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Using fourth order element for free vibration parametric
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Abstract. The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using
Mindlin’s theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the
aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to
free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of
the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element
method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded
finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake
excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is
also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered
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in this study than the changes in the aspect ratio.
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1. Introduction

Plates are structural elements which are commonly used
in the building industry. A plate is considered to be a thin
plate if the ratio of the plate thickness to the smaller span
length is less than 1/20; it is considered to be a thick plate if
this ratio is larger than 1/20 (Ugural 1981).

The dynamic behavior of thin plates has been
investigated by many researchers (Leissa 1973, 1977, 1981,
1981, 1987, Leissa 1977, Providakis and Beskos 1989,
Warburton 1954, Caldersmith 1984, Grice and Pinnington
2002, Sakata and Hosokawa 1988, Lok and Cheng 2001, Si
et al. 2005, Ayvaz and Durmug 1995). There are also many
references on the behavior of the thick plates subjected to
different loads. The studies made on the behavior of the
thick plates are based on the Reissner-Mindlin plate theory
(Reissner 1945, 1947, 1950, Mindlin 1951). This theory
requires only C° continuity for the finite elements in the
analysis of thin and thick plates. Therefore, it appears as an
alternative to the thin plate theory which also requires C!
continuity. This requirement in the thin plate theory is
solved easily if Mindlin theory is used in the analysis of
thin plates. Despite the simple formulation of this theory,
discretization of the plate by means of the finite element
comes out to be an important parameter. In many cases,
numerical solution can have lack of convergence, which is
known as “shear-locking”. Shear locking can be avoided by
increasing the mesh size, i.e., using finer mesh, but if the
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thickness/span ratio is “too small”, convergence may not be
achieved even if the finer mesh is used for the low order
displacement shape functions.

In order to avoid shear locking problem, the different
methods and techniques, such as reduced and selective
reduced integration, the substitute shear strain method, etc.,
are used by several researchers (Hinton and Huang 1986,
Zienkiewich et al. 1971, Bergan and Wang 1984, Ozkul and
Ture 2004, Hughes et al. 1977). The same problem can also
be prevented by using higher order displacement shape
function (0 zdemir et al. 2007). Wanji and Cheung (2000)
proposed a new quadrilateral thin/thick plate element based
on the Mindlin-Reissner theory. Soh et al. (2001) improved
a new element ARS-Q12 which is a simple quadrilateral 12
DOF plate bending element based on Reissner-Mindlin
theory for analysis of thick and thin plates. Brezzi and
Marini (2003) developped a locking free nonconforming
element for the Reissner-Mindlin plate using discontinuous
Galarkin techniques. Belounar and Guenfound (2005)
improved a new rectangular finite element based on the
strain approach and the Reissner-Mindlin theory is
presented for the analysis of plates in bending either thick
or thin. Vibration analysis made by Raju and Hinton (1980),
they presented natural frequencies and modes of rhombic
Mindlin plates. Si et al. (2005) studied vibration analysis of
rectangular plates with one or more guided edges via
bicubic B-spline method, Cen et al. (2006) developed a new
high performance quadrilateral element for analysis of thick
and thin plates. This distinguishing character of the new
element is that all formulations are expressed in the
quadrilateral area co-ordinate system. Shen et al. (2001)
studied free and forced vibration of Reissner-Mindlin plates
with free edges resting on elastic foundations. Woo et al.
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(2003) found accurate natural frequencies and mode shapes
of skew plates with and without cutouts by p-version finite
element method using integrals of Legendre polynomial for
p=1-14. Qian et al. (2003) studied free and forced
vibrations of thick rectangular plates using higher-order
shear and normal deformable plate theory and meshless
Petrov-Galarkin method. 0 zdemir and Ayvaz (2009)
studied shear locking free earthquake analysis of thick and
thin plates using Mindlin’s theory. GuangPeng et al. (2012)
studied free vibration analysis of plates on Winkler elastic
foundation by boundary element method. Fallah et al.
(2013) analyzed free vibration of moderately thick
rectangular FG plates on elastic foundation with various
combinations of simply supported and clamped boundary
conditions. Governing equations of motion were obtained
based on the Mindlin plate theory. Jahromi et al. (2013)
analyzed free vibration analysis of Mindlin plates partially
resting on Pasternak foundation. The governing equations
which consist of a system of partial differential equations
are obtained based on the first-order shear deformation
theory. Ozgan and Daloglu (2013) studied free vibration
analysis of thick plates on elastic foundations using
modified Vlasov model with higher order finite elements,
also same autors (2015) studied the effects of various
parameters such as the aspect ratio, subgrade reaction
modulus and thickness/span ratio on the frequency
parameters of thick plates resting on Winkler elastic
foundations. Authors used 4 and 8-noded finite elements
this study. However, no references have been found in the
technical literature for the free vibration analysis of thick
plates resting on Winkler foundation by using fourth order
17-noded finite element.

