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1. Introduction 
 

Recently, an increasing application of MEE composites 

has attracted many researchers in the field of aerospace 

structures, surface sensitive electronic probes, stress 

monitoring devices, electrically and magnetically tuneable 

high frequency oscillators, sensors, and actuators. The MEE 

composite is composed of two distinct phases of the 

piezoelectric and magnetostrictive  material.  The 

combination of two such phases will induce a new product 

property (van Suchtelen 1972) which is absent in their 

individual constituents. Such composites facilitate energy 

conversion between electric, magnetic and elastic 

quantities. The conversion of various form of energy within 

the composite makes it most suitable for multifunctional 

devices. With the first production of MEE composite 

(Boomgaard and Bom 1978) by unidirectional solidification 

from eutectic compositions, a numerous theoretical study 

pertaining to free vibration, static behaviour, non-linear and 

large-deflection studies of MEE composites were reported. 

Pan and his co-researchers (Pan 2001, Pan and Heyliger 

2002, 2003, Pan and Han 2005) carried out extensive 

research to assess the structural behaviour of magneto-

electro-elastic plates. Studies related to free vibration of 

MEE plate were thoroughly investigated to predict their 

corresponding natural frequencies. A wide spectrum of 

techniques and theories including analytical solutions, 

different shear deformation theories, FE models and 

recently non local theory etc., has helped in understanding 
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the free vibration behaviour of multilayered and 

functionally graded MEE plates (Buchnan 2004, Ramirez et 

al. 2006, Shooshtari and Razavi 2016, Ke et al. 2014, Xin 

and Hu 2015, Milazzo 2016, Chen et al. 2014).  

Consequently, the deformation of MEE plate subjected 

to an applied load and their corresponding strain and stress 

vectors are evaluated in static studies. In addition, the effect 

of applied load on electric and magnetic quantities is clearly 

assessed (Lage et al. 2004, Moita et al. 2009, Liu et al. 

2016, Bhangale and Ganesan 2006, Viun et al. 2016, Ray et 

al. 1994, Zhou et al. 2016, Vinyas and Kattimani 2017a, 

2017b, Wu et al. 2010). The 1-3 piezoelectric composite 

patch on the substrate MEE structure was used to control 

the geometrical nonlinear vibrations by Kattimani and Ray 

(2015, 2014a, 2014b). Liu et al. (2016b) obtained high 

order solutions for MEE plate with non-uniform materials.  

A transient analysis was carried out on a conducting crack 

in a MEE half-space by Rogowski (2015). The wave 

propagation characteristics of MEE functionally graded 

nano-plate was analysed by Ebrahimi et al. (2016) using the 

higher order theory along with non-local Erignen’s theory 

accounting the small-scale influence. Also, Ebrahimi and 

Barati (2016b) investigated the free vibration characteristics 

of smart shear deformable plates made of porous 

magnetoelectro-elastic functionally graded (MEE-FG) 

materials. Ebrahimi and Barati (2016a, 2017) proposed a 

unified formulation for dynamic analysis of nonlocal 

heterogeneous nanobeams in hygro-thermal environment. 

The buckling behaviour of laminated composites and 

MEE structure were subsequently reported by a few 

researchers. A discrete FE model was developed by Moita et 

al. (1996) using higher-order theory to analyse the buckling 

behaviour of multi-laminated composite structures. The free  
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Fig. 1 Schematic representation of multilayered MEE plate 

 

 

vibration and buckling characteristics of laminated 

composite plates were analysed by Luccioni et al. (1998) 

using classical plate theory and FSDT. Bouzza et al. (2016) 

presented a refined hyperbolic shear deformation theory for 

thermal buckling of laminated plates. Vuksanović (2000) 

carried out the linear buckling analysis of laminated 

composite plates by implementing the higher-order discrete 

model. Grover et al. (2014) developed a computationally 

efficient C0 FE model for the analysis of sandwich and 

laminated composite plates. The bending, buckling and 

vibration behaviour of functionally graded plates was 

investigated using a new sinusoidal shear deformation 

theory by Thai and Vo (2013). Kulkarni et al. (2015) 

introduced inverse trigonometric shear deformation theory 

to study the bending and buckling characteristics of 

functionally graded plates. Under the thermal environment, 

Kumarvel et al. (2007) analysed the buckling characteristics 

of layered and multiphase MEE beam. Lang and Xuewu 

(2013) analysed the buckling behaviour of functionally 

graded magneto-electro-thermo-elastic (METE) circular 

cylindrical shell. Buckling characteristics of MEE plate 

resting on an elastic foundation was studied by Li (2014). 

Under magneto-electro-thermo-mechanical (METM) loads, 

Ansari (2016) investigated the buckling and post-buckling 

behaviour of METE nanoplates. Ebrahimi et al. (2016c) 

developed a nonlocal four-variable refined plate theory to 

examine the buckling behaviour of nanoplates made of FG-

MEE materials resting on Winkler-Pasternak foundation. 

