations are defined and then the Hamilton’s principle and
energy method are applied to make the governing equations
of motions. Moreover, the relation between strain potential,
displacement field, kinematic energy and external forces
equations can be considered as follows:

3.1 Displacement field and strain-displacement
equations

According to the SSDT, equations of displacement
fields of double-bonded micro composites ESL sandwich
plates reinforced by CNTs and BNNTs are defined as the
following form (Kolahchi et al. 2017)

wdx,yt)
X

ul (x,y,z,t)=uf) (x,y t)-z =+ 0)0) (x,y 1)

h . 7z
D(z)= ;SM(T)

)05 (x.y.t) j=tch (5)
i=12

‘ ' w iy t)
v (x,y,z,t)=v ) (x,y.t)-2 JT+

W (y.2.)=w ) (1)

where U, v w09 and 6’;') introduce the
displacement components and angle of relation of cross-
section of any point of the middle surface of the micro
composite plate in the length, width and thickness
directions, respectively. Also, i and j refer to the upper and
lower double-bonded micro composite sandwich SSDT
plates and top face sheet, core and bottom face sheet of each
microplate, respectively. Moreover, with defining the
displacement equations, the relations between strain and
displacement in various micro plate directions can be
described as follows

) aul)
T T
@y v ) ow ® A0
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3.2 Strain potential energy

One of the newest non-classical theories in the micro
and nano scale is the most general strain gradient theory
(MGSGT) that it is consist of strain classic and third order
strain gradient tensors, stress classic vector and higher order
stresses tensor. It is noted that MGSGT embrace the other

micro/nano theories such as CT, MCST and MSGT. Also,
this theory by considering the effects of magnetic and
electric fields that they are defined because of the presence
of carbon and boron nitride nanotubes can be written as the
following form (Shooshtari and Razavi 2015)
1
u :Ejv(aijgij +7y & ~D,E, ~B/H, )dv @)
By applying the variation method into the Eq. (7) the
first variation of strain potential energy is described as
follows

U = L(aij 8 +7y 0%, ~7,D;0E, —7,B,0H, )dv (8)

In the above equation, y; and y, are the coefficients of
the electric and magnetic fields, respectively that according
to Table 5 they are equal to 0 and 1 for each upper and
lower micro sandwich plates.
where &, ik, 0y, Tk, Di, Bi, E; and H; are the strain tensor,
higher order strain gradient tensor, classical stress
component, higher order stresses tensor, electric and
magnetic displacements and electric and magnetic fields,
respectively. These components are introduced into the Egs.
(5) to (18) as follows (Akbari Alashti and Khorsand 2012,
Ansari et al. 2015, Ansari et al. 2013, Nasihatgozar et al.
2016)

,l 6“\ au]

5720, "o, )
Oy =Qij Eij (10)
1
Sik =S =i :E(uj,k +Uy ;) (11)
=38 (Gl + 2Oy + Eiu )+ 2Oy 4Gy g0 )+ G G +6) (12)

where u;, G and J are the displacement components in x, y
and z-directions, shear modulus and Kronecker delta,
respectively. Also, ai, a», a3, as and as are the additional
material length scale parameters and /o, /i and /, are the
material length scale parameters that they are different for
the micro/nano scale systems.

* Higher order strain gradient components

o [Zu\\\:€7u;\‘7zf\’|,;w)
T aw L a

g0
+0)—+
()M

Sy VT T T 2 ~20()

2oy a2 A 0]
v~
E

x? o’

Ay dwl!
o LA A ey 'y

o
axay

" 1(<‘Zu“ ﬁ/v“’ 1 .000) 80"
a2 &
i T AP
3 ST o)
oy Xy
a1 a0() a6

Xy 2 a &

s 3)

li=12

A0
an LV




Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates... 495

o Fu 8zu(o CW(‘) 5295‘)

oy oy ey “5)@/
[] 1 Dzum C‘Vm 1 {zum (q? m \879“] 8ZV$|] alﬁf\)
. +O(2)——+ }
Iy a2 M @ o axy axny]
o 1o aw? 1 aw() 06
e P A1 ey h. 12
2y oy 2 a oy <D(z):—sm(F) 13b