The purpose of this paper is to study free vibration
analysis of thick plates resting on Winkler foundation using
Mindlin’s theory with shear locking free fourth order finite
element, to determine the effects of the thickness/span ratio,
the aspect ratio, subgrade reaction modulus and the
boundary conditions on the frequency paramerets of thick
plates subjected to free vibration. A computer program
using finite element method is coded in C++ to analyze the
plates free, clamped or simply supported along all four
edges. In the program, the finite element method is used for
spatial integration. Finite element formulation of the
equations of the thick plate theory is derived by using
higher order displacement shape functions. In the analysis,
17-noded finite element is used to construct the stiffness
and mass matrices since shear locking problem does not
occur if this element is used in the finite element modelling
of the thick and thin plates (0 zdemir et al. 2007). No matter
what the mesh size is unless it is less than 4x4. This is a
new element, details of its formulation are presented in
(0 zdemir et al. 2007) and this is the first time this element
is used in the free vibration analysis of thick plates. If this
element is used in an analysis, it is not necessary to use
finer mesh.

2. Mathematical model

The governing equation for a flexural plate (Fig. 1)
subjected to free vibration without damping can be given as

AW
i

t i ,A/Q‘
L’—‘-—.>>
: hi
m—
£ ke
e

Fig. 1 The sample plate used in this study
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where (K) and (M) are the stiffness matrix and the mass
matrix of the plate, respectively, w and VW are the lateral
displacement and the second derivative of the lateral
displacement of the plate with respect to time, respectively.

The total strain energy of plate-soil-structure system
(see Fig. 1) can be written as

I1= T+ [+ V 2)

where Il is the strain energy in the plate,
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where II; is the strain energy stored in the soil,
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and V is the potential energy of the external loading
v=-[, qwd 5 ©)

In this equation, E. and E, are the elasticity matrix and
these matrices are given below at Eq. (17),  shows

applied distributed load.
2.1 Evaluation of the stiffness matrix

The total strain energy of the plate-soil system
according to Eq. (2) is
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At this equation the first and second part gives the
conventional element stiffness matrix of the plate, (ky®),
differentiation of the third integral with respect to the nodal
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parameters yields a matrix, (ks?), which accounts for the
axial strain effect in the soil. Thus, the total energy of the
plate-soil system can be written as

o=t Ts e Jweln o

where

8
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Assuming that in the plate of Fig. 1 u and v are
proportional to z and that w is the independent of z
(Mindlin 1951), one can write the plate displacement at an
arbitrary x, y, z in terms of the two slopes and a
displacement as follows

Ui:{W, \'A U}:{WO(X,YJ), ZOpy (vavt)l “Z(Px (X!y!t)} (9)

where wy is average displacement of the plate, and ¢x and
@y are the bending slopes in the x and y directions,
respectively.

1 2 3

Fig. 2 17-noded quadrilateral finite element used in this
study (O zdemir et al. 2007)
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The nodal displacements for 17-noded quadrilateral
serendipity element (MT17) (Fig. 2) can be written as
follows
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The displacement function chosen for this element is

W = C; +Cyl +CaS+Col2 +CylS + CgS +C7 1S+ CglS? +Col® +C1or s +¢4,15° (11)
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From this assumption, it is possible to derive the
displacement shape function to be (0 zdemir et al. 2007)

h=[hy,... hy7]. (12)

Then, the strain-displacement matrix (B) for this
element can be written as follows Cook et al. (1989)
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The stiffness matrix for MT17 element can be obtained
by the following equation (Cook et al. 1989).