Jamalpoor et al. (2016) analysed the free vibration and 

biaxial buckling behaviour of MEE microplate resting on 

elastic foundation. Based on nonlocal theory Li et al. (2016) 

obtained the bending, buckling and free vibration 

characteristics of MEE nano beams. Lang and Xuewu 

(2013) analysed the buckling and vibration characteristics 

of functionally graded magneto-electro-thermo-elastic 

circular cylindrical shells. Frajpour and Rastgoo (2017) 

developed a modified shell model to analyse the buckling 

behavior of smart composite nanotubes under magneto-

electro-mechanical loads. Ebrahimi and Barati (2016b) 

employed the refined sinusoidal plate model to study the 

thermo-mechanical buckling problem of magneto-electro-

thermo-elastic functionally graded (METEFG) nanoplates 

supported by Winkler-Pasternak elastic foundation. Razavi 

(2017) presented the buckling behaviour of smart plates 

accounting the effect of electric and magnetic potentials 

using higher order theory. Ebrahimi and Barati (2016c) 

developed a size-dependent beam model to predict the  

 

Fig. 2 Schematic representation of uniaxial and biaxial 

compression on MEE plate 

 

 

buckling behaviour of MEE nano beams. Ebrahimi and 

Barti (2016d) extended their studies on buckling of 

functionally graded piezoelectric (FGP) nanobeams under 

the influence of thermo-electro-mechanical loads. Li (2014) 

investigated the buckling behaviour of MEE plate resting on 

an elastic foundation and evaluated the effect of electric and 

magnetic loads affecting it. Ebrahimi and Barati (2016e) 

analysed the static stability of piezoelectrically actuated 

size-dependent magneto-electro-elastic functionally graded 

nanoplate.  

The comprehensive literature review suggests that 

extensive research pertaining to free vibration, static 

studies, nonlinear behaviour, dynamic characteristics of 

layered and functionally graded MEE plates, beams and 

shells has been published. In addition, studies concerned 

with buckling behaviour of functionally graded single layer 

MEE plates resting on an elastic foundation are recently 

reported. However, to the authors’ best knowledge present 

work makes a first attempt to analyse the buckling 

behaviour of multilayerd MEE plates with the aid of FE 

methods. Consequently, this article presents a finite element 

model based on FSDT to assess the buckling characteristics 

of the multilayered MEE plate. The in-plane stress 

distribution within the MEE plate existing due to the 

enacted force is considered to be equivalent to the applied 

in-plane compressive loads in the pre-buckling range. The 

potential energy functional is formulated based on the same 

stress distribution. Buckling characteristics are well 

presented in terms of non-dimensional critical buckling load 

and their corresponding mode shapes which are obtained by 

solving a linear eigenvalue problem. In addition, parametric 

studies such as the effect of uniaxial and biaxial 

compression, aspect ratio, span to thickness ratio and 

boundary conditions are studied in detail. Further, the static 

deflection of MEE plate under different boundary and 

loading conditions are also presented. 

 
 
2. Problem description and governing equation 

 

A schematic diagram of a three layered magneto-electro-

elastic plate is illustrated in Fig. 1 while Fig. 2 illustrates 

the two-dimensional x-y plane of the MEE plate subjected 

to uniaxial and biaxial compression.  

The length, the width and the total thickness of the plate 

are a, b and H, respectively. The MEE plate consists of 

three layers of equal thickness hi (i=1, 2, 3). The top and the 

bottom layers are made of identical material either 

piezoelectric (BaTiO3) commonly represented by B or 
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magnetostrictive (CoFe2O4) commonly represented by F 

while the middle layer is of the other material i.e., 

magnetostrictive or piezoelectric. Based on the stacking 

sequence of the material, the MEE composite is called 

B/F/B or F/B/F indicating the top/middle/bottom layer, 

respectively, wherein, B represents barium titanate and F 

represents cobalt ferrite. The displacement field of such 

MEE plate is considered as a first order expansion of 

Taylor’s series of the mid-plane variables with respect to the 

plate thickness. Hence, the displacement fields are given by 

(Reddy 2004) 

0 x
u u z  , 

0 y
v v z  , 

0
w w  (1) 

where, u0, v0, w0 are the initial displacements at the 

midplane and θx, θy are the rotations of the line initially 

normal to the midplane relative to the y- and x- axis 

respectively. For the ease of computation, the displacement 

components are split into translational and rotational 

displacement vectors as follows 

  T  [ ]
t 0 0 0

d u  v  w     T[  ]
r x y

d    (2) 

Since thin plate analysis is involved, to avoid shear 

locking selective integration scheme is employed. In 

addition, to emphasize the effect of transverse shear 

deformation, the strain (ε) at any point in the MEE plate is 

divided into bending strain (εb) vector and shear strain (εs) 

vector and are written as follows 

   
T

x y z xy xz yz
       ,  

   
T

   
b x y z xy
     ,  

T

 
s xz yz
       

(3) 

Utilizing the displacement field from Eq. (1) and the 

strain components in Eq. (3) along with the strain-

displacement relations, the state of in-plane, transverse 

normal and transverse shear stress components at any point 

in the plate can be expressed as 

      1
Z

b bt br
    ,       2

Z
s st sr
     (4) 

in which, [Z1] and [Z2] are the transformation matrices 

given as  

 1

0 0

0 0
Z =

0 0 0

0 0

z

z

z

 
 
 
 
 
 

,  2

1 0
Z =

0 1

 
 
