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1. Introduction 
 

Choosing an appropriate lateral- resistant system is one 

of the most important parameters of an acceptable design of 

a tall structure. It should be noted that when buildings taller 

than a certain limit are to be constructed, common structural 

systems will no longer be suitable. This is because rigidity 

and stability criteria become more important than the 

strength criterion in the tall buildings (Malekinejad and 

Rahgozar 2012). Furthermore, the natural frequency of a 

tall structure is one of the most important parameters 

influencing the response of the lateral-resistant system to 

the earthquake excitation. Framed tube structures, as 

economical systems for high-rise buildings, act like a 

hollow boxed beam under lateral loads. The combination of 

the framed tube and other systems such as shear-walls is 

beneficial for reducing the shear lag effects on the structure. 

Many researchers have investigated the free vibration of tall 

structures through various approaches (Youlin 1984, Wang 

1996a, Wang 1996b, Lashkari 1988, Wang 1989, Bozdogan 

2009, Dym and Williams 2007, Lee 2007, Kwan 1994, 

Malekinejad and Rahgozar 2014, Rahgozar et al. 2011, 

Bozdogan and Ozturk 2009).  

An analytical model for the dynamic analysis of tall 

buildings with a shear wall-frame structural system has 
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been proposed (Park et al. 2014). It has been shown that the 

deformed shape of the shear wall-frame structural system is 

the combination of flexural mode and shear mode. A 

modified theory on the premise that a frame-wall system, 

deforming in shear and flexural modes, can be separated 

into two substructures that lie above and below the point of 

counter-flexure in the base story columns has been 

developed (Kazaz and Gülkan 2012). Mohammadnejad 

(2015) calculated the natural frequencies of flexural, axial 

and torsional vibration of the beams. He has converted the 

governing differential equations into corresponding weak 

form integral equations. A dynamic analysis of the 

combined system of framed tube and shear walls by 

Galerkin method using B-spline functions has been 

presented (Rahgozar et al. 2014). However, few studies 

have considered the effects of the tall structure weight on its 

vibrational characteristics. In a real tall structure, the 

stiffness and mass of the structure are variable along its 

height, with the weight of the structure being effective on 

its vibrational characteristics. Therefore, the modeling of 

tall structure by a cantilevered beam with variable stiffness 

and mass under effects of variable axial force caused by the 

structure weight may provide the realistic conditions for an 

accurate structural analysis. The first natural frequency of 

tall buildings with a combined system of framed tube, shear 

core, belt truss and an outrigger system with multiple 

jumped discontinuities in the cross section of the framed 

tube along with a shear core under axial force has been 

calculated (Kamgar and Saadatpour 2012). An analytical 

approach based on energy principles has been developed for 

computing the natural frequencies and mode shapes of 

multistory buildings constructed by framed tube, shear core 

 
 
 

A new and simple analytical approach to determining 
the natural frequencies of framed tube structures 

 

Mehrdad Mohammadnejad1 and Hasan Haji Kazemi2a 
 

1Department of Civil Engineering, Faculty of Engineering, Birjand University of Technology, Birjand, Iran 
2Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 

 
(Received August 11, 2017, Revised October 26, 2017, Accepted November 1, 2017) 

 
Abstract.  This paper presents a new and simple solution for determining the natural frequencies of framed tube combined 

with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function 

approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and 

very shorter in the mathematical calculations process.  The shear stiffness, flexural stiffness and mass per unit length of the 

structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable 

axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole 

structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing 

differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated 

by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through 

several numerical examples and the results are compared with the literature. 
 

Keywords:  tall structure; batural frequency; shear-flexural deformation; axial force; weak form of integral equations; 

bending moment approximation; shear lag 

 



 

Mehrdad Mohammadnejad and Hasan Haji Kazemi 

 

and double belt trusses systems (Malekinejad and Rahgozar 

2012, Malekinejad and Rahgozar 2013). The fundamental 

frequency of tall buildings that consist of framed tube, shear 

core, belt truss and outrigger systems in which the framed 

tube and shear core vary in size along the height of the 

structure has been determined (Jahanshahi and Rahgozar 

2012). The free vibration analysis of asymmetric structures 

with shear wall-frames system using the modified finite 

element-transfer matrix methods have been proposed 

(Bozdogan 2013). Using the DQM method, the governing 

differential equation for free vibration of coupled shear 

walls has been solved (Bozdogan 2012). The effect of shear 

lag on braced tube and framed tube under wind load has 

been investigated (Mazinani et al. 2014). Free vibration 

analysis of tall structures with various lateral resisting 

systems and variable properties along the height has been 

investigated (Saffari and Mohammadnejad 2015). They 

have calculated the natural frequencies of tall structures 

using weak form integral equations. The weak form integral 

equations has been developed for free vibration analysis of 

non-prismatic beams (Mohammadnejad et al. 2014, Saffari 

et al. 2012). 

