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1. Introduction 
 

Plates are structural elements which are commonly used 

in the building industry. A plate is considered to be a thin 

plate if the ratio of the plate thickness to the smaller span 

length is less than 1/20; it is considered to be a thick plate if 

this ratio is larger than 1/20 (Ugural 1981). 

The dynamic behavior of thin plates has been 

investigated by many researchers (Leissa 1973, 1977, 1981, 

1981, 1987, Leissa 1977, Providakis and Beskos 1989, 

Warburton 1954, Caldersmith 1984, Grice and Pinnington 

2002, Sakata and Hosokawa 1988, Lok and Cheng 2001, Si 

et al. 2005, Ayvaz and Durmuş 1995). There are also many 

references on the behavior of the thick plates subjected to 

different loads. The studies made on the behavior of the 

thick plates are based on the Reissner-Mindlin plate theory 

(Reissner 1945, 1947, 1950, Mindlin 1951). This theory 

requires only C0 continuity for the finite elements in the 

analysis of thin and thick plates. Therefore, it appears as an 

alternative to the thin plate theory which also requires C1 

continuity. This requirement in the thin plate theory is 

solved easily if Mindlin theory is used in the analysis of 

thin plates. Despite the simple formulation of this theory, 

discretization of the plate by means of the finite element 

comes out to be an important parameter. In many cases, 

numerical solution can have lack of convergence, which is 

known as “shear-locking”. Shear locking can be avoided by 

increasing the mesh size, i.e., using finer mesh, but if the  
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thickness/span ratio is “too small”, convergence may not be 

achieved even if the finer mesh is used for the low order 

displacement shape functions. 

In order to avoid shear locking problem, the different 

methods and techniques, such as reduced and selective 

reduced integration, the substitute shear strain method, etc., 

are used by several researchers (Hinton and Huang 1986, 

Zienkiewich et al. 1971, Bergan and Wang 1984, Ozkul and 

Ture 2004, Hughes et al. 1977). The same problem can also 

be prevented by using higher order displacement shape 

function (Ö zdemir et al. 2007). Wanji and Cheung (2000) 

proposed a new quadrilateral thin/thick plate element based 

on the Mindlin-Reissner theory. Soh et al. (2001) improved 

a new element ARS-Q12 which is a simple quadrilateral 12 

DOF plate bending element based on Reissner-Mindlin 

theory for analysis of thick and thin plates. Brezzi and 

Marini (2003) developped a locking free nonconforming 

element for the Reissner-Mindlin plate using discontinuous 

Galarkin techniques. Belounar and Guenfound (2005) 

improved a new rectangular finite element based on the 

strain approach and the Reissner-Mindlin theory is 

presented for the analysis of plates in bending either thick 

or thin. Vibration analysis made by Raju and Hinton (1980), 

they presented natural frequencies and modes of rhombic 

Mindlin plates. Si et al. (2005) studied vibration analysis of 

rectangular plates with one or more guided edges via 

bicubic B-spline method, Cen et al. (2006) developed a new 

high performance quadrilateral element for analysis of thick 

and thin plates. This distinguishing character of the new 

element is that all formulations are expressed in the 

quadrilateral area co-ordinate system. Shen et al. (2001) 

studied free and forced vibration of Reissner-Mindlin plates 

with free edges resting on elastic foundations. Woo et al. 
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(2003) found accurate natural frequencies and mode shapes 

of skew plates with and without cutouts by p-version finite 

element method using integrals of Legendre polynomial for 

p=1-14. Qian et al. (2003) studied free and forced 

vibrations of thick rectangular plates using higher-order 

shear and normal deformable plate theory and meshless 

Petrov-Galarkin method. Ö zdemir and Ayvaz (2009) 

studied shear locking free earthquake analysis of thick and 

thin plates using Mindlin’s theory. GuangPeng et al. (2012) 

studied free vibration analysis of plates on Winkler elastic 

foundation by boundary element method. Fallah et al. 