 

 (5) 

correspondingly, the various strain components appearing in 

Eq. (4) are given by 

  0 0 0 0

bt

u v u v
    0  

x y y x


    
  

    

,   0 0

ts

w w
 

x y


  
  

  

 

     0  
y yx x

br
x y y x

  


   
  

    

 

(6) 

Analogous to the strain vectors presented in Eq. (3), the 

stress state at any given point in the MEE plate can be 

expressed as follows 

 
T

 
b x y z xy

σ   σ   σ   σ     ,   T [ ]
s xz yz

σ   σ   (7) 

wherein, ζx, ζy and ζz along the x-, y- and z-directions are 

the corresponding normal stresses; the in-plane stress 

component is ζxy; ζxz and ζyz are the transverse shear stresses 

along xz- and yz- directions, respectively. Considering the 

effect of coupled fields, the constitutive equations for the 

MEE plate can be written as follows 

  k k k k

b b b z b z
[C ]{ } {e }E {q }Hk

b
    ,   k k

s s
[C ]{ }k

s
   (8a) 

k T k k

z b b 33
D {e } { }

z 33 z
E d H     (8b) 

k T k

z b b 33 33
B {q } { } k

z z
d E H     (8c) 

here k= 1, 2, 3 denotes the layer number initiating from the 

bottom layer of the MEE plate and  

k k k

11 12 13

k k k

12 22 23

k k k

13 23 33

k

66

0

0

0

0 0 0

k

b

C C C

C C C
C

C C C

C

 
 
 

   
    

 
 
 

, 

k k

55 45

k k

45 44

[ ]
k

s

C C
C

C C

 
 
 
 

 (9) 

Where ][ k
bC and ][ k

sC  represent the reduced 

coefficient matrices, 
33

k  is the reduced dielectric constant 

and 
33

k  represent the reduced magnetic permeability 

coefficient; 
33

kd  is the reduced electromagnetic coefficient 

and are given by (Farajpour et al. 2016).  

 
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C
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33 33

33 33

33
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k k

k

e q

C
   , 33 33

33 33
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k k

k k

k

e q

C
    and  

33 33

33 33

33

k k

k k

k

e q
d d

C
   

(10) 

Since the plate is considered to be thin, the electric 

displacement, the electric field, the magnetic induction and 

the magnetic field along the z-direction are only considered 

(Milazzo 2014, Sladek et al. 2013, Li 2014) and represented 

by Dz, Ez, Bz and Hz, respectively. The reduced electric 

coefficient matrix  k

b
e  and the reduced magnetic 

coefficient matrix  k

b
q   are given by 

 
T

k

b 31 32 33 36
{ } k k k ke e e  e e ,  31 32 33 36

{ }
T

k k k k k

b
q q q q q  (11) 
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Employing the principle of virtual work the governing 

equations for the MEE plate is established as 

0U V       (12) 

wherein, the strain energy (δU) is given by 

     
k k

3

d dk k k k k k

b b s s

k = 1

U      

 

 
    
 
 

    

t b

E D d E D dt t t b b b

z z z z
 

 

      

 
m el

el

t

A

H B d  F   dA
Tm

z z t
d 



     

(13) 

and simultaneously the work of in-plane loads (δV) can be 

expressed as 

 

T

a b

0

0 0

dx dy

w w

x x
V

w w

y y

 

    
    
   
    
       

   (14) 

where Λ
k
 (k=1, 2, 3) designates the respective layer 

volume, Fi corresponds to the applied surface traction force 

on the top surface area A
el
. Λ

t
 and Λ

b
 represent the volume 

of the top and bottom piezoelectric while the middle 

magnetostrictive layer is represented by Λ
m
. [ζ0] is the 

initial stress matrix. 
t

z
E ,

b

z
E  and t

z
D , b

z
D  are the electric 

fields and the electric displacements of the top and the 

bottom layers of the MEE plate whereas m

z
H  and m

z
B  are 

the magnetic field and magnetic induction in the middle 

layer, respectively. The transverse electric field (Ez) related 

to the electric potential and the transverse magnetic field 

(Hz) is related to the magnetic potential in accordance with 

Maxwell’s equation as follows 

t

z
E

z

t 
 


, 

b

z
E

z

b 
 


 and 

m

m

z
H

z


 


 (15) 

where, t/b/m represent the top/bottom/middle layer of the 

MEE plate, respectively, depending on the stacking 

sequence of the layers. The interface linking piezoelectric 

and magnetostrictive layers are assumed to be properly 

grounded. Since the MEE plate layers possess very small 

thickness, the variation of the electric and magnetic 

potential across the thickness can be suitably assumed to be 

linear. Correspondingly, the electric potential functions ϕ
t
 

and ϕ
b
 pertaining to the top and bottom piezoelectric layers 

and ψ
m
 the magnetic potential pertaining to the middle 

magnetostrictive layer of the MEE plate (Kattimani 2015) 

can be represented as  

1

t b
z - z

h
  , 2

2

b z - h

h
    and 2m z - h

h
   (16) 