 
 
2. Novelty of the presented method 
 

In this paper, using the continuum approach, a framed 

tube combined with shear walls and tube-in-tube structures 

are replaced by an equivalent cantilever beam that has 

variable shear- flexural stiffness and mass along the height. 

Also, the weight of the structure is considered using a 

variable axial force. The governing differential equation of 

the motion is obtained and converted into a weak-form 

integral equation through repetitive integrations. The 

previous presented research works for conversion of the 

governing equation into its weak form is based on the mode 

shape function approximation which needs four times 

repetitive integration from the governing equation. But, 

novelty of the presented approach in this paper is the 

bending moment function approximation instead of the 

mode shape function which needs two repetitive integration. 

This novelty makes the solution very simpler and very 

shorter. By approximation of the bending moment function 

using a power series, the weak-form integral equation is 

converted into a system of linear algebraic equation. The 

natural frequencies of the structure are obtained by 

calculating a non-trivial solution for the resulting system of 

equations.  
The dynamic response analysis of the tall buildings 

includes two general fields such as the finite elements 
approach and approximate analytical approach. The finite 
element approach is based on the discrete model and has to 
solve thousands of linear simultaneous equations to give 
quantitative results in detail. So it is a powerful tool for 
analysis and design at the detailed and final design stage of 
tall buildings. Presented method in this paper is an 
analytical approximate method that gives insight into 
characteristics of free vibration. It is simple and accurate 
enough that can be routinely used for the preliminary stage 
of building design. The advantages of both analytical and 
approximate methods of continuum modeling for tall 

building structures may not be replaced by the discrete 
modeling of finite element analysis.  

In this paper, an equivalent beam is considered for the 

system of lateral resistance of the structure. The whole 

structure is idealized as a non-prismatic shear-flexural 

cantilever beam with hollow box cross-section under 

variable axial force due to the structure weight. Framed tube 

is replaced by a shear beam located at the center of shear 

rigidity and a flexural beam at the center of flexural rigidity 

(Kwan 1994). In addition, wall members are lumped and 

replaced by equivalent flexural and shear cantilever beams 

located at the flexure center and the shear rigidity of shear 

walls at the shear center (Malekinejad and Rahgozar 2014). 

Also, a tube-in-tube structure can be modeled as an 

assemblage of equivalent orthotropic plate panels. 

Consequently, a framed tube structure may be analyzed as a 

continuum (Kwan 1994, Malekinejad and Rahgozar 2014, 

Lee 2007). According to this modeling, the functions of 

shear stiffness, flexural stiffness, mass per unit length and 

axial force of the equivalent beam are calculated as follows: 
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Where g and H are gravity acceleration and structure 

height, and subscripts F, W, I and O denote the framed tube, 

shear wall, inner tube and outer tubes, respectively. Figs. 1 

and 2 show the schematic modeling of both systems. 

 

 

 

Fig. 1 Modeling of a tall structure, (a): combined system of 

the framed tube with shear-wall. (b): equivalent shear and 

flexural beams. (c): modeling of the whole structure by an 

equivalent beam with variable properties under variable 

axial forces 
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Fig. 2 Modeling of a tall structure, (a): a tube-in-tube tall 

structure, (b): equivalent shear and flexural beams, (c): 

modeling of the whole structure by an equivalent beam with 

variable properties under variable axial forces 

 

 

3. Methodology: the weak form differential equations 
 

The governing differential equation for free vibration of 

a beam with variable stiffness and mass is a partial 

differential equation with variable coefficients. Many 

mathematical techniques may be employed to determine the 

numerical solution or the approximate solution for this 

equation. The presented approach in this paper for 

conversion of the governing partial differential equation 

into solvable one is based on the conversion of the 

governing equation into its weak form. A differential 

equation includes a function and its derivatives. The weak 

form of the differential equation is obtained through the 

repetitive integration of the initial equation. The integration 

continues till the resulting integral equation, includes only 

the function itself after the last integration stage; derivatives 

of the function will have been eliminated due to the 

integration. The solution of the weak form of the 

differential equation instead of the initial equation has many 

applications in the finite elements analysis. Approximation 

of the weak form has less error in compared to the original 

form of differential equation (Reddy 1993). 