[K]=[[B]"[PIekA [ [ [B]' DIelidrds (14

which must be evaluated numerically (Hughes et al. 1977).
As seen from Eqg. (14), in order to obtain the stiffness
matrix, the strain-displacement matrix, (B), and the flexural
rigidity matrix, (D), of the element need to be constructed.

The flexural rigidity matrix, (D), can be obtained by the
following equation.

E. O
[D]{O E}. (15)

In this equation, (Ex) is of size 3x3 and (E,) is of size
2x2. (Ex), and (E,) can be written as follows (Bathe 1996,
Weaver and Johston 1984)
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Table 1 The first five natural frequency parameters of plates
for b/a=0.1 and t/a=0.05

Table 2 Effects of aspect ratio and thickness/span ratio on
the first six frequency parameters of the thick free plates
resting on elastic foundation (a)Subgrade reaction modulus
k=500

o 4 Dalogl (2015 This Study
= zgan “ngg(‘;%)“ (2015) — SAP2000
(4 element)
1 3990.42 4002.41 4000.00
2 3990.42 4002.41 4000.00
3 4000.40 4021.55 4000.00
4 8676.00 8650.67 8619.60
5 13957.64 13789.50 13292.31
6 17252.34 16939.10 16380.24

where E, v, and t are modulus of the elasticity, Poisson’s
ratio, and the thickness of the plate, respectively, k is a
constant to account for the actual non-uniformity of the
shearing stresses. By assembling the element stiffness
matrices obtained, the system stiffness matrix is obtained.

2.2 Evaluation of the mass matrix

The formula for the consistent mass matrix of the plate
may be written as

M = [H{uH;dQ . an
Q

In this equation, x is the mass density matrix of the form
(Tedesco et al. 1999)

m, 0 O
u={ 0 m, 0| (18)
0 0 my

1
where mi=pyt, m2=m3=E<ppt3), and pp is the mass

densities of the plate. and H; can be written as follows,

H; =[dh;/dx dh;/dy h;] i=1..17. (19)

It should be noted that the rotation inertia terms are not
taken into account. By assembling the element mass
matrices obtained, the system mass matrix is obtained.

2.3 Evaluation of frequency of plate
The formulation of lateral displacement, w, can be given
as motion is sinusoidal
w= W sin wt (20)

Here w is the circular frequency. Substitution of Eq.
(20) and its second derivation into Eq. (1) gives expression
as

(K- w? M) {W}=0 (1)

Eq. (21) is obtained to calculate the circular frequency,
w, of the plate. Then natural frequency can be calculated
with the formulation below

/'[sz
k b/a t/a
M A2 A3 yn s s
0.05 456.73 456.73 469.98 5048.72 10235.73 13366.95
0.10 23542 235.42 283.12 17448.03 37556.42 49322.00
Lo 020 171.76 171.76 175.32 58681.13  126694.77 164490.80
0.30 149.09 149.09 179.38 109100.98 229933.60 295362.76
0.05 458.49 464.03 470.14 2492.94 2660.49 10937.27
0.10 241.45 259.74 289.49 7970.41 8878.92 39117.93
Lo 0.20 170.28 173.06 17451 27346.73 31896.09  127052.66
0.30 153.01 163.56 183.08 52430.17 63261.49  225607.89
o0 0.05 459.37 466.66 470.22 1161 1588.82 5784.55
0.10 244.46 271.13 292.64 3031.39 4557.16 20388.11
20 0.20 169.53 171.92 174.46 10730.89 15546.29 68560.22
0.30 154.97 170.85 184.92 22168.05 30127.28  126587.63

0.05 460.25 468.61 470.30 603.44 951.50 1519.07

0.10 247.47 281.97 295.67 825.36 2129.95 4437.42
3.0

0.20 168.79 170.78 173.44 2333.89 6956.53 15815.48

0.30 156.93 177.91 186.77 4859.98 13529.71 32166.71
(b)Subgrade reaction modulus k=5000
A= w?