 
2.1 Finite element formulation 
 

The MEE plate is discretized by using four noded 

quadrilateral elements. Considering Eq. (2), the 

displacement vectors in generalized form {du} and {dn} are 

linked with the i
th

 node (where, i = 1, 2, 3, 4) of an element 

can be articulated as 

   
T

0 0 0i
  

ti i i
d u  v  w  and  

T

ri xi yi
d θ  θ     (17) 

At any given point within the element, the displacement 

vectors in generalized form {di} and {dr}, the generalized 

electric potential vector {ϕ} and the generalized magnetic 

potential vector {ψ} can be expressed in terms of nodal 

generalized displacement vectors  el

t
d  and  el

r
d , the 

nodal magnetic potential vector {ψ
el
} and the nodal electric 

potential vector {ϕ
el
}, respectively, as follows 

   [ ] el

t t t
d n d ,    [ ] el

r r r
d n d , 

     
T

1 2
 =   eln        ,  

     
T

1 2
 =  eln        and    m = m el

ψ m
n ψ      

(18) 

in which 

       
T

T T T

1 2 4
 . . .el el el el

t t t t
d d d d 

  
 , 

       
T

T T T

1 2 4
 . . .el el el el

r r r r
d d d d 

  
, 

   
T

11 21 12 22 14 24
        . . .    el       , 

   
T

1 2 4
    . . .  el    , 

   
T

1 2 4
. . .

t t t t
n n  n n ,    

T

1 2 4r r r r
n n  n . . . n , 

11 12 14

21 22 24

T

0 0 . . . 0

0 0 . . . 0

n n n
n

n n n

  



  

 
     

 
 , 

T

1 2 4
 . . .n n n n   

       , 

ti i t
n = N I , ri i r

n = N I  

(19) 

where [ni], [nr], [nϕ] and [nψ] are the shape function matrices 

while It and Ir are the identity matrices, respectively 

(Kattimani 2015). The shape function Ni corresponding to 

the natural coordinate is linked with the ith node. The 

degrees of freedom corresponding to electric potential and 

magnetic potential are ϕ1i, ϕ2i (where, i=1, 2, 3, 4) and i
 , 

respectively. Utilizing Eqs. (13)-(17), the transverse electric 

field for the top and the bottom layer ( t

z
E , b

z
E ) and the 

transverse magnetic field for the middle layer ( m

z
H ) are 

given by 

   
1

1 0t el

z
E n

h
     

,  

   
1

0 1b el

z
E n

h
       and  

1m el

z
H n

h
     

 

(20) 

Now, considering Eqs. (4) and (17), the strain vectors in 

generalized form at any given point in the element can be 

presented in the form of nodal generalized strain vectors as 

    el

bt bt t
ε b d  ,     el

br br r
ε b d  

    el

st st t
ε b d  ,     el

sr sr r
ε b d  

(21) 

(16) 

(17) 

(18) 
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in which, [btb], [brb], [bts] and [brs] are the nodal strain-

displacement matrices. The explicit form of the matrices is 

given in the appendix. Substituting Eqs. (4), (11), (14), (20) 

and (21) into Eq. (12) and simplifying, we obtain the 

elemental equations of motion for the MEE plate as follows 

       

   

el el el el el el el el

tt t tr r t t

el el

G t t

k d k d k k

k d F

                  

   

 (22) 

       
T

0el el el el el el el el

tr t rr r r r
k d k d k k                     (23) 

     
T T

0el el el el el el

t t r r
k d k d k                 (24) 

     
T T

0el el el el el el

t t r r
k d k d k                 (25) 

The matrices and the vectors displayed in the Eqs. (22)-

(25) are the elemental elastic stiffness matrices el

tt
k   , 

el

tr
k    and el

rr
k   , the elemental electro-elastic coupling 

stiffness and magneto-elastic coupling stiffness matrices are 
el

t
k 
   , el

r
k 
    and el

t
k
   , el

r
k 
   , respectively; el

G
k    is 

the elemental geometric stiffness matrix;  el

t
F  is the 

elemental mechanical load vector; elk    and 
elk    are 

the elemental electric and elemental magnetic stiffness 

matrices, respectively. The elemental matrices and vectors 

are given by 

el el el

tt tb ts
k k k            , el el el

tr trb trs
k k k            , 

el el el

rr rrb rrs
k k k            , el el T

t t
k k 
       , 

elel T

t t
k k 
       ,  

0 0

el ela b

Tel

t tb t
k b D n dx dy  
             ,  

 
0 0

el ela b

Tel

r rb r
k b D n dx dy  
             , 

 
0 0

el ela b

Tel

t tb t
k b D n dx dy  
             ,   

 
0 0

el ela b

Tel

r rb rψ ψ
k b D n dx dy

            , 

0 0

el ela b
T

elk n D n dx dy   
                 , 

0 0

el ela b

T
elk n D n dx dy   

                 , 

    
T

0

0 0

el ela b

el

G G G
k b b dx dy       

(26) 

where, [Diϕ], [Drϕ], [Diψ], [Drψ], [Dϕϕ] and [Dψψ] are the 

rigidity matrices appearing in Eq.(26) are given as follows 

       
4 2

3 1

1 1
1 0 1 0

h h

t b b

h h

D e dz e dz
h h


       , 

 
3

2

1
h

t b

h

D q dz
h


     , 

           
4 2

3 1

1 1

1 1
1 0 1 0

h h

T T

r b b

h h

D z e dz z e dz
h h


       , 

   
3

2

1

1
h

T

r b

h

D z q dz
h


     , 

33
1 0

0 1
D

h


  
     