(2013) analyzed free vibration of moderately thick 

rectangular FG plates on elastic foundation with various 

combinations of simply supported and clamped boundary 

conditions. Governing equations of motion were obtained 

based on the Mindlin plate theory. Jahromi et al. (2013) 

analyzed free vibration analysis of Mindlin plates partially 

resting on Pasternak foundation. The governing equations 

which consist of a system of partial differential equations 

are obtained based on the first-order shear deformation 

theory. Özgan and Daloğlu (2013) studied free vibration 

analysis of thick plates on elastic foundations using 

modified Vlasov model with higher order finite elements, 

also same autors (2015) studied the effects of various 

parameters such as the aspect ratio, subgrade reaction 

modulus and thickness/span ratio on the frequency 

parameters of thick plates resting on Winkler elastic 

foundations. Authors used 4 and 8-noded finite elements 

this study. However, no references have been found in the 

technical literature for the free vibration analysis of thick 

plates resting on Winkler foundation by using fourth order 

17-noded finite element.  

The purpose of this paper is to study free vibration 

analysis of thick plates resting on Winkler foundation using 

Mindlin’s theory with shear locking free fourth order finite 

element, to determine the effects of the thickness/span ratio, 

the aspect ratio, subgrade reaction modulus and the 

boundary conditions on the frequency paramerets of thick 

plates subjected to free vibration. A computer program 

using finite element method is coded in C++ to analyze the 

plates free, clamped or simply supported along all four 

edges. In the program, the finite element method is used for 

spatial integration. Finite element formulation of the 

equations of the thick plate theory is derived by using 

higher order displacement shape functions. In the analysis, 

17-noded finite element is used to construct the stiffness 

and mass matrices since shear locking problem does not 

occur if this element is used in the finite element modelling 

of the thick and thin plates (Ö zdemir et al. 2007). No matter 

what the mesh size is unless it is less than 4x4. This is a 

new element, details of its formulation are presented in 

(Ö zdemir et al. 2007) and this is the first time this element 

is used in the free vibration analysis of thick plates. If this 

element is used in an analysis, it is not necessary to use 

finer mesh.  

 
 

2. Mathematical model  
 

The governing equation for a flexural plate (Fig. 1) 

subjected to free vibration without damping can be given as 

 

Fig. 1 The sample plate used in this study 

 

 

      0wKwM   (1) 

where (K) and (M) are the stiffness matrix and the mass 

matrix of the plate, respectively, w and w  are the lateral 

displacement and the second derivative of the lateral 

displacement of the plate with respect to time, respectively. 

The total strain energy of plate-soil-structure system 

(see Fig. 1) can be written as 

П= Пp+ Пs+ V (2) 

where Пp is the strain energy in the plate, 
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(3) 

where Пs is the strain energy stored in the soil, 
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and V is the potential energy of the external loading 

V=- A Awdq  (5) 

In this equation, Eκ and Eγ are the elasticity matrix and 

these matrices are given below at Eq. (17), q  shows 

applied distributed load. 

 

2.1 Evaluation of the stiffness matrix 
 

The total strain energy of the plate-soil system 

according to Eq. (2) is 

Ue
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(6) 

At this equation the first and second part gives the 

conventional element stiffness matrix of the plate, (kp
e), 

differentiation of the third integral with respect to the nodal 
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parameters yields a matrix, (kw
e), which accounts for the 

axial strain effect in the soil. Thus, the total energy of the 

plate-soil system can be written as 

Ue         Ae
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T
e dwkkw
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) 

Assuming that in the plate of Fig. 1 u and v are 

proportional to z and that w is the independent of z 

(Mindlin 1951), one can write the plate displacement at an 

arbitrary x, y, z in terms of the two slopes and a 

displacement as follows 

ui={w, v, u}={w0(x,y,t), zφy (x,y,t), -zφx (x,y,t)} (9) 

where w0 is average displacement of the plate, and φx and 

φy are the bending slopes in the x and y directions, 

respectively. 