 
 
4. Formulation and solution 
 

4.1 Equivalent properties of the framed tube 
 

Kwan (1994) proposed a model for analysis of framed 

tube structures. In his model, a number of assumptions are 

made in describing the framed tube system using equivalent 

orthotropic plates. Using assumptions proposed by Kwan 

(1994), the tall structure can be modeled as a cantilever 

beam with a variable cross section in height. It is normal 

practice to fix the value of Thickness of the membrane tsuch 

that the area of the membrane (d.t) is equal to the sectional 

area of the column (AC).  

(1)CA
t

d
  (1) 

In which d is center-to-center distance of the columns of 

the outer tube. Consider now the case of the frame unit 

subject to a lateral force Q. The lateral deflection may be 

computed as the sum of that due to bending Δb and due to 

shear ΔS. The bending deflection Δb is given by 

 
223( )

(2)
12 12

cb b

m C m b

d Hh H h

Q E I d E I

   
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 
 (2) 

In which h, Hb, Em, IC, Ib, Hc are story height, height of 

beam, elastic modulus of the construction material, 

moments of inertia of the column, moments of inertia of the 

beam and height of the column, respectively. On the other 

hand, the shear deflection ΔS is given by 

 2
( )

(3)
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m SC m Sb

d Hh H h

Q G A d G A

   
   

 
 (3) 

In which ASb and ASC are effective shear areas of the 

beam and column, respectively, and Gm is shear modulus of 

the material. Equivalent shear modulus of the membrane is 

calculated as follows 

. (4)
b s

h

d tG

Q Q


 



 (4) 

Equivalent moment of inertia of the outer tube is 

calculated as follows 

 2 31 1
5

2 6
Z f W WI L L t L t   (5) 

In which Lf, LW are length of flange and web panels of 

the outer tube, respectively (Malekinejad and Rahgozar 

2014).  
 

4.2 Conversion of the governing differential equation 
into its weak form 
 

Consider a tall structure with variable mass and stiffness 

along the height that is subjected to the action of the 

transverse loading, q, distributed along its height and axial 

force due to structure weight. Accounting for total potential 

energy of the system and applying Hamilton’s principle, the 

governing equation of the motion for equivalent beam is 

given as follows (Kamgar and Saadatpour, 2012) 

2 2
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

 

 

0≤x≤H 

(6) 

where W(x,t), H, m(x), kB(x), kS(x), n(x) and q(x,t) are the 

transverse displacement, structure height, mass per unit 

length, flexural stiffness, shear stiffness, axial force and 

lateral distributed applied load, respectively. For free 

vibration analysis, q(x,t)=0
 
is applied. By assumption of a 

harmonic vibration, the transverse displacement of the 

structure can be assumed as follows 

  iW , ( ) (7)tx t w x e   (7) 

Where w(x) and Ωare the mode shape function and 

natural frequency of the structure, respectively. By applying 
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i2=−1 and substituting the relationship (7) into Eq. (6), a 

single-variable equation in terms of location is obtained as 

follows 

2 2
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For further convenience, the following variables are 

introduced 
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(9) 

In which parameters EI0, GA0, N0 are: flexural stiffness, 

shear stiffness and axial force at the base of the structure. 