 

, 
33

1
D

h
  ,  

0 0

0 0 0

xx xy

xy yy

 


 

 
  
    

(27) 

The global equations of motion are obtained assembling 

the elemental equations of motion of the MEE plate as 

follows 

       

    

g g g g

tt t tr r t t

G t t

k d k d k k

K d F

                  

 
 (28) 

       
T

0g g g g

tr t rr r r r
k d k d k k                     (29) 

     
T T

0g g g

t t r r
k d k d k                 (30) 

     
T T

0g g g

t t r r
k d k d k                 (31) 

where, 
g

tt
k   , 

g

tr
k    and 

g

rr
k    are the elastic global 

stiffness matrices;  
g

t
k 
    and 

g

r
k 
    are the electro-

elastic coupling global stiffness matrices; 
g

t
k
    and 

g

r
k 
    

are the magneto-elastic coupling global stiffness matrices; 

[KG] is the global geometric stiffness matrix; {Ft} is the 

global mechanical load vector; 
gk    and 

gk    are the 

global electric and the global magnetic stiffness matrices, 

respectively. Solving the global equations of motion (Eqs. 

(29)-(31)) to obtain the global generalized displacement 

vector {dt} and {dr} by condensing the global degrees of 

freedom for {ϕ} and {ψ} in terms of {dr} as follows 

     
1 T 1 T

g g g g

t t r r
k k d k k d   

 

                , 

     
1 T 1 T

g g g g

t t r r
k k d k k d   

 

                , 

       
1 T

r 3 2 t
d K K d



   

(32) 

Now, substituting Eq. (32) in Eq. (28) and upon 

simplification, we obtain the global equations of motion in 

terms of the global translational degrees of freedom as 

follows 

             
1 T

1 2 3 2 t G t t
K K K K d K d F



   , 

       t G t t
K d K d F   

and          1 T

1 2 3 2
K K K K K



   

(33) 

where, the global aggrandized matrices are given as follows 

 
1 T 1 T

g g g g g g g

1 tt t t t t
K k k k k k k k     

 

                             , 

 
1 T 1 T

g g g g g g g

2 tr t r t r
K k k k k k k k     

 

                             , 

 
1 T 1 T

g g g g g g g

3 rr r r r r
K k k k k k k k     

 

                              

(34) 

The buckling criterion is achieved based on neutral  

(28) 

(27) 
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equilibrium method (Jadhav and Bajoria 2013).  

According to this method, the corresponding load at which 

the structure attains equilibrium in both straight and the 

slightly bent configuration is defined as a critical load. The 

geometric matrix is represented by λ[KG], where λ is the 

scalar multiplier. The scalar multiplier is obtained such that, 

the equilibrium is established for both the reference 

configuration {dt} and slightly deformed configuration 

{dt}+{δdt} (Jadhav and Bajoria 2013).  

       G t t
K K d F   (35) 

           G t t t
K K d d F     (36) 

Subtracting Eq. (36) from Eq. (35) yields the eigenvalue 

problem 

      0
G t

K K d    (37) 

here, the critical buckling load is the eigenvalue with the 

lowest magnitude and the displacement vector {δdt} 

represents the corresponding buckled mode shape. Further, 

the static behaviour of the MEE plate is assessed by 

neglecting the geometrical stiffness matrix from Eq. (35).  

 

 

3. Results and discussion 
 
3.1 Buckling analysis 
 

Buckling analysis of layered magneto-electro-elastic 

plate is carried out in order to assess the nature of stability 

by building an eigenvalue problem. Such eigenvalue 

problem yields eigen values i.e., critical buckling loads and 

their corresponding mode shapes in terms of eigen vectors. 

The multilayered MEE plate involved in this study is made 

of piezoelectric (BaTiO3) and magnetostrictive (CoFe2O4) 

material both being transversely isotropic.  The material 

property of the MEE composite is specified in Table 1. Two 

types of stacking sequence are studied one being B/F/B i.e., 

the magnetostrictive layer being sandwiched between two 

piezoelectric layers and the other being F/B/F wherein the 

piezoelectr ic  layer  i s  sandwiched  between two 

magnetostrictive layers. The buckling characteristics of the 

MEE plate is evaluated for different aspect ratio, span to 

thickness ratio and boundary condition. In addition, the 

effect of load factor on the critical buckling load is 

subsequently investigated. The MEE plate considered for 

the analysis is having an aspect ratio of a/b=1 m and a span 

to thickness ratio of a/h=100 with each layer having equal 

 

 

thickness. The non-dimensional critical buckling load is 

obtained using λcr=λa
2
/H

3
C

11
. In the present study, buckling 

analysis is performed for three boundary conditions i.e., 

CCCC (all sides clamped), CCCF (three clamped sides and 

one being free), FCFC (two clamped and two free sides) 

which are given as (Ansari and Gholami 2016) 

Clamped edge 

at x = 0, x = a 

0 0 0 x y= = = = = = = = 0zu v w       

at y = 0, y = b 

0 0 0 x y= = = = = = = = 0zu v w       

Free edge 

at x = y,  x = a 

0 0 0 x y= = = = = = = 0zu v w        

at y = 0, y = b 

0 0 0 x y= = = = = = = 0zu v w        

(38) 

 
3.1.1 Validation 
To the best of author’s knowledge, research on buckling 

of layered MEE plate is unavailable in the open literature. 