P L AL g (13b)
S = Tl () —;

oy oy oy oy
£ 1A 1 20(z) 9,

E zcyaz ¥ 2 a

0]
o OW
i _ -0

=" oy

i=12

Ful _ o o) ag

oxaz ox? o o

10u® V0! 100 ) 00" 06, )2

‘oyaz Yaa) b a S T ay
104" a7w“) 10°0(z)

w Tl a <D(Z):E5i”(%)

o VY dwl o)) 4 (13c)

Yoy oy o oy

£ :1(07\/“' Lo 16’(1)(2)

2 ety 2 it %

-2

G =

(i) "?W (i)

&= ]

i=12

¢ Classical stress components (Mohammadimehr et al.
2016d)

Ox Qu Q, Q3 0 0 0 ||& -y, AT

% Qp Qp Qp 0 0 0 & ~apAT

°, _ Qs Q3 Qz 0 0 0 & (14)
7, o 0o 0 Q,0 0 T

.| [0 0 0 0 Qg 0 ||y,

Ty 0 0 0 0 0 Qg Yy

where Q is the stiffness matrix reinforced by nanotubes that
the components of this matrix can be described as follows
(Zhu et al. 2012)

Ell . - E22 ;Qu = UZlEll

1-v,0,

Qu= 1Qu =61 Qs =Gysi Qg =Gy (15)

2
1-v,0, 1-v,0,

Also, aii, o and AT are the thermal expansion
coefficients in the length and width plate directions and
temperature changes, respectively.

» Components of higher order stresses tensor (Zhu et al.
2012, Ansari et al. 2015)
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* Electric and magnetic fields components
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where, A1, py, 0e(x, z, t), w, n; and @u(x, y, z, f) are the
dielectric constant, pyro-electric constant, electrical
potential in x-direction, magnetic constant, pyro-magnetic
constant and magnetic potential in x and y-directions,
respectively.

The first variations of strain potential energy based on
MGSGT can be obtained by substituting Eq. (6) and Egs.
(9)-(18) into the Eq. (8)
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3.3 Kinetic energy

The kinetic energy equation of double-bonded micro
sandwich composite plates reinforced by CNTs and BNNTs
can be defined as follows (Ghorbanpour Arani et al. 2016)

1 1 1 2 2 2
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to the kinetic energy of top face sheets, core, and bottom
face sheets for the upper and lower microplates and density
of each layers, respectively. Thus, Eq. (23) after applying
the variation method rewritten as the following form
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Substituting Eq. (5) into the Eq. (24) and defining the
inertia terms based on the Eq. (26) the first variation of
kinetic energy of double-bonded sandwich micro composite
SSDT plates reinforced by CNTs and BNNTs are calculated
as follows
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3.4 Work done by external works

In this study, it is assumed that the micro plates rested in
an orthotropic elastic medium and initial stresses are
applied in length direction of each micro plate. Thus, work
done by external work described as the following form
(Kultu and Omurtag 2012, Mohammadimehr et al. 201)

oundation restresslo: 1 elastic, (?W(i)
V=V foundation g prestressioad =5L[Fi"wi —NOX(T)Z}OIA (27)

where Pfoundation and  pprestessioad gre the work done by
orthotropic  elastic foundation and initial stresses,
respectively. Moreover, the elastic medium forces are
presented as follows (Kultu and Omurtag 2012)
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In the Eq. (28), K., Kgs, Koy, and 6 are the Winkler
spring constant, Pasternak shear modulus in the local
directions and the angle of local direction, respectively.
Also, (Mohammadimehr et al. 2017)

NOx :GXA (29)

0,xx

a
prestressload __ .
N, = IO N o, W g, dX ;

where o, and A introduce the initial stresses and cross-
section of surface plate, respectively.

Finally, by substituting Egs. (28)-(29) into the Eq. (27)
and applying the variation method, the first variation of
work done by external works can be calculated as follows
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3.5 2D axial buckling load

In this article, it is assumed that 2D axial buckling load
are applied in the length and width directions of double-
bonded micro composite sandwich SSDT plates reinforced
by CNTs and BNNTs that they are showed with Ny and Ny
in x and y-directions, respectively. In order to considering
the effect of axial buckling load, Eq. (31) can be written as
follows (Mantari and Monge 2016, Mosallaie Barzoki et al.
2012)