0m is average of the mass per unit length of the structure 

along the height. Also, β, α, γ are the non-dimensional 

parameters corresponding to stiffness, natural frequency 

and axial force of the structure, respectively. Substitution of 

the variables (9) into Eq. (8) results in the following 

differential equation 
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0≤ξ≤1 

(10) 

Eq. (10) is, in fact, the free vibration equation of a tall 

structure based on the non-dimensional variable ξ. Previous 

presented solutions for conversion of the Eq. (10) into its 

weak form is based on the four times repetitive integration 

from both sides of this equation. But, it is the novelty of the 

presented approach in this paper that the weak form of the 

governing equation is obtained using two times repetitive 

integration. This novelty makes the solution very simpler 

and very shorter. For this purpose, the following relations 

are introduced 

   

     

2

2

0

0

, ,

(11)

d w dw
M M s ds

d d

w s M s ds






 

 

 

 





 
(11) 

Substitution of the relations (11) into Eq. (10) results in 

the following differential equation 
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0≤ξ≤1 

(12) 

In order to transform Eq. (12) into its weak form, both 

sides of this equation are integrated twice with respect to

within the range 0 to ξ. The results are the integral 

equations as follows 
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Eq. (14) is the weak form integral equation of Eq. (10). 

In Eq. (14), C1, C2 
are the integration constants which are 

determined through boundary conditions of the tall 

building. Eqs. (13)-(14) are used to determine the 

integration constants. The following boundary conditions 

are introduced for the structure 
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Applying condition (16) to Eq. (14) and condition (17) 

to Eq. (13) yields 
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Substituting the integration constants C1, C2 into Eq. 

(14) provides an integral equation in M(ξ) as follows 
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4.3 Solution of the resulting integral equation 
 

In the preceding section, the governing equation was 

converted into the integral Eq. (19). At previous presented 

research works for conversion of the Eq. (19) into a 

solvable one, the mode shape function has been 

approximated using a power series. But, novelty of the 

presented approach in this paper is the approximation of the 

function M(ξ) using a power series. M(ξ) is corresponding 

to the bending moment function. The function M(ξ) is the 

only unknown parameter in the integral Eq. (19). This 

function is approximated by the following power series 

0

( ) (21)

R
r

r

r

M c 



 

(21) 

Where Cr (r=0,1,…R) are unknown coefficients to be 

determined and R is a given positive integer, which is 

adopted such that the accuracy of the results are sustained. 

Introducing Eq. (21) into integral Eq. (19) yields 
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Both sides of Eq. (22) are multiplied by ξm

 
and 

integrated subsequently with respect
 
to ξ between 0 and 1. 

This results in a system of linear algebraic equations in Cr 

 1 2

0

( , ) ( , ) ( , ) 0

0,1,2,..., (23)

R

r

r

H m r H m r G m r c

m R



  



  (23) 

In which the functions H1 (m,r), H2 (m,r) and G(m,r) are 

expressed as follows 

1

1 1

0 0

1 1

2 2

0 0

1

0

( , ) ( , ) d d

( , ) ( , ) d d

( , ) ( )d

(24)

r m

r m

r m
B

H m r h s s s

H m r h s s s

G m r K



  

  

  


 












 

 



 (24) 

The system of linear algebraic Eq. (23) may be 

expressed in matrix notations as follows 

0 (25)( 1) ( 1) ( 1) 1 ( 1) 1A CR R R R
     
             (25) 

In which [A] and [C] are the coefficients matrix and 

unknowns vector respectively. The only unknown parameter 

in the coefficients matrix [A]
 
is the non-dimensional natural 

frequency of the tall structure α. [C]=0
 
is a trivial solution 

for the resulting system of equations. The non-dimensional 

natural frequencies are determined by calculating a non-

trivial solution for the resulting system of equations. To do 

so, the determinant of the coefficients matrix of the system 

has to be vanished. Accordingly, a frequency equation in α 

(which is a polynomial function of the order 2(R+1)) is 

introduced. The roots of the frequency equation are the non-

dimensional natural frequencies of the tall structure. Given 

the fact that the function M(ξ) is approximated by the power 

series of (21), the accuracy of results can be improved by 

taking into account a larger number of the series sentences 

(larger R).  