Hence, to assess the effectiveness of proposed formulation 

in solving a stability problem, the buckling analysis of 

multilayered laminate composites studied by Reddy (2004) 

has been considered. In this regard, the coupled constitutive 

equation of the MEE plate has been decoupled and 

implemented for the analysis of laminated composite plate. 

The convergence studies has been carried out and for a 

mesh size of 2020, the present solutions are well in 

agreement with existing ones as shown in Table 2 and  

 

 

Table 2 Non-dimensional critical buckling load for three 

layered composite plate under uniaxial and biaxial 

compression 

a/h 

ratio 

Type of 

load 

Non-dimensional critical buckling load 

Present 

(88) 

Present 

(1212) 

Present 

(1616) 

Present 

(2020) 

Present 

(3030) 

Reddy 

(2004) 

10 
Uniaxial 15.6930 15.2636 14.9178 14.8690 14.8694 15.2890 

Biaxial 7.8465 7.6318 7.4589 7.4345 7.4347 7.6445 

50 
Uniaxial 23.2294 22.4276 22.1628 22.0418 22.0422 22.9781 

Biaxial 11.6147 11.2138 11.0814 11.0209 11.0211 11.4890 

100 
Uniaxial 23.8362 23.0434 22.8826 22.8461 22.8467 23.3633 

Biaxial 11.9181 11.5217 11.4413 11.4230 11.4233 11.6820 
 

Table 1 Material properties of BaTiO3 and CoFe2O4 (Pan and Heyliger 2003) 

Material 
C11 = C22 

(109 N/m2) 

C12 

(109 N/m2) 

C13=C23 

(109 N/m2) 

C33 

(109 N/m2) 

C44=C55 

(109 N/m2) 

C66 

(109 N/m2) 
ρ (kg/m3) 

BaTiO3 166 77 78 162 43 44.5 5800 

CoFe2O4 286 173 170.5 269.5 45.3 56.5 5300 

BaTiO3 
e31=e32=−4.4 

(C/m2) 

e33=18.6  

(C/m2) 

e24=e15=11.6 

(C/m2) 

ξ11=ξ22=11.2 

(10-9 C/Nm2) 

ξ33(10-9 C/Nm2) 

=12.6 
11=22=5 

(10-6 Ns2/C2) 
33=10 

(10-6 Ns2/C2) 

CoFe2O4 
q31=q32 (N/Am) 

=180.3 

q33 (N/Am) 

= 699.7 

q24=q15=550 

(N/Am) 

ξ11=ξ22=0.08 

(10-9 C/Nm2) 
ξ33=0.093 

(10-9 C/Nm2) 
11=22=−590 

(10-6 Ns2/C2) 

33=157 

(10-6 Ns2/C2) 
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Modes 
Uniaxial 

compression 

Biaxial 

compression 

1 

0.9399 

 

0.4699 

 

2 

3.0713 

 

1.5357 

 

3 

3.4004 

 

1.7002 

 

4 

5.4223 

 

2.7112 

 

5 

9.4128 

 

4.7064 

 

6 

10.1180 

 

5.0591 

  

Fig. 3 Comparison of first six buckling mode shapes of 

B/F/B MEE plate subjected to uniaxial and biaxial 

compression for CCCC boundary (a/b=1, a/h=100) 
 

 

Fig. 4 Critical buckling load for B/F/B and F/B/F MEE 

plate subjected to uniaxial compression. (CCCC, a/b=1, 

a/h=100) 

 
 

apparently for all the subsequent analysis, a mesh size of 

2020 (400 elements) has been imparted.  

 
3.1.2 Effect of uniaxial and biaxial compression 
Firstly, buckling analysis of clamped-clamped MEE 

plates subjected to uniaxial and biaxial compression is 

investigated. Consequently, their influence on the non-

dimensional critical buckling load and their corresponding 

mode shapes are analysed. The MEE plate having an aspect 

ratio of a/b = 1 and a span to thickness ratio of a/h = 100 is 

considered for the analysis. Buckling mode shapes and their 

respective buckling loads are presented in Fig. 3. It can be 

observed that the buckling loads get halved for the bi-axial 

load in comparison with uniaxial loading case. It is also 

Modes BFB FBF 

1 

0.9399 

 

1.1750 

 

2 

3.0713 

 

3.8392 

 

3 

3.4004 

 

4.2505 

 

4 

5.4223 

 

6.7779 

 

5 

9.4128 

 

11.7660 

 

6 

10.1180 

 

12.6477 

  

Fig. 5 Comparison of first six non-dimensional critical 

buckling loads and mode shapes  of B/F/B and F/B/F plate 

subjected to uniaxial compression under clamped-clamped 

(CCCC) boundary condition (a/b=1, a/h=100) 

 

 

evident from the results that the first, fifth and sixth modes 

of the MEE plate under biaxial compression buckled in the 

opposite direction in comparison with uniaxial 

compression; while, the nature of the buckling mode 

remained the same in both the cases. 