 

 

 

 

Fig. 2 17-noded quadrilateral finite element used in this 

study (Ö zdemir et al. 2007) 

 

The nodal displacements for 17-noded quadrilateral 

serendipity element (MT17) (Fig. 2) can be written as 

follows 
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From this assumption, it is possible to derive the 

displacement shape function to be (Ö zdemir et al. 2007) 

]h ,...,[hh 171 . (12) 

Then, the strain-displacement matrix (B) for this 

element can be written as follows Cook et al. (1989) 
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The stiffness matrix for MT17 element can be obtained 

by the following equation (Cook et al. 1989). 
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which must be evaluated numerically (Hughes et al. 1977).  

As seen from Eq. (14), in order to obtain the stiffness 

matrix, the strain-displacement matrix, (B), and the flexural 

rigidity matrix, (D), of the element need to be constructed. 

The flexural rigidity matrix, (D), can be obtained by the 

following equation. 
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In this equation, (Ek) is of size 3×3 and (Eγ) is of size 

2×2. (Ek), and (Eγ) can be written as follows (Bathe 1996, 

Weaver and Johston 1984) 
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Table 1 The first five natural frequency parameters of plates 

for b/a=0.1 and t/a=0.05 

λi=ω2 Ozgan and Daloğlu (2015) 

PBQ8(FI) 

This Study 

SAP2000 
MT17 

(4 element) 

1 3990.42 4002.41 4000.00 

2 3990.42 4002.41 4000.00 

3 4000.40 4021.55 4000.00 

4 8676.00 8650.67 8619.60 

5 13957.64 13789.50 13292.31 

6 17252.34 16939.10 16380.24 

 

 

where E, υ, and t are modulus of the elasticity, Poisson’s 

ratio, and the thickness of the plate, respectively, k is a 

constant to account for the actual non-uniformity of the 

shearing stresses. By assembling the element stiffness 

matrices obtained, the system stiffness matrix is obtained. 

 

2.2 Evaluation of the mass matrix 
 

The formula for the consistent mass matrix of the plate 

may be written as 

 


dHHM i
T
i  . 

(17) 

In this equation,  is the mass density matrix of the form 

(Tedesco et al. 1999) 
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where m1=pt, m2=m3=  3
p t

12

1
 , and p is the mass 

densities of the plate. and Hi can be written as follows, 

  .17...1ihdy/dhdx/dhH iiii   (19) 

It should be noted that the rotation inertia terms are not 

taken into account. By assembling the element mass 

matrices obtained, the system mass matrix is obtained. 

 

2.3 Evaluation of frequency of plate 
 

The formulation of lateral displacement, w, can be given 

as motion is sinusoidal 

w= W sin ωt (20) 

Here ω is the circular frequency. Substitution of Eq. 

(20) and its second derivation into Eq. (1) gives expression 

as 

(K- ω2 M) {W}=0 (21) 

Eq. (21) is obtained to calculate the circular frequency, 

ω, of the plate. Then natural frequency can be calculated 

with the formulation below 

Table 2 Effects of aspect ratio and thickness/span ratio on 

the first six frequency parameters of the thick free plates 

resting on elastic foundation (a)Subgrade reaction modulus 

k=500 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 456.73 456.73 469.98 5048.72 10235.73 13366.95 