 
 
5. Shear lag effects 
 

5.1 Conversion of the governing differential equation 
into its weak form 

 

The shear lag effect is an important parameter on the 

lateral stiffness of the framed tube. It can decreases the 

lateral stiffness of the structure. Therefore, it can decreases 

the natural frequencies of the framed tube. Coull and Bose 

(1975) have shown that a coefficient due to the shear lag 

effect, as an approximation, can be used in calculating the 

deformations of a framed tube structure when using the 

equivalent closed tube method. The governing differential 

equation is found to be as follows 

4 2 2
2

4 2 2

2
2 2

2

W(x, ) W(x, ) W(x, )

W(x, ) 0 (26)
2

Bi

B

m
t t t

x x K t

m
x t

K t





  
  

  






 

4 2 2
2

4 2 2

2
2 2

2

W(x, ) W(x, ) W(x, )

W(x, ) 0 (26)
2

Bi

B

m
t t t

x x K t

m
x t

K t





  
  

  






 
(26) 

In which W(x,t), KBi, KB, m are the lateral displacement, 

the flexural stiffness of inner tube, the sum of the flexural 

stiffness of the outer and inner tubes and mass per unit 

length of the structure, respectively. λ is the parameter 

corresponding to the shear lag phenomena. This parameter 

is calculated as follows 

2 1 1
. (27)f

Bo Bi

K h
K K


 

  
 

 (27) 

In which Kf, KBo, h are the equivalent story shearing 

rigidity of the outer tube, flexural stiffness of the outer tube 

and the story height, respectively. By assumption of a 

harmonic vibration, the transverse displacement of the 

structure is assumed as follows 

  iW , w( ) (28)tx t x e 
 

(28) 

For more convenience, the following parameters are 

introduced 

2 2 6 2 4
2

1

(29)

( )
2 B Bi

x

H

m H m H
g

K K




 







   


 
(29) 

By introducing the relations (28) and (29) into Eq. (26), 

the following differential equation is obtained 

4 2
2 2

14 2
w( ) w( ) ( )w( ) 0

(30)

d d
H g

d d
    

 
  

 

(30) 

In order to transform Eq. (30) into its weak form, both 

sides of this equation are integrated twice with respect to ξ 

within the range 0 to ξ. The results are the integral 

equations as follows 
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 

3
2 2

1 13

0

2
2 2

12

0

1 2

w( ) w( ) (s)w( )

(31)

w( ) w( ) (s)w( )

(32)
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H g s ds C

d d

d
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
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
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(31) 
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(31)
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d
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
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


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0
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w( ) w( ) (s)w( )

(31)

w( ) w( ) (s)w( )

(32)
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
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



  
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
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(32) 

Further, integration from both sides of Eq. (32) twice 

with respect to ξ from 0 to ξ yields 

 
2

2 2

1

0 0

21
2 3

w( ) w( ) (s)w( )
2

(33)
2

sd
H s ds g s ds

d
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

 
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 

  

 
 

 
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2 2

1

0 0

21
2 3

w( ) w( ) (s)w( )
2

(33)
2

sd
H s ds g s ds

d

C
C C

  
 



 


 

  

 

 

(33) 

3 21 2
1 3 4

0

w( ) ( , )w( )
6 2

(34)

C C
f s s ds C C



        
 

(34) 

In which, the function f1 (ξ, s) is calculated as follows 

 
 

3

2 2

1 1( , ) (s) (35)
6

s
f s H s g


  


     (35) 

In Eq. (34) C1, C2, C3 and C4 are the integration 

constants which are determined through boundary 

conditions of both ends of the framed tube. Eqs. (31)-(34) 

are applicable for determination of the integration constants. 
 

5.2 Boundary conditions 
 

The following boundary conditions must be considered 

at the base of the structure 

0 w(0) 0 (36)

w
0 0 (37)

d

d






  



  


 (36) 0 w(0) 0 (36)

w
0 0 (37)

d

d






  



  
  

(37) 

Also, the following boundary conditions are established 

at the roof of the framed tube 

2

2

3
2 2

3

1 w(1) 0 (38)

1 w(1) w(1) 0 (39)

d

d

d d
H

d d




 
 


  



    


 
(38) 

2

2

3
2 2

3

1 w(1) 0 (38)

1 w(1) w(1) 0 (39)

d

d

d d
H

d d




 
 


  



    
  

(39) 

Application of the condition (36) at Eq. (34) and 

condition (37) at Eq. (33) leads to: 

3 4 0C C   

Also, Application of the condition (38) at Eq. (32) and 

condition (39) at Eq. (31) leads to 

1

1 1

0

1

2 22 2

0

( )w( )

(40)
2

( )w( )
2

C g s s ds

C g s s ds
H


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


      





 
(40) 

In which the function g2(s) is calculated as follows 
2 2

2 2

2 1 1 1( ) ( ) (1, ) ( )
6

(41)

H
g s g s H f s sg s


   