k bla t/a
A Ao A3 A As X6

0.05 4048.88 4050.71 4050.71 8653.61 13833.74 16962.44

0.10 1782.51 1828.73 1828.73 19105.26 39152.09 50908.80

Lo 0.20 988.20 988.20 1100.65 59430.60 127406.10 165227.73

0.30 769.51 769.51 797.73 109738.11 230496.95 295940.16

0.05 4046.02 4049.58 4050.65 6091.26 6251.14 14537.14

0.10 1768.59 1807.81 1815.91 9588.73 10441.43 40735.90

Lo 0.20  998.69 1045.86 1112.15 28136.42 32704.57 127808.03

0.30 765.62 785.60 792.93 53058.38 63852.85  226223.01

5000 0.05 4044.57 4049.01 4049.33 4747.36 5183.66 9370.14

0.10 1761.48 1794.16 1809.51 4571.14 6154.11 21987.92

20 0.20 1003.94 1071.72 1117.86 11584.64 16354.55 69347.86

0.30 763.67 789.76 790.53 22769.41 30748.11 127203.92

0.05 4043.04 4047.16 4048.44 4184.88 4542.92 5100.33

0.10 1753.95 1778.27 1803.10 2337.21 3705.59 5942.54
3.0

0.20 1009.18 1095.29 1123.49 3230.59 7781.66 16694.84
0.30 761.73 788.11 790.91 5466.83 14142.39 32756.09
f= w /2m. (22)

3. Numerical examples
3.1 Data for numerical examples

In the light of the results given in references (O zdemir et
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Table 3 Effects of aspect ratio and thickness/span ratio on
the first six frequency parameters of the thick simply
supported plates resting on elastic foundation (a)Subgrade
reaction modulus k=500

Table 4 Effects of aspect ratio and thickness/span ratio on
the first six frequency parameters of the thick clamped
plates resting on elastic foundation (a)Subgrade reaction
modulus k=500

k bla tha

1 A2 A3 Aa As A6

k b/a tla

A A2 Az yn As A6

0.05  9047.49 53796.43  53796.43  132323.07 208613.59  208895.04

0.10 31594.42 186728.44 186728.44 431328.03 67575592  678833.00
1.0
0.20 100289.55 524820.99 524820.99 1078904.01 1617046.34 1635881.04

0.30 177442.04 817902.27 817902.27 1562458.24 2233537.15 2283380.53

0.05 5015.82  17094.00 43388.98  54027.36 71060.68  133204.57
0.10 17329.00 60561.66 154092.71 188245.00 242603.20  436597.42
15

0.20 5745729 186916.54 44943328 530921.10 658117.17 1095658.73

0.30 106026.94 318024.32 715938.90 828749.90 1001294.89 1585462.92

500

0.05 3912.42 9138.54  23276.24  39998.98 54142.96 54143.89
0.10 13407.92 32257.55 82636.39 143304.16  189004.43  189006.59
2.0

0.20 45541.02 103507.34 250665.43 424221.46  533149.24  533974.84

0.30 85976.33 183477.06 417846.00 682308.08 830510.86  834182.73

0.05  3220.63 5043.23 9169.12 17200.91 31325.02 37650.27
0.10 10941.00 17534.14  32481.80
3.0

0.20 38015.92 58510.72 104603.63 190395.95 330316.70  406397.06

61320.90  111087.04  135748.49

0.30 73378.65 108073.96 185541.50 324384.26  539235.37  658701.91

0.05 29399.26 116834.05 116834.05 249807.83 357368.47 360069.10

0.10 101617.17 373256.14 373256.14 740887.88 1030395.66 1047986.95
1.0

0.20 278374.14 861871.29 861871.29 1565922.64 2039946.24 2095998.94

0.30 419370.68 1157254.77 1157254.77 2023171.94 2554811.38 2633517.10

0.05 16908.99 39205.42 95258.36 97182.57 137631.77 216897.69

0.10 59525.60 134919.66 310099.31 319495.60 435811.88 672182.96
15
0.20 172125.70 363920.36 730210.43 780426.62 997378.19 1482599.24

0.30 270116.88 542564.98 987430.79 1090396.18 1341214.91 1958332.72
500

0.05 14117.41 2321323 45070.22 88572.09 89337.85 109659.86

0.10 49805.40 81344.93 154982.37 292222.57 295023.93 353890.91
20

0.20 145485.47 230671.31 416980.07 691060.91 740329.64 826755.76

0.30 229437.01 357622.38 622340.64 934274.34 1054405.91 1120423.97

0.05 12644.54 15556.30 21711.76 32937.34 51635.82  80718.74

0.10 44641.49 5483514 76281.37 114829.11 177546.73 272162.77
3.0

0.20 131110.32 159211.61 217922.26 319973.27 477559.95 666155.64

0.30 206907.81 250437.15 340325.33 491310.53 714689.63 899579.80

(b)Subgrade reaction modulus k=5000

(b)Subgrade reaction modulus k=5000

= a?