0.10 235.42 235.42 283.12 17448.03 37556.42 49322.00 

0.20 171.76 171.76 175.32 58681.13 126694.77 164490.80 

0.30 149.09 149.09 179.38 109100.98 229933.60 295362.76 

1.5 

0.05 458.49 464.03 470.14 2492.94 2660.49 10937.27 

0.10 241.45 259.74 289.49 7970.41 8878.92 39117.93 

0.20 170.28 173.06 174.51 27346.73 31896.09 127052.66 

0.30 153.01 163.56 183.08 52430.17 63261.49 225607.89 

2.0 

0.05 459.37 466.66 470.22 1161 1588.82 5784.55 

0.10 244.46 271.13 292.64 3031.39 4557.16 20388.11 

0.20 169.53 171.92 174.46 10730.89 15546.29 68560.22 

0.30 154.97 170.85 184.92 22168.05 30127.28 126587.63 

3.0 

0.05 460.25 468.61 470.30 603.44 951.50 1519.07 

0.10 247.47 281.97 295.67 825.36 2129.95 4437.42 

0.20 168.79 170.78 173.44 2333.89 6956.53 15815.48 

0.30 156.93 177.91 186.77 4859.98 13529.71 32166.71 

 

(b)Subgrade reaction modulus k=5000 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 4048.88 4050.71 4050.71 8653.61 13833.74 16962.44 

0.10 1782.51 1828.73 1828.73 19105.26 39152.09 50908.80 

0.20 988.20 988.20 1100.65 59430.60 127406.10 165227.73 

0.30 769.51 769.51 797.73 109738.11 230496.95 295940.16 

1.5 

0.05 4046.02 4049.58 4050.65 6091.26 6251.14 14537.14 

0.10 1768.59 1807.81 1815.91 9588.73 10441.43 40735.90 

0.20 998.69 1045.86 1112.15 28136.42 32704.57 127808.03 

0.30 765.62 785.60 792.93 53058.38 63852.85 226223.01 

2.0 

0.05 4044.57 4049.01 4049.33 4747.36 5183.66 9370.14 

0.10 1761.48 1794.16 1809.51 4571.14 6154.11 21987.92 

0.20 1003.94 1071.72 1117.86 11584.64 16354.55 69347.86 

0.30 763.67 789.76 790.53 22769.41 30748.11 127203.92 

3.0 

0.05 4043.04 4047.16 4048.44 4184.88 4542.92 5100.33 

0.10 1753.95 1778.27 1803.10 2337.21 3705.59 5942.54 

0.20 1009.18 1095.29 1123.49 3230.59 7781.66 16694.84 

0.30 761.73 788.11 790.91 5466.83 14142.39 32756.09 

 

 

f= ω /2π. (22) 

 

 

3. Numerical examples 
 

3.1 Data for numerical examples 
 

In the light of the results given in references (Ö zdemir et  
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Table 3 Effects of aspect ratio and thickness/span ratio on 

the first six frequency parameters of the thick simply 

supported plates resting on elastic foundation (a)Subgrade 

reaction modulus k=500 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 9047.49 53796.43 53796.43 132323.07 208613.59 208895.04 

0.10 31594.42 186728.44 186728.44 431328.03 675755.92 678833.00 

0.20 100289.55 524820.99 524820.99 1078904.01 1617046.34 1635881.04 

0.30 177442.04 817902.27 817902.27 1562458.24 2233537.15 2283380.53 

1.5 

0.05 5015.82 17094.00 43388.98 54027.36 71060.68 133204.57 

0.10 17329.00 60561.66 154092.71 188245.00 242603.20 436597.42 

0.20 57457.29 186916.54 449433.28 530921.10 658117.17 1095658.73 

0.30 106026.94 318024.32 715938.90 828749.90 1001294.89 1585462.92 

2.0 

0.05 3912.42 9138.54 23276.24 39998.98 54142.96 54143.89 

0.10 13407.92 32257.55 82636.39 143304.16 189004.43 189006.59 

0.20 45541.02 103507.34 250665.43 424221.46 533149.24 533974.84 

0.30 85976.33 183477.06 417846.00 682308.08 830510.86 834182.73 

3.0 

0.05 3220.63 5043.23 9169.12 17200.91 31325.02 37650.27 

0.10 10941.00 17534.14 32481.80 61320.90 111087.04 135748.49 

0.20 38015.92 58510.72 104603.63 190395.95 330316.70 406397.06 

0.30 73378.65 108073.96 185541.50 324384.26 539235.37 658701.91 

 