. L (oW Y . . oW
Wexl_EJONxU(ax ] dx &Nm: I NXoWaNdX
L ow V = s oW (31)
eZl :7-[ Nyo[ij dy M y = IO Nyoiz‘s'Ndy
2% oy oy

It is noted that the axial buckling load in y-direction are
considered as a coefficient of axial buckling load in x-
direction and defined as follows

|[K]_Nxo[N ]|:0
abuck :M

NxO

(32

3.6 The governing equations of motions

After defining the equations of potential energy, kinetic
energy and work done by orthotropic elastic medium and
initial stresses, the governing equations of double-bonded
micro composite sandwich SSDT plates reinforced by CNTs
and BNNTs rested in an orthotropic foundation under initial
stresses and electro-magneto-mechanical loadings are
obtained Hamilton’s principle (Mohammadimehr and
Mehrabi 2017)

s(F T -u-v)dt=0 =  SU+oV -6T =0 (33)

Substituting Egs. (19), (25) and (30) into the Eq. (33)
lead to define the governing equations of motions that they
are defined in Appendix A.

4. Semi-analytical solution method

In the present study, in order to solve the governing
equations of motions of double-bonded micro composite
SSDT sandwich plates reinforced by CNTs and BNNTSs, the
Navier’s solution method is employed for simply supported
boundary conditions and calculated the natural frequencies
and critical buckling load of microplates using stiffness,
buckling and mass matrices and solving the eigenvalue
problem. Thus, based on the Naviers’ type method the
displacement, magnetic and electric field variables are
considered as a function of Fourier expansion and described
as the following form (Mohammadimehr et al. 2017,
2016d)
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Where Umn, an, Wmn, axmn; Hymn, ¢Hmn and ¢Emn are the

undetermined Fourier coefficient, respectively. Also, m, n

and o refer to the transverse wave numbers in various
directions and natural frequencies, respectively.

Moreover, the simply supported boundary condition in
x=0, x=a, y=0 and y=>b can be given as follows

X:O‘){\?\IA::OOiW +W =0 X:a‘){vl\\il::()OéW +W =0

y XX W y XX W (35)

=0 =0
y=0—> y=b—
M, =0=>wW , +W =0 M, =0=>wW , +W =0

5. Validation

In order to compare and validate the obtained results
from sandwich formulation with the other previous
researches, this section gives a comparison of the natural
frequencies of a sandwich plate with aluminum face sheets
and a soft orthotropic core.

Table 6 compares the numerical results between the
present study and Larbi’s et al. (2016), Ferreira’s et al.
(2013), Araujo’s et al. (2010) and Rikard’s et al. (1993)
works. The data from this Table are obtained based on
E=70.23 Gpa, v=0.3 and p=2820 Kg/m® for the aluminum
face sheets and E\=F,=137 Mpa, G1»=45.7 Mpa, G3=137
Mpa, G»=52.7 Mpa, v1»=0.5 and p=124.1 Kg/m® for the
orthotropic soft core. It is illustrated that there is a good
agreement between the obtained results for the first ten
natural frequencies.

6. Results and discussion

In this section, the effects of various parameters such as
material length scale parameter, length to width and thickness
ratios, thickness of face sheets to core thickness ratio,
nanotubes volume fraction, pre-stress load and orthotropic
elastic medium are considered on the natural frequencies and
critical buckling load of double-bonded micro composite
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Table 6 comparison of obtained first ten natural frequencies
of a sandwich plate from the present study with the previous
researches

Mode Natural frequencies (HZ)

number Experimental tests  Larbi etal. Ferreiraetal. AraGjoetal. Rikardsetal. Present work
[44 [12] [45] [46]
1 23.25 23.26 23.50 23.40 23.27
2 45.0 4452 44.60 44.80 4540 4465
3 69.0 7143 70.27 7170 72.20 71.06
4 78.0 80.02 79.90 79.50 81.60 80.10
5 92.0 91.32 91.08 92.50 95.90 92.19
6 129.0 126.02 125,51 126.50 133.70 127.20
7 133.0 129.80 128.85 126.80 134.20 129.30
8 152.0 151.79 145.16 150.70 152.20 149.10
9 169.0 170.73 165.16 170.70 156.80 169.80
10 177.0 17417 173.29 173.00 190.90 175.90

sandwich SSDT plates reinforced by CNTs and BNNTSs. The

used constants and parameters are described as follows
h

2 4
Cs=0.4(mN.sec/m) To=300K AT=20

h=2I a=10h b=a h =

lo=h=l>=1 1=17.6 um
kv=10(GN/M?)  ke=10(KN/m?)
Moreover, dimensionless natural frequencies and critical

buckling load can be defined as follows (Mantari and Monge
2016, Mohammadimehr et al. 2016d)