k b/a tla
M A2 A3 A4 s s

A= w?
k bla t/a

M A2 A3 n s A6

0.05 12609.04 57354.76 57354.76 135874.88 212157.76 212439.24

0.10 32964.79 188091.77 188091.77 432688.04 677116.41 680193.55

+ 0.20 101247.30 525741.77 525741.77 1079799.04 1617942.25 1636779.96
0.30 177977.58 818437.52 818437.52 1562998.28 2234080.37 2283934.68
0.05 8577.44  20655.19 46948.06  57585.70 74617.70  136756.40
0.10 18701.35 61929.72 155457.14 189608.42 243965.46  437957.71

" 0.20 58426.83 187861.85 450362.11 531842.74 659030.25 1096555.70
0.30 106567.74 318558.03 716477.03 829286.80 1001831.09 1586005.38

o000 0.05 747401 12700.10 26837.03  43558.29 57701.30 57702.23
0.10 14781.01 33627.96 84003.25 144669.00 190367.90  190370.05

20 0.20 4651520 104465.61 251604.71 425153.30 534071.10 534896.91
0.30 86519.76 184013.55 418380.12 682847.59 831047.66 834720.46
0.05 6782.19 8604.85  12730.68  20762.10 34885.23 41209.73
0.10 12314.64 18906.50 3385223  62689.00 11245274 137113.62

3.0

0.20 3899359 59480.44 105562.09 191341.81 331250.24 407331.09

0.30 7392428 108615.10 186078.32 324918.95 539770.74 659242.52

0.05 32959.36 120390.09 120390.09 253356.69 360920.13 363621.48

0.10 102989.69 374624.18 374624.18 742255.07 1031761.35 1049354.96
1.0

0.20 279348.85 862818.66 862818.66 1566852.97 2040867.69 2096931.61

0.30 419933.76 1157814.27 1157814.27 2023741.71 2555370.41 2634089.82

0.05 20469.69 42765.14 98815.54 100738.89 141186.45 220447.55

0.10 60898.68 136289.31 311467.67 320862.26 437178.85 673548.46
15

0.20 173105.70 364881.24 731160.80 781368.75 998317.44 1483525.59

0.30 270677.14 543121.22 987986.19 1090953.82 1341775.40 1958894.07

5000
0.05 17678.19 26773.78 48629.62 92128.68 9289535 113216.20

0.10 51179.10 82716.25 156350.84 293591.18 296389.98 355258.47
2.0
0.20 146468.75 231640.84 417933.94 692013.00 741268.89 827700.22

0.30 229997.53 358178.09 622894.67 934828.66 1054961.53 1120980.66

0.05 16205.33 19117.11 25272.42 36497.46 55194.78  84275.67

0.10 46015.71 56208.14 77652.62 116198.33 178913.95 273528.27
3.0

0.20 132096.63 160190.39 218890.84 320930.69 478506.42 667109.26

0.30 207469.48 250994.78 340879.27 491862.47 715241.53 900133.60

al. 2007, 0 zdemir 2012), the aspect ratios, b/a, of the plate
are taken to be 1, 1.5, and 2.0. The thickness/span ratios, t/a,
are taken as 0.01, 0.05, 0.1, 0.2, and 0.3 for each aspect
ratio. The shorter span length of the plate is kept constant to
be 10 m. The mass density, Poisson’s ratio, and the
modulus of elasticity of the plate are taken to be 2.5 kN

s?/m?, 0.2, and 2.7x107 KN/m?. Shear factor k is taken to be
5/6. The subgrade reaction modulus of the Winkler-type
foundation is taken to be 500 and 5000 kN/m?,

For the sake of accuracy in the results, rather than
starting with a set of a finite element mesh size, the mesh
size required to obtain the desired accuracy were
determined before presenting any results. This analysis was
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performed separately for the mesh size. It was concluded
that the results have acceptable error when equally spaced
4x4 mesh size for 17-noded elements are used for a 10
mx10 m plate. Length of the elements in the x and y
directions are kept constant for different aspect ratios as in
the case of square plate.