(b)Subgrade reaction modulus k=5000 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 12609.04 57354.76 57354.76 135874.88 212157.76 212439.24 

0.10 32964.79 188091.77 188091.77 432688.04 677116.41 680193.55 

0.20 101247.30 525741.77 525741.77 1079799.04 1617942.25 1636779.96 

0.30 177977.58 818437.52 818437.52 1562998.28 2234080.37 2283934.68 

1.5 

0.05 8577.44 20655.19 46948.06 57585.70 74617.70 136756.40 

0.10 18701.35 61929.72 155457.14 189608.42 243965.46 437957.71 

0.20 58426.83 187861.85 450362.11 531842.74 659030.25 1096555.70 

0.30 106567.74 318558.03 716477.03 829286.80 1001831.09 1586005.38 

2.0 

0.05 7474.01 12700.10 26837.03 43558.29 57701.30 57702.23 

0.10 14781.01 33627.96 84003.25 144669.00 190367.90 190370.05 

0.20 46515.20 104465.61 251604.71 425153.30 534071.10 534896.91 

0.30 86519.76 184013.55 418380.12 682847.59 831047.66 834720.46 

3.0 

0.05 6782.19 8604.85 12730.68 20762.10 34885.23 41209.73 

0.10 12314.64 18906.50 33852.23 62689.00 112452.74 137113.62 

0.20 38993.59 59480.44 105562.09 191341.81 331250.24 407331.09 

0.30 73924.28 108615.10 186078.32 324918.95 539770.74 659242.52 

 

 

al. 2007, Ö zdemir 2012), the aspect ratios, b/a, of the plate 

are taken to be 1, 1.5, and 2.0. The thickness/span ratios, t/a, 

are taken as 0.01, 0.05, 0.1, 0.2, and 0.3 for each aspect 

ratio. The shorter span length of the plate is kept constant to 

be 10 m. The mass density, Poisson’s ratio, and the 

modulus of elasticity of the plate are taken to be 2.5 kN  

Table 4 Effects of aspect ratio and thickness/span ratio on 

the first six frequency parameters of the thick clamped 

plates resting on elastic foundation (a)Subgrade reaction 

modulus k=500 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 29399.26 116834.05 116834.05 249807.83 357368.47 360069.10 

0.10 101617.17 373256.14 373256.14 740887.88 1030395.66 1047986.95 

0.20 278374.14 861871.29 861871.29 1565922.64 2039946.24 2095998.94 

0.30 419370.68 1157254.77 1157254.77 2023171.94 2554811.38 2633517.10 

1.5 

0.05 16908.99 39205.42 95258.36 97182.57 137631.77 216897.69 

0.10 59525.60 134919.66 310099.31 319495.60 435811.88 672182.96 

0.20 172125.70 363920.36 730210.43 780426.62 997378.19 1482599.24 

0.30 270116.88 542564.98 987430.79 1090396.18 1341214.91 1958332.72 

2.0 

0.05 14117.41 23213.23 45070.22 88572.09 89337.85 109659.86 

0.10 49805.40 81344.93 154982.37 292222.57 295023.93 353890.91 

0.20 145485.47 230671.31 416980.07 691060.91 740329.64 826755.76 

0.30 229437.01 357622.38 622340.64 934274.34 1054405.91 1120423.97 

3.0 

0.05 12644.54 15556.30 21711.76 32937.34 51635.82 80718.74 

0.10 44641.49 54835.14 76281.37 114829.11 177546.73 272162.77 

0.20 131110.32 159211.61 217922.26 319973.27 477559.95 666155.64 

0.30 206907.81 250437.15 340325.33 491310.53 714689.63 899579.80 

 

(b)Subgrade reaction modulus k=5000 

k b/a t/a 

λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 32959.36 120390.09 120390.09 253356.69 360920.13 363621.48 