. a|p . a’
0 /—m . N, =N, —
“=, E., T 1000%E, (36)
where
p, =1150(kg /m?®) ; E_ =2.1(Gpa) (37)

Fig. 2 depicts the effects of material length scale
parameter on the dimensionless natural frequency and
critical buckling load of double-bonded micro composite
sandwich SSDT plates. In this figure, the CT, most general
couple stress theory (MGCST) and MGSGT are compared
and showed that the dimensionless natural frequency and
critical buckling load decrease when the thickness to
material length scale parameter ratio increases. In fact, it
can be said that when h/l increases the microstructure
stiffness reduces, thus dimensionless natural frequency and
critical buckling load decrease. Also, it is shown that the
effect of MGSGT is more than the other theories because of
in the MGSGT the stiffness matrix is larger than MGCST
and CT, thus increasing the stiffness of microplates lead to
increase the natural frequency and critical buckling load for
MGSGT, while material length scale parameter had no
effect on the classic theory.

Fig. 3 shows the effect of axial buckling loads in x and y-
directions on the critical buckling load of double-bonded
micro composite SSDT plates reinforced by CNTs and
BNNTSs and it should be important in each direction. Thus, the
axial loads in plate width is considered as a coefficient of axial
load in length direction and introduce with a. Therefore, it is
seen that critical buckling load decreases with increasing o
coefficient. On the other hands, when «a enhances, axial
buckling load convergence to 1D loading and lead to decrease

15

——CT
—8—MGCST
—— MGSGT

3 \
5t \
\S“ﬁ
ﬂ}"’ﬂ‘*—a—f_a
e P —e—s & 5 5 & o
0 . . I
1 2 3 4 5 6 7 8 9 10
R
(a)
150 T T T T T T T
—#*— MCST
&— MSGT
100
‘2:
8 9 10

(b
Fig. 2 Effects of material length scale parameter on the (a)
dimensionless natural frequency (b) dimensionless critical
buckling load of double-bonded micro composite SSDT
plates versus thickness to material length scale ratio

50 T T T T T T T T

0 1 1 L L L L L L I
02 05 1 1.5 2 25 3 35 4 4.5 5

P uck
Fig. 3 Effects of axial loads ratio in x and y-directions on
the critical buckling load of double-bonded micro
composite SSDT plates reinforced by CNTs and BNNTs

stiffness of double-bonded plates and critical buckling load
reduces by increasing the micro structure stiffness.

Fig. 4 illustrates role of reinforcement on the increasing
stiffness of micro structures. As seen that the face sheets
reinforced by CNTs and BNNTSs have important effect on the
vibration and buckling response of micro composite plates. In
this figure, the cores of micro structure are considered as an
orthotropic soft material and compared various value of
volume fraction nanotube on the natural frequencies and
critical buckling load of double-bonded micro sandwich
SSDT plates. It is noted that in the present study, the upper
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Fig. 4 Effects of CNTs and BNNTSs volume fraction on the
(a) natural frequency (b) critical buckling load of double-
bonded micro composite SSDT plates based on orthotropic
soft core

and lower micro composite plates reinforced by CNTs and
BNNTSs, respectively that the volume fraction of them are
considered equal in each micro plate. Therefore, the natural
frequencies and critical buckling load enhance when the
volume fraction nanotube increases. Because of increasing the
volume fraction nanotubes lead to increase the micro structure
stiffness. Also, it is showed that the natural frequencies and
critical buckling load changes are not large because the
orthotropic cores have large mechanical properties. But, when
the isotropic foam core used in system, it observed that the
natural frequency and critical buckling load is more change
when the volume fraction nanotubes increases in Fig. 5.
Moreover, it is showed that increasing length-to-thickness
ratio lead to decrease the natural frequency and critical
buckling load because micro structures stiffness reduces when
enhance length of micro plate. So that these changes are
important for the lower values of length-to-thickness ratios
(a/h<25).