 
(41) 

Substitution of the integration constants C1, C2, C3 and 

C4 into Eq. (34) results in an integral equation as follows 

1

1 2

0 0

w( ) ( , )w(s)ds ( , )w(s)ds 0 (42)f s f s



       (42) 

In which the function f2 (ξ, s) is calculated as follows 

3 2

2 1 22 2
( , ) ( ) ( ) (43)

6 2
f s g s g s

H

 




 
      

 (43) 

At section 4, the governing differential equation was 

converted into corresponding weak form using two 

repetitive integration and the bending moment function was 

approximated using the power series (21). In this section, 

the weak form was calculated using four times repetitive 

integration and it requires that the mode shape function w(ξ) 

is approximated using the power series. The mathematical 

calculation for conversion of the Eq. (42) into system of 

linear algebraic equation is exactly the same as what was 

stated in section 4.3.   

 
 
6. Numerical examples 

 

To verify the accuracy and efficiency of the proposed 

approximate method, three numerical examples are 

presented for determining the natural frequencies of the 

symmetric tall structure. All of which have been examined 

in the literature. Then, a comparison is presented between 

the results. 

 
6.1 The tall structure with framed tube and shear 

walls 
 

The first two natural frequencies of high-rise reinforced 

concrete buildings, which are 70-story, 80-story and 90-

story high, as presented by Rahgozar et al. (2014), are 

analyzed based on the approach presented in this paper. The 

lateral load-resisting system of buildings is a framed tube 

combined with a shear wall. The structure has been 

modeled by an equivalent cantilever beam with hollow 

section. The structures properties are given in Table 1. 

The first two natural frequencies of the structures are 

calculated and they are presented in the Table 2. The results 

have been compared with results of other references and 

results obtained using four times repetitive integration 

method. 

The results of Table 2 present that the accuracy of 

results have been improved by taking into account a larger 

 

 

Table 1 The properties of the framed tube combined with 

shear wall  

 H (m) KB (KN−m2) KS (KN)  m (kg.s2/m2) 

70-story (plan a) 210 2.61×1013 77.56×108 681408 

70-story (plan b) 210 1.10×1013 56.80×108 446492 

80-story (plan a) 240 3.21×1013 95.37×108 732480 

80-story (plan b) 240 1.34×1013 69.08×108 482972 

90-story 270 3.86×1013 143.32×108 817728 
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number of the series sentences (larger R). 

The main sources of error between the proposed 

approximate method and as compared to SAP2000 finite 

elements are as follows: (a) all closely spaced perimeter 

columns tied at each floor level by deep spandrel beams 

considered to form a tubular structure, (b) modeling the 

frame panels as equivalent orthotropic membranes, so it can 

be analyzed as a continuous structure, (c) the approximation 

to derive KB and KS parameters and (d) the effect of shear 

lag in the external and internal tubes has been neglected in 

assessing the global behavior of the tubular structures in 

approximate method (Malekinejad and Rahgozar 2014). 

In order to investigate the effects of the structural 

parameters and axial force on the natural frequencies of the 

structure, a basis structure with structural properties as 

 

 

   

13 2

8

2

2

2.61 10 ,

77.56 10

.
681408 , 210 (44)

B bs

S bs

bs bs

K KN m

K KN

kg s
m H m

m

  

 

 

 
(44) 

is considered, in which “bs” denotes “basis structure”. The 

first three natural frequencies of this structure have been 

calculated as: 

1 2

3

1.1037 , 4.1972 ,
sec sec

9.7388
sec

bs bs

bs

rad rad

rad

   

 

 

The ratios 
bs



  
and 

bs




are assumed to change 

between 0.25 through 2.5 and 1 through 3, respectively. The 

effects of these changes on the natural frequencies of the 

basis structure are calculated as follows: 

% Diff bs

bs





. The results are presented in the Table 3. 