0.10 102989.69 374624.18 374624.18 742255.07 1031761.35 1049354.96 

0.20 279348.85 862818.66 862818.66 1566852.97 2040867.69 2096931.61 

0.30 419933.76 1157814.27 1157814.27 2023741.71 2555370.41 2634089.82 

1.5 

0.05 20469.69 42765.14 98815.54 100738.89 141186.45 220447.55 

0.10 60898.68 136289.31 311467.67 320862.26 437178.85 673548.46 

0.20 173105.70 364881.24 731160.80 781368.75 998317.44 1483525.59 

0.30 270677.14 543121.22 987986.19 1090953.82 1341775.40 1958894.07 

2.0 

0.05 17678.19 26773.78 48629.62 92128.68 92895.35 113216.20 

0.10 51179.10 82716.25 156350.84 293591.18 296389.98 355258.47 

0.20 146468.75 231640.84 417933.94 692013.00 741268.89 827700.22 

0.30 229997.53 358178.09 622894.67 934828.66 1054961.53 1120980.66 

3.0 

0.05 16205.33 19117.11 25272.42 36497.46 55194.78 84275.67 

0.10 46015.71 56208.14 77652.62 116198.33 178913.95 273528.27 

0.20 132096.63 160190.39 218890.84 320930.69 478506.42 667109.26 

0.30 207469.48 250994.78 340879.27 491862.47 715241.53 900133.60 

 

 

s2/m2, 0.2, and 2.7×107 kN/m2. Shear factor k is taken to be 

5/6. The subgrade reaction modulus of the Winkler-type 

foundation is taken to be 500 and 5000 kN/m3. 

For the sake of accuracy in the results, rather than 

starting with a set of a finite element mesh size, the mesh 

size required to obtain the desired accuracy were 

determined before presenting any results. This analysis was 
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performed separately for the mesh size. It was concluded 

that the results have acceptable error when equally spaced 

4×4 mesh size for 17-noded elements are used for a 10 

m×10 m plate. Length of the elements in the x and y 

directions are kept constant for different aspect ratios as in 

the case of square plate.  

In order to illustrate that the mesh density used in this 

paper is enough to obtain correct results, the first six 

frequency parameters of the thick plate with b/a=1 and 

t/a=0.05 is presented in Table 1 by comparing with the 

result obtained SAP2000 program and the results Ö zgan 

and Daloğlu (2015). In this study Özgan and Daloğlu used 

4-noded and 8-noded quadrilateral finite element with 

10×10 and 5×5 mesh size. It should be noted that the results 

presented for MT17 element are obtained by using equally 

spaced 2×2 mesh size. As seen from Table 1, the results 

obtained by using 17-noded quadrilateral finite element 

have excellent agreement with the results obtained by 

Özgan and Daloğlu (2015) and SAP200 even if 2×2 mesh 

size is used for MT17 element. 
 

3.2 Results 
 

The first six frequency parameters of thick plate resting 

on Winkler foundation with free edges are compared with 

the same thick plate modeled by Ozgan and Daloğlu (2010) 

and Sap2000 program and it is presented in Table1. The 

subgrade reaction modulus of the Winkler-type foundation 

for this example is taken to be 5000 kN/m3. This thick plate 

is modeled with MT17 element 2×2 mesh size for b/a=1.0, 

t/a=0.05 ratios.  

As seen from Table 1, the values of the frequency 

parameters of these analyses are so close even if this study 

mesh size is so poor. Then writers enlarged parameters of 

aspect ratio, b/a, thickness/span ratio, t/a, for help the 

researchers. 