Effects of aspect ratio and temperature changes on the
natural frequencies and critical buckling load of double-
bonded micro composite sandwich SSDT plates reinforced by
CNTs and BNNTSs are shown in Fig. 6. As seen that, the
natural frequencies and critical buckling load of micro plates
decrease with increasing of the aspect ratio because the micro
structure stiffness reduces when the length-to-width ratio of
micro plates enhances. In fact, when the aspect ratio increases,
the micro structure becomes slender and these changes lead to

1.6 1 ——Vour&V g 011
— o = V&V 014

© VCNT&VRNNT:O' 17

04

a’h
(a)
6 T
—o— VCNT&VBNNTZO'] 1
5 — % ’VCNT&VBNNT:U‘M
—— Vonr® V017

Fig. 5 Effects of CNTs and BNNTs volume fraction on the
(a) natural frequency (b) critical buckling load of double-
bonded micro composite SSDT plates based on isotropic
foam core

decrease the micro plate stiffness. Moreover, it is observed
that the temperature changes have a small effect on the
buckling and vibration response of double-bonded micro
composite sandwich plates with orthotropic cores. Since it is
assumed that the cores are made of orthotropic materials with
high stiffness, it can be expected that temperature changes are
not very effective. But, influences of temperature changes
were high when the isotropic foam core used as cores of
microstructures (Fig. 7).

It is demonstrated that the effects of temperature changes
are less for the cores with high stiffness, even though using
the cores with large stiffness are not common in industries.
Also, Fig. 7 illustrated the effects of thickness ratio (thickness
of cores to face sheets stiffness) on the free vibration and
buckling behaviors of double-bonded sandwich micro
composite plates. In the sandwich structures because of low
weight and high stiffness, usually, the face sheets are stiffer
than cores. Thus, it is reasonable that buckling and resonance
phenomenon delay when the stiffness is high by decreasing
the thickness ratio. As seen that, the natural frequencies and
critical buckling load of micro plates decrease with increasing
the thickness ratio.

Table 7 compares the natural frequencies and critical
buckling load of 1-layered double-bonded composite SSDT
plates and 3-layered sandwich micro SSDT plates with
orthotropic (large density and mechanical properties) and
isotropic foam (low density and mechanical properties) cores.
In this Table, all of the variables are same and changed the
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Fig. 6 Effects of aspect ratio and temperature changes on
the (a) natural frequencies (b) critical buckling load of
double-bonded micro composite SSDT plates based on
orthotropic flexible cores

Table 7 comparison of natural frequencies and critical
buckling load of double-bonded 1-layered, 3-layered with
orthotropic and 3-layered with isotropic foam cores composite
micro SSDT plates

3-layered 3-layered
Slender 1-layered sandwich sandwich
Ratio composite micro structure  micro E E
(ah) micro with structure with —_Orto-Comp Fom-Comp
an structure orthotropic isotropic
cores cores
10 56771.900  138600.000  58912.200 1.440 0.037
Natural
Frequency 20 14445400  34852.200 14772.100 1.410 0.022
(HZ)
30 6570.940 15506.800 6569.020 1.350 0.00015
Critical 10 812.719 1505.970 150.963 0.853 4377
Budkliog 20 910372 3s0644 37932 0.814 4526
™ 30 97.943 169.582 16.879 0.734 4.764
E _ ‘Aonu _AComp‘ A
Orto-Comp — A . (vacr)
'‘Comp
Fom — com,
£ |Avan = Acony] N
Fom-Comp — A . (w! N cr)

'Comp

cores structures only with reinforced composite (1-layered),
orthotropic and isotropic foam core. It is showed that in the
double-bonded 3-layered sandwich micro plates with
orthotropic cores the natural frequencies and critical buckling
load are very large because these cores have high stiffness and
mechanical properties.