 
3.1.3 Effect of stacking sequence 
In this section, the effect of stacking sequence on the 

buckling behaviour of MEE plates is considered for 

evaluation. Two stacking sequences of MEE plate are 

investigated under clamped-clamped boundary condition. 

Fig. 4 display the buckling behaviour of the B/F/B and the 

F/B/F stacking pattern. It can be observed from the plots 

that the MEE plate with F/B/F stacking yield higher critical 

buckling load than the B/F/B stacking configuration. It may 

be due to the fact that the F/B/F configuration exhibit higher 

stiffness and hence larger buckling load. Fig. 5 illustrates 

the first six non-dimensional critical buckling loads and 

their corresponding mode shapes for both the B/F/B and 

F/B/F stacking sequences of the MEE plate. It may be 

observed from these results that the stacking sequence not 

only affects the critical buckling loads but also their 

corresponding mode shapes. In addition as noticed from 

Fig. 5, the first, third, fifth and sixth modes display buckling 

in opposite direction for F/B/F sequence in comparison with 

B/F/B stacking while the nature of buckling remains the 

same for both.  

 
3.1.4 Effect of lateral load parameter 
In a bi-axial buckling condition, the lateral load on one 

of the in-plane direction is increased incrementally while in  
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Fig. 6 Effect of load factor on non-dimensional critical 

buckling load 

 

 
(a) Uniaxial compression 

 
(b) Biaxial compression 

Fig. 7 Effect of aspect ratio on Non-dimensional buckling 

load of MEE (B/F/B) plate under CCCC boundary 

condition 

 

 

the other direction the load is kept constant and their effect 

on the buckling behaviour of the MEE plate is investigated. 

The MEE plate subjected to three different boundary 

conditions (i.e., CCCC, CCCF, and FCFC) is analyzed. A 

bar graph plotted for buckling load against the load factor in 

Fig. 6 clearly display a decrease in non-dimensional 

buckling load with the incremental increase in load factor. It 

can also be observed that the CCCC boundary condition 

possess the highest buckling load which can be attributed to 

the fact that higher the constraint larger is the critical 

buckling load. 

 
3.1.5 Effect of aspect ratio (a/b) 
The buckling characteristic of the MEE plate is studied 

for different aspect ratios. Non-dimensional critical 

buckling loads are obtained for different aspect ratio with a 

particular a/h ratio and the study is extended for four 

 
(a) Uniaxial compression 

 
(b) Biaxial compression 

Fig. 8 Effect of aspect ratio on Non-dimensional buckling 

load of MEE (B/F/B) plate under CCCF boundary condition 

 

 
(a) Uniaxial compression 

 
(b) Biaxial compression 

Fig. 9 Effect of aspect ratio on Non-dimensional buckling 

load of MEE (B/F/B) plate under FCFC boundary condition 

 

 

different span to thickness ratio. Similar results are plotted 

for different boundary condition as shown in Figs. 7 - 9. It 

is evident from the plots that the buckling load decreases  
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Modes a/h = 10 a/h = 50 

1 
  

2 
  

3 
  

4 
  

5 
  

6 
   

Fig. 10 Comparison of first six non-dimensional buckling 

mode shapes of B/F/B at a/h=10 and 50 subjected to 

uniaxial compression under clamped-clamped (CCCC) 

boundary condition 
 

Table 3 Critical buckling loads for B/F/B plate with 

different span to thickness ratio under uniaxial and biaxial 

compression 

a/h 

ratio 

Uniaxial compression Biaxial compression 

CCCC CCCF FCFC CCCC CCCF FCFC 

20 1.3335 0.7559 0.5405 0.6667 0.3779 0.2702 

50 1.0312 0.4317 0.2703 0.5156 0.2158 0.1351 

100 0.9399 0.4289 0.2519 0.4699 0.2144 0.1259 

 

 

with increase in aspect ratio irrespective of the boundary 

condition and a/h ratio involved. The buckling load is 

observed to decrease rapidly at first and for higher aspect 

ratios decay is marginal. In the case of CCCF boundary 

condition, it observed that for all a/h ratios evaluated 

buckling load converges at higher aspect ratios. 

 
3.1.6 Effect of span to thickness (a/h) ratio 
The buckling behaviour of clamped-clamped MEE plate 

is evaluated for different a/h ratios to analyse their effect on 

buckling loads. Table 3 presents the critical buckling loads 

obtained for the different span to thickness ratio (a/h=20, 50 

and 100) of the MEE plate under uniaxial and biaxial 

loading conditions. It is observed that with the increase in 

thickness ratio, the critical buckling load decreases for both 

the uniaxial and biaxial compression. The effect of the span 

to thickness ratio on the corresponding mode shapes is also 

presented in Fig. 10. From the results, it is evident that the 

mode shapes and their corresponding critical buckling loads 

are influenced by the span to thickness ratio of the plate. 