 

 

 

Fig. 3 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick free plates with 

subgrade reaction modulus k=500 

 

 

Fig. 4 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick free plates with 

subgrade reaction modulus k=5000 

 

 

Fig. 5 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick simply suppored 

plates with subgrade reaction modulus k=500 

 

 

The first six frequency parameters of thick plates resting 

on Winkler foundation considered for different aspect ratio, 

b/a, thickness/smaller span ratio, t/a, are presented in Table 

2 for the with free edges, in Table 3 for the thick simply  

218



 

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation  

 

 

Fig. 6 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick simply suppored 

plates with subgrade reaction modulus k=5000 

 

 

Fig. 7 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick clamped plates 

with subgrade reaction modulus k=500 

 

 

supported plates and in Table 4 for thick clamped plates. In 

order to see the effects of the changes in these parameters 

better on the first six frequency parameters, they are also 

presented in Figs. 3-4 for the thick free plates, in Figs. 5-6 

for the thick simply supported plates and in Figs. 7-8 for the 

thick clamped plates. 

 

 

Fig. 8 Effects of aspect ratio and thickness/span ratio on the 

first six frequency parameters of the thick clamped plates 

with subgrade reaction modulus k=5000 

 

 

As seen from Tables 2, and 3, and Figs. 3, and 4, the 

values of the first three frequency parameters for a constant 

value of t/a increase as the aspect ratio, b/a, increases up to 

the 3rd frequency parameters, but after the 3rd frequency 

parametrer, the values of the frequency parameters for a 

constant value of t/a decrease as the aspect ratio, b/a, 

increases.  

As also seen from Tables 2, and 3, and Figs. 3, and 4, 

the values of the first three frequency parameters for a 

constant value of b/a decrease as the thickness/span ratio, 

b/a, increases up to the 3rd frequency parameters, but after 

the 3rd frequency parameters, the values of the frequency 

parameters for a constant value of b/a increase as the 

thickness/span ratio, t/a, increases. 

The icnrease in the frequency parameters with 

increasing value of b/a for a constant t/a ratio gets less for 

larger values of b/a up to the 3rd frequency parameters. 

After the 3rd frequency parameters, the decrase in the 

frequency parameters with increasing value of b/a for a 

constant t/a ratio gets also less for larger values of b/a. 

The changes in the frequency parameters with 

increasing value of b/a for a constant t/a ratio  is larger for 

the smaller values of the b/a ratios. Also, the changes in the 

frequency parameters with increasing value of b/a for a 

constant t/a ratio is is less than that in the frequency 

parameters with increasing increasing t/a ratios for a 

constant valueof b/a. 

These observations indicate that the effects of the 

change in the t/a ratio on the frequency parameter of the 

plate are generally larger than those of the change in the b/a 

ratios considered in this study. 

As also seen from Tables 2, 3 and 4, and Figs. 3, and 4, 

the curves for a constant value of b/a ratio are fairly getting 

closer to each other as the value of t/a increases up to the 3rd  
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Fig. 9 The first six mode shapes of the thick free plates for 

b/a=1.0 and t/a=0.05 with subgrade reaction modulus 

k=5000 

 

 

Fig. 10 The first six mode shapes of the thick simply 

supported plates for b/a=1.0 and t/a=0.05 with subgrade 

reaction modulus k=5000 

 

 

frequency parameters. This shows that the curves of the 

frequency parameters will almost coincide with each other 

when the value of the ratio of t/a increases more. After the 

3rd frequency parameters, the curves for a constant value of 

t/a ratio are fairly getting closer to each other as the value of 

b/a increases. This also shows that the curves of the 

frequency parameters will almost coincide with each other 

when the value of the ratio of b/a increases more. 

In other words, up to the 3rd ferquency parameters, the 

increase in the t/a ratio will not affect the frequency 

parameters after a determined value of t/a. After  the 3rd 

ferquency parameters, the increase in the b/a ratio will not 

affect the frequency parameters after a determined value of  

 

Fig. 11 The first six mode shapes of the thick clamped 

plates for b/a=1.0 and t/a=0.05 with subgrade reaction 

modulus k=5000 

 

 

Fig. 12 The first six mode shapes of the thick simply 

supported plates for b/a=1.0 and t/a=0.3 with subgrade 

reaction modulus k=5000 

 

 

b/a. 