The results of Table 3 present that for the first mode of 

the vibration, with 0.25
bs




 , variation of 

bs




 from 1 

to 1.5 and 1.5 to 2 results in 21% and 60% decrease for the 

natural frequency, respectively. This decrease for second 

mode is 2.7% and 4% and for third mode is 1% and 1.4%, 

 

Table 3 The effects of structural parameters and axial force 

on the natural frequencies of the basis structure with percent 

 
bs

  

bs

  

  1→1.15 1.5→2 2→2.5 2.5→3 

MODE 1 

0.25 −21.0 −60.5 N/A N/A 

0.5 −10.7 −19.7 −46.1 N/A 

1 −4.1 −6.3 −9.4 −14.4 

1.5 −2.2 −3.3 −4.5 −6.1 

2 −1.4 −2.0 −2.7 −3.5 

2.5 −1.0 −1.4 −1.8 −2.3 

  1→1.15 1.5→2 2→2.5 2.5→3 

MODE 2 

0.25 −2.7 −4.0 −5.6 −7.8 

0.5 −2.3 −3.4 −4.8 −6.5 

1 −1.6 −2.3 −3.1 −4.0 

1.5 −1.0 −1.5 −2.0 −2.6 

2 −0.7 −1.1 −1.4 −1.8 

2.5 −0.6 −0.8 −1.0 −1.3 

  1→1.15 1.5→2 2→2.5 2.5→3 

MODE 3 

0.25 −1.0 −1.4 −1.9 −2.4 

0.5 −0.9 −1.3 −1.8 −2.3 

1 −0.8 −1.1 −1.5 −1.9 

1.5 −0.6 −0.9 −1.2 −1.5 

2 −0.5 −0.7 −0.9 −1.2 

2.5 −0.4 −0.6 −0.8 −0.9 

 

 

respectively. This presents that effect of axial force is 

significant for lower modes. For first mode, with 

0.25
bs




 , variation of 

bs




 from 1.5 to 2 results in 1.4% 

decrease for the natural frequency. In compared to results 

obtained for 0.25
bs




 , this presents that parameter βcan 

decrease effects of axial force. 

For quick calculation of the fundamental natural 

frequency of the tall structures, a simple formula can be 

more effective. Hence, with R=1 the following simple 

equation is obtained for quick calculation of the first non-

dimensional natural frequency of the structure 

Table 2 The first two natural frequencies of the framed tube combined with shear wall (rad/sec) 

 MODE 
Presented 

Approach R=1 

Presented 

Approach R=2 

Presented 

Approach R=3 

Four times 

repetitive 

integration method 

Rahgozar et al. (2014) S
A

P
-

2
0

0
0
 BSF 

70-story 

(plan a) 

1 1.1490 1.1039 1.1038 1.1041 1.104 1.097 

2 6.2611 4.2826 4.2162 4.2 4.2 3.75 

70-story 

(plan b) 

1 1.1370 1.0833 1.0827 1.0827 1.08 1.05 

2 5.7060 3.9653 3.8761 3.8643 3.86 3.76 

80-story 

(plan a) 

1 1.0398 0.9947 0.9944 0.9943 0.995 0.99 

2 5.4279 3.7437 3.6740 3.6593 3.66 3.45 

80-story 

(plan b) 

1 1.0265 0.9751 0.9740 0.9736 0.973 0.92 

2 4.9975 3.4907 3.3985 3.3883 3.38 3.45 

90-story 
1 1.0194 0.9693 0.9684 0.9682 0.969 0.967 

2 5.0123 3.4957 3.4082 3.3980 3.402 3.44 
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Table 4 Variation of the equivalent properties of the 40-

storey and 50-storey buildings along the height 

 
No. 

Storey 

Height from 

the base of the 

structure (m) 

Shear  

Stiffness 

 KS (kg)  

Flexural 

Stiffness 

KB (kg.m2)  

Mass per 

unit length 

m (kg/m)  

40-

STOREY 

10 30 43.803×108 1.0548×1013 378576 

21 63 43.803×108 1.0548×1013 410432 

40 120 23.129×108 5.9091×1012 343968 

50-

STOREY 

10 30 1.5327×1010 2.4084×1013 482238.72 

20 60 8.4894×109 1.6589×1013 444240 

30 90 4.3803×109 1.0548×1013 380646.4 

40 120 2.3129×109 5.9091×1012
 327868.8 

50 150 1.7745×109 2.6340×1012
 290304 

 

 

2
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4 .
( ) (45)

2

b b a c

a
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(46) 

The weight of structures is considered as a variable axial 

force along the height of the equivalent beam. Using the 

data presented in Table 4, the functions of shear stiffness 

KB(ξ), flexural stiffness KB(ξ) and mass per unit length m(ξ) 

are obtained as follows  

for 40-storey buiding 


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for 50-storey buiding 
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(48) 