In order to illustrate that the mesh density used in this
paper is enough to obtain correct results, the first six
frequency parameters of the thick plate with b/a=1 and
t/a=0.05 is presented in Table 1 by comparing with the
result obtained SAP2000 program and the results O zgan
and Daloglu (2015). In this study Ozgan and Daloglu used
4-noded and 8-noded quadrilateral finite element with
10x10 and 5x5 mesh size. It should be noted that the results
presented for MT17 element are obtained by using equally
spaced 2x2 mesh size. As seen from Table 1, the results
obtained by using 17-noded quadrilateral finite element
have excellent agreement with the results obtained by
Ozgan and Daloglu (2015) and SAP200 even if 2x2 mesh
size is used for MT17 element.

3.2 Results

The first six frequency parameters of thick plate resting
on Winkler foundation with free edges are compared with
the same thick plate modeled by Ozgan and Daloglu (2010)
and Sap2000 program and it is presented in Tablel. The
subgrade reaction modulus of the Winkler-type foundation
for this example is taken to be 5000 kN/m?3. This thick plate
is modeled with MT17 element 2x2 mesh size for b/a=1.0,
t/a=0.05 ratios.

As seen from Table 1, the values of the frequency
parameters of these analyses are so close even if this study
mesh size is so poor. Then writers enlarged parameters of
aspect ratio, b/a, thickness/span ratio, t/a, for help the
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The first six frequency parameters of thick plates resting

on Winkler foundation considered for different aspect ratio,
b/a, thickness/smaller span ratio, t/a, are presented in Table
2 for the with free edges, in Table 3 for the thick simply
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supported plates and in Table 4 for thick clamped plates. In
order to see the effects of the changes in these parameters
better on the first six frequency parameters, they are also
presented in Figs. 3-4 for the thick free plates, in Figs. 5-6
for the thick simply supported plates and in Figs. 7-8 for the
thick clamped plates.
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As seen from Tables 2, and 3, and Figs. 3, and 4, the
values of the first three frequency parameters for a constant
value of t/a increase as the aspect ratio, b/a, increases up to
the 3" frequency parameters, but after the 3" frequency
parametrer, the values of the frequency parameters for a
constant value of t/a decrease as the aspect ratio, b/a,
increases.

As also seen from Tables 2, and 3, and Figs. 3, and 4,
the values of the first three frequency parameters for a
constant value of b/a decrease as the thickness/span ratio,
b/a, increases up to the 3" frequency parameters, but after
the 3 frequency parameters, the values of the frequency
parameters for a constant value of b/a increase as the
thickness/span ratio, t/a, increases.

The icnrease in the frequency parameters with
increasing value of b/a for a constant t/a ratio gets less for
larger values of b/a up to the 3™ frequency parameters.
After the 3¢ frequency parameters, the decrase in the
frequency parameters with increasing value of b/a for a
constant t/a ratio gets also less for larger values of b/a.

The changes in the frequency parameters with
increasing value of b/a for a constant t/a ratio is larger for
the smaller values of the b/a ratios. Also, the changes in the
frequency parameters with increasing value of b/a for a
constant t/a ratio is is less than that in the frequency
parameters with increasing increasing t/a ratios for a
constant valueof b/a.

These observations indicate that the effects of the
change in the t/a ratio on the frequency parameter of the
plate are generally larger than those of the change in the b/a
ratios considered in this study.

As also seen from Tables 2, 3 and 4, and Figs. 3, and 4,
the curves for a constant value of b/a ratio are fairly getting
closer to each other as the value of t/a increases up to the 3"
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Fig. 9 The first six mode shapes of the thick free plates for
b/a=1.0 and t/a=0.05 with subgrade reaction modulus
k=5000
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Fig. 10 The first six mode shapes of the thick simply
supported plates for b/a=1.0 and t/a=0.05 with subgrade
reaction modulus k=5000

frequency parameters. This shows that the curves of the
frequency parameters will almost coincide with each other
when the value of the ratio of t/a increases more. After the
3" frequency parameters, the curves for a constant value of
t/a ratio are fairly getting closer to each other as the value of
b/a increases. This also shows that the curves of the
frequency parameters will almost coincide with each other
when the value of the ratio of b/a increases more.