As seen from Tables 2, 3, 4 and Figs. 3, 4, 5, 6, 7 and 8, 

the values of the frequency parameters for a constant value 

of t/a decrease as the aspect ratio, b/a, increases. This 

behavior is understandable in that a thick plate with a larger 

aspect ratio becomes more flexible and has smaller 

frequency parameters. The decreases in the frequency 

parameters with increasing value of b/a ratio gets less for a 

constant value of t/a.  

As seen from Tables 2, 3, 4 and Figs. 3, 4, 5, 6, 7 and 8, 

the values of the frequency parameters for a constant value 

of b/a increase as the thickness/span ratio, b/a, increases.  
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Fig. 13 The first six mode shapes of the thick simply 

supported plates for b/a=1.5 and t/a=0.05 with subgrade 

reaction modulus k=5000 

 

 

Fig. 14 The first six mode shapes of the thick simply 

supported plates for b/a=3.0 and t/a=0.05 with subgrade 

reaction modulus k=5000 

 

 

This behavior is also understandable in that a thick plate 

with a larger thickness/span ratio becomes more rigid and 

has larger frequency parameters. The increases in the 

frequency parameters with increasing value of t/a ratio gets 

larger for a constant value of b/a. 

It should be noted that the increase in the frequency 

parameters with increasing t/a ratios for a constant value of 

b/a ratio gets larger for larger values of the frequency 

parameters. 

These observations indicate that the effects of the 

change in the t/a ratio on the frequency parameter of the 

thick plates simply supported or clamped along all four 

edges are always larger than those of the change in the 

aspect ratio. 

As also seen from Figs. 3, 4, 5, 6, 7 and 8, the curves for 

a constant value of the aspect ratio, b/a are fairly getting 

closer to each other as the value of t/a decreases. This 

shows that the curves of the frequency parameters will 

almost coincide with each other when the value of the 

thickness/span ratio, t/a, decreases more. In other words, the 

decrease in the thickness/span ratio will not affect the 

frequency parameters after a determined value of t/a.  

In this study, the mode shapes of the thick plates are 

also obtained for all parameters considered. Since 

presentation of all of these mode shapes would take up 

excessive space, only the mode shapes corresponding to the 

six lowest frequency parameters of the thick plate free, 

simply supported, clamped along all four edges for b/a = 1, 

1.5, and 3 and t/a = 0.05, 0.3 are presented. These mode 

shapes are given in Figs. 9, 10, 11, 12, 13 and 14, 

respectively. In order to make the visibility better, the mode 

shapes are plotted with exaggerated amplitudes.  

As seen from these figures, the number of half wave 

increases as the mode number increases. It should be noted 

that appearances of the mode shapes not given here for the 

thick plates clamped along all four edges are similar to 

those of the mode shapes presented here.  

 

 

4. Conclusions 
 

The purpose of this paper was to study parametric free 

vibration analysis of thick plates using higher order finite 

elements with Mindlin’s theory and to determine the effects 

of the thickness/span ratio, the aspect ratio and the 

boundary conditions on the linear responses of thick plates 

subjected to vibration. As a result, free vibration analyze of 

the thick plates were done by using p version serendipity 

element, and the coded program on the purpose is 

effectively used. In addition, the following conclusions can 

also be drawn from the results obtained in this study. 

The frequency parameters increase with increasing b/a 

ratio for a constant value of t/a up to the 3rd ferquency 

parameters, but after that the frequency parameters decrases 

with increasing b/a ratio for a constant value of t/a. 

The frequency parameters decrease with increasing t/a 

ratio for a constant value of b/a up to the 3rd ferquency 

parameters, but after that the frequency parameters 

increases with increasing t/a ratio for a constant value of 

b/a. 

The effects of the change in the t/a ratio on the 

frequency parameter of the thick plate are generally larger 

than those of the change in the b/a ratios considered in this 

study. 
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