Further, it can be observed that the nature of the modes 

remains the same for both the a/h ratio compared; while for 

the first, third, fourth and fifth modes only the direction of 

buckling changes. It can be noted that for an eigen buckling 

problem, the direction of mode shape distribution retains 

less importance and the very nature of buckling mode shape 

for both the span to thickness ratio can be considered 

identical. The same is also true for the case of stacking 

sequence. 

Modes CCCC CCCF FCFC 

1 

0.9399 

 

0.4289 

 

0.2519 

 

2 

3.0713 

 

1.8011 

 

0.8487 

 

3 

3.4004 

 

2.5949 

 

1.8595 

 

4 

5.4223 

 

3.8611 

 

2.7026 

 

5 

9.4128 

 

5.3537 

 

3.0422 

 

6 

10.1180 

 

7.1926 

 

3.7081 

 

Fig. 11 Comparison of first six non-dimensional buckling 

loads and their mode shapes for different boundary 

condition of B/F/B MEE plate (a/b=1, a/h=100) 

 

 
(a) BFB 

 
(b) FBF 

Fig. 12 Static deflection (in meters) of simply supported 

MEE plate subjected to sinusoidal load 

 
 
3.1.7 Effect of boundary condition 
In this section effect of boundary condition on the 

buckling behaviour of the MEE plate is investigated. Three 

different boundary conditions are studied and their effects 

on buckling loads and corresponding mode shapes are  
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assessed. Fig. 11 presents the buckling loads and 

corresponding mode shapes for CCCC, CCCF and FCFC 

boundary condition. It can be noted that the largest buckling 

load is obtained for the most constrained CCCC plate and 

the lowest for the least constrained FCFC plate. 

Additionally, the effect of different boundary conditions is 

highlighted via corresponding mode shapes. 

 
3.2 Static studies 
 

The static deflection of MEE plate subjected to 

sinusoidal and uniformly distributed load (UDL) is studied 

for different boundary conditions. Firstly, the deflection in 

w-direction for the simply supported MEE plate subjected 

to sinusoidal load has been studied for the purpose of 

validation. The results for the B/F/B and F/B/F MEE plate 

 

 

 

 

in Figs. 12(a) and (b) are found to be in very good 

agreement with the results available in the literature (Moita 

et al. 2009). The static deflection for different boundary 

conditions of the B/F/B MEE plate subjected to sinusoidal 

load is presented in Figs. 13(a)-(c) while Figs. 14(a)-(c) 

depicts for the F/B/F MEE plate. Further, Figs. 15(a)-(c) 

and 16(a)-(c) illustrate the results for the B/F/B and F/B/F 

MEE plate subjected to UDL, respectively. The static 

deflection of the F/B/F plate is observed to be lower than 

the B/F/B plate for all the investigated boundary conditions. 

 
 
4. Conclusions 
 

The buckling analysis of multilayered MEE plate has 

been performed using finite element approach considering  

   
(a) CCCC (b) FCFC (c) CCCF 

Fig. 13 Static deflection (in meters) of BFB MEE plate subjected to sinusoidal load 

   
(a) CCCC (b) FCFC (c) CCCF 

Fig. 14 Static deflection (in meters) of FBF MEE plate subjected to sinusoidal load 

   
(a) CCCC (b) FCFC (c) CCCF 

Fig. 15 Static deflection (in meters) of BFB MEE plate subjected to uniformly distributed load (UDL) 
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the FSDT for displacement fields. The influence of 

boundary condition, aspect ratio, stacking sequence, span to 

thickness ratio and load factor was studied. For the 

evaluated effects of different parameters on critical buckling 

load and mode shapes, following conclusions could be 

drawn. Under the biaxial compression, the critical buckling 

loads halved in comparison with uniaxial compression and 

their corresponding mode shapes are also affected by the 

type of compression applied. Effect of stacking sequence is 

found to be significant with the F/B/F stacking sequence 

exhibiting larger buckling strength over B/F/B 

configuration. Further, buckling load decreased with 

increase in aspect ratio and span to thickness ratio of the 

MEE plate. Also, the highest constrained CCCC MEE plate 

witnessed largest buckling strength. In addition, the effect 

of load factor also exhibited a significant influence on 

critical buckling load. For all the considered boundary 

conditions, the studies concerned to static behaviour FBF 

plate realized the lowest deflection in the thickness 

direction. 
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Appendix 
 

The nodal strain-displacement matrices [bbt], [bbr], [bst] 

and [bsr] appearing in the Eq. (21) are given by 

bt bt1 bt2 bt3 bt4
[b ] [b b b b ] , 

br br1 br2 br3 br4
[b ] [b b b b ] , 

[bst]=[bst1 bst2 bst3 bst4] and [bsr]=[bsr1 bsr2 bsr3 bsr4]  

The various sub-matrices [btbi], [brbi], [btsi] and [brsi] 

(i=1, 2, 3, 4) are as follows 

i

i

bti

i i

n
0 0

x

n
0 0

y[b ]

0 0 0

n n
0

y x

 
 
 

 
 
 
 
  
 
   

, 

i

i

bri

i i

n
0

x

n
[b ] 0

y

n n

y x

 
 
 

 
  

 
  
 
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, 

i

sti

i

n
0 0

x
[b ]

n
0 0

y

 
 
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sri

i

n 0
[b ]

0 n
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. 

 

 

763