1 2 3 4 5 6 7 8 9 10
h/h,
(a)
35 . , . . .
—©& - AT=0
30¢ —6— AT=200]

\ —8-= AT=400

Fig. 7 Effects of temperature changes on the a) natural
frequencies b) critical buckling load of double-bonded
micro composite SSDT plates based on isotropic foam cores
versus thickness ratio

Fig. 8 illustrated role of orthotropic elastic medium on the
natural frequencies and critical buckling load of double-
bonded micro composite sandwich SSDT plates with
orthotropic core materials. It is observed that the micro
structure stiffness increases with considering the elastic
medium because the natural frequencies and critical buckling
load of double-bonded micro sandwich plates enhanceswhen
the Winkler constant and Pasternak shear modulus increases.
In fact, it can be said that the orthotropic foundation represents
the environment elasticity around each micro sandwich plates
and using this foundation lead to increase stability of micro
system. Thus, the natural frequencies and critical buckling
load increase with increasing the medium constants. Also, it is
shown that the effect of Winkler spring constant is significant
for K, >10" (N /m?®) . In fact, in order to control the

vibration and buckling response of double-bonded micro
sandwich SSDT plates reinforced by CNTs and BNNTS the

best domain will be 100 <K, <10000(GN /m?®) because

the most changes are occurred in this range. Moreover, the
influences of Pasternak shear modulus are investigated in this
figure, so that increasing the Pasternak shear modulus leads to
enhance the natural frequencies and critical buckling load of
sandwich micro SSDT plates. It is observed that the effect of
this parameter is more than Winkler spring constant.

In this work, it is assumed that the tensile and compressive
pre-stresses (positive and negative pre-stress load,
respectively) are applied in x-direction of each micro
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Fig. 8 Effects of orthotropic elastic medium constant on the
(a) natural frequencies (b) critical buckling load of double-
bonded micro composite sandwich SSDT plates with
orthotropic cores
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Fig. 9 Effects of pre-stress load in x-direction on the
dimensionless critical buckling load of double-bonded
micro  composite  sandwich ~ SSDT  plates  (
0,=114(N /m?) — N, =115(KN))

sandwich SSDT plates reinforced by CNTs and BNNTSs. Fig.
9. shows the effect of pre-stresses load on the dimensionless
critical buckling load of present micro structure. It is
concluded that the pre-stress load has an external factor on the
buckling response of system and lead to increase the
dimensionless critical buckling load, if this stress is applied
tensile, while negative pre-stresses lead to decrease the critical
buckling load. Thus, when the compressive pre-stresses load
applied, the buckling phenomenon occurred earlier.

7. Conclusions

In this work, the buckling and free vibration analyses of
double-bonded micro composite sandwich SSDT plates
presented based on MSGT rested on an orthotropic medium
under electro-magneto-thermo-mechanical and pre-stresses
loadings. The sandwich micro plates considered with four
composite face sheets and two flexible transversely
orthotropic cores. Also, assumed that the face sheets material
properties were temperature-dependent and they reinforced by
CNTs and BNNTs. The governing equations of motions
derived using Hamilton’s principle and energy approach.
Effects of various parameters such as material length scale
parameter, length to width ratio, length-to-thickness ratio, and
thickness of face sheets-to-core thickness ratio, nanotubes
volume fraction, pre-stress load and orthotropic elastic
medium on the natural frequencies and critical buckling load
of double-bonded micro composite sandwich plates
considered and the obtained results are stated as follows:

1) Influence of the Pasternak shear modulus is more than
the Winkler spring constant on the critical buckling load and
natural frequencies of double-bonded micro composite
sandwich SSDT plates. So that, the critical buckling load and
natural frequency of micro plates increase with increasing of
both them.

2) CNTs and BNNTSs volume fraction led to enhance the
stiffness of micro composite sandwich plates and increases
system stability.

3) Natural frequencies and critical buckling load of
double-bonded micro composite sandwich SSDT plates
decreases with increasing temperature changes. Moreover,
temperature changes influence on the structural behaviors was
less important compared to the other parameters.

4) Increasing length-to-thickness ratio of double-bonded
micro SSDT plates led to decrease the natural frequencies and
critical buckling load of system. Thus, it can be said that the
buckling and resonance phenomenon occurs earlier when the
micro plates are long.

5) Compressive pre-stresses due to help the axial buckling
load causes that delay the buckling phenomenon.

6) Sandwich structures with orthotropic cores have high
stiffness, but because they are not economical it is necessary
the sandwich plates with foam core reinforce by CNTs and
BNNTSs because these nanotubes have important thermal and
mechanical properties in comparison the other reinforcement.
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Appendix A

The governing equations of motions can be defined by
Substituting Eq. (19), (25) and (30) into Eq. (33). These
equations are written as follows:
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In the above equations, g index refers to each layer of

micro plates.