In other words, up to the 3™ ferquency parameters, the
increase in the t/a ratio will not affect the frequency
parameters after a determined value of t/a. After the 3"
ferquency parameters, the increase in the b/a ratio will not
affect the frequency parameters after a determined value of
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Fig. 11 The first six mode shapes of the thick clamped
plates for b/a=1.0 and t/a=0.05 with subgrade reaction
modulus k=5000
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Fig. 12 The first six mode shapes of the thick simply
supported plates for b/a=1.0 and t/a=0.3 with subgrade
reaction modulus k=5000

b/a.

As seen from Tables 2, 3, 4 and Figs. 3, 4, 5, 6, 7 and 8,
the values of the frequency parameters for a constant value
of t/a decrease as the aspect ratio, b/a, increases. This
behavior is understandable in that a thick plate with a larger
aspect ratio becomes more flexible and has smaller
frequency parameters. The decreases in the frequency
parameters with increasing value of b/a ratio gets less for a
constant value of t/a.

As seen from Tables 2, 3, 4 and Figs. 3, 4,5, 6, 7 and 8,
the values of the frequency parameters for a constant value
of b/a increase as the thickness/span ratio, b/a, increases.
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Fig. 13 The first six mode shapes of the thick simply
supported plates for b/a=1.5 and t/a=0.05 with subgrade
reaction modulus k=5000
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Fig. 14 The first six mode shapes of the thick simply
supported plates for b/a=3.0 and t/a=0.05 with subgrade
reaction modulus k=5000

(h=421209.73)

This behavior is also understandable in that a thick plate
with a larger thickness/span ratio becomes more rigid and
has larger frequency parameters. The increases in the
frequency parameters with increasing value of t/a ratio gets
larger for a constant value of b/a.

It should be noted that the increase in the frequency
parameters with increasing t/a ratios for a constant value of
b/a ratio gets larger for larger values of the frequency
parameters.

These observations indicate that the effects of the
change in the t/a ratio on the frequency parameter of the

thick plates simply supported or clamped along all four
edges are always larger than those of the change in the
aspect ratio.

As also seen from Figs. 3, 4, 5, 6, 7 and 8, the curves for
a constant value of the aspect ratio, b/a are fairly getting
closer to each other as the value of t/a decreases. This
shows that the curves of the frequency parameters will
almost coincide with each other when the value of the
thickness/span ratio, t/a, decreases more. In other words, the
decrease in the thickness/span ratio will not affect the
frequency parameters after a determined value of t/a.

In this study, the mode shapes of the thick plates are
also obtained for all parameters considered. Since
presentation of all of these mode shapes would take up
excessive space, only the mode shapes corresponding to the
six lowest frequency parameters of the thick plate free,
simply supported, clamped along all four edges for b/a = 1,
1.5, and 3 and t/a = 0.05, 0.3 are presented. These mode
shapes are given in Figs. 9, 10, 11, 12, 13 and 14,
respectively. In order to make the visibility better, the mode
shapes are plotted with exaggerated amplitudes.

As seen from these figures, the number of half wave
increases as the mode number increases. It should be noted
that appearances of the mode shapes not given here for the
thick plates clamped along all four edges are similar to
those of the mode shapes presented here.

4. Conclusions

The purpose of this paper was to study parametric free
vibration analysis of thick plates using higher order finite
elements with Mindlin’s theory and to determine the effects
of the thickness/span ratio, the aspect ratio and the
boundary conditions on the linear responses of thick plates
subjected to vibration. As a result, free vibration analyze of
the thick plates were done by using p version serendipity
element, and the coded program on the purpose is
effectively used. In addition, the following conclusions can
also be drawn from the results obtained in this study.

The frequency parameters increase with increasing b/a
ratio for a constant value of t/a up to the 3" ferquency
parameters, but after that the frequency parameters decrases
with increasing b/a ratio for a constant value of t/a.

The frequency parameters decrease with increasing t/a
ratio for a constant value of b/a up to the 3 ferquency
parameters, but after that the frequency parameters
increases with increasing t/a ratio for a constant value of
b/a.

The effects of the change in the t/a ratio on the
frequency parameter of the thick plate are generally larger
than those of the change in the b/a ratios considered in this
study.
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