In which κis the shear correction factor equal to 

0.86623. The structure is 120 m and 150 m high for 40-

storey and 50-storey buildings, respectively. The axial force 

function N(ξ) caused by the weight of the structure is  

Table 5 The first natural frequency of the 40-storey and 50-

storey structures with combined system and variable 

properties (rad/sec) 

 
Presented approach 

(two repetitive 

integration) 

Four times 

repetitive 

integration method 

Kamgar and 

Saadatpour 

(2012) 

SAP 

-2000 

40-storey 1.8298 1.9393 1.855 1.8034 

50-storey 1.6919 1.7208 1.551 1.6175 

 

Table 6 The first three natural frequencies of the structure 

with effects of shear lag 

Lee (2007) 
Wang 

(1996) 

Youlin 

(1984) 

Presented 

approach 
 

3.5180 3.462 3.2784 3.5259 1Ω 

20.763 21.525 17.9212 19.2276 2Ω 

_ _ 49.2027 52.4792 3Ω 

 

 

calculated as follows 
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N Hgm d Hgm



  

 

  




 

(49) 

The first natural frequency of the structure is calculated 

and compared with the result of Kamgar and Saadatpour 

(2012) and the analysis of SAP-2000. The results are 

presented in Table 5. 

The first natural frequency of the structures in the 

absence of the axial force has been obtained as follows: 

1

rad
1.8641

sec
  for 40-storey building and 

1

rad
1.7227

sec
 

for 50-storey building.  

 
6.3 Effects of shear log on the natural frequencies of 

framed tube 
 

In order to investigate the effects of shear lag on the 

natural frequencies of the framed tube, the first three natural 

frequencies of a tube-in-tube structure that was examined 

by previous researchers have been calculated.  The 

properties of the structure are as follows: 
8 235.2872 10BOK ton m   , 8 27.5538 10BiK ton m   , 

5. 1.11678 10fK h ton  , H=75.9 m, h=3.6 m,

325.828
ton

m
m

 , 0.01339745  . 

The first three natural frequencies of the structure were 

calculated and the results were presented in the Table 6. 

 

 

7. Quick design chart 
 

For the preliminary analysis, a design chart can help to 

determine the natural frequencies quickly. The system of 

linear Eq. (23) is solved for values β=0−15. The resulting 

values of αi (i=1,2,…,4) are given in Fig. 3. It is obvious  
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Fig. 3 Variations of αi (i=1,2,…,4) with β 

2 4 2
2 20 0

0 0

,i
i

m H GA H
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 


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that for a given value of parameterβ, the corresponding 

values of αi (i=1−4) can be determined quickly. 

 

 
8. Conclusions 
 

In this study, the application of the weak form integral 

equations for determining the natural frequencies of tall 

structures with shear-flexural deformation has been 

presented. The novelty of the presented approach is based 

on the bending moment function approximation instead of 

the mode shape function approximation. This novelty 

makes the presented solution very simpler and very shorter 

in the mathematical calculations process. Because, at the 

previous research works it is needed four times repetitive 

integration for conversion of the governing equation into its 

weak form. But, the presented approach in this paper needs 

two repetitive integration. The governing partial differential 

equation of motion was converted into its weak form 

integral equation. To solve the resulting integral equation, 

the bending moment function of the vibration was 

approximated by a power series. Substitution of the power 

series into the weak form integral equation results in a 

system of linear algebraic equations. The natural 

frequencies of the tall structure have been calculated by 

determining a non-trivial solution for the system of linear 

algebraic equations. A design chart and a simple formula 

have been proposed for quick calculation of the 

fundamental natural frequency of shear-flexural structures.  

The effects of shear lag phenomena on the governing 

differential equation and the natural frequencies of the 

structure have been investigated. The results of the paper 

present that effect of axial force is significant for lower 

modes of the vibration. The results of the Table 2 present 

that presented approach has a quick convergence rate. Since 

with R=2, the results obtained has a good agreement in 

compared to results of SAP-2000 and other references. The 

accuracy, simplicity and reliability of the proposed method 

were verified thorough several numerical examples. 

Differences between natural frequencies of proposed 

method and the ones obtained in the literature were in 

acceptable ranges. 
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