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1. Introduction 
 

With the development of nanotechnology, nanomaterials 

and nanostructures have led to increasing applications of 

MEMS/NEMS (Zang et al. 2015). At micro/nanometer 

scale, material or structure exhibits mechanical behaviors 

different from those in macroscopic scale or in bulk. For 1D 

nanoscale structures, such as nanowires, nanorods and 

nanotubes, when the characteristic dimension of 1D 

nanoscale structures shrinks to microns or nanometers, the 

surface effects play a significant role in affecting their 

mechanical properties, and a possible reason is dramatic 

increasing of specific surface area (Cuenot et al. 2004, Jing 

et al. 2006, Moon and Hwang 2008). Therefore, much 

attention has been directed towards the investigation of 

surface effects in micro/nano materials and structures. In 

this field, Wang et al. gave a comment and summarized 

progress in a review paper (Wang et al. 2011), which 

contains many papers published before 2011. 

In order to explain the effects of surface stress and 

surface elasticity on mechanical behaviors, in particular for 

vibration frequencies, considerable work has been reported 

in recent decades. For instance, a theoretical analysis of the 

influences of surface stress on the deflections and 

frequencies of rectangular AFM cantilever plates was given 

(Lachut and Sader 2007). Wang and Feng (2007) examined 

the effects of surface stresses as well as surface elasticity on 

the natural frequency of nanobeams. Park (2008) presented 

the coupled effects of surface stress and boundary 

conditions on the resonant properties of silicon nanowires. 
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Shi et al. (2012) demonstrated the effects of surface stress 

on the bending stiffness of cantilever beams. Li et al. (2014) 

gave a theoretical analysis of the surface effect on apparent 

Young‟s modulus or bending stiffness adopting the 

Timoshenko beam theory with consideration of shear 

deformation and rotary inertia of cross-section. Cheng and 

Chen (2015) formulated a size-dependent resonance 

frequency and buckling behavior of nanoplates using the 

high-order surface stress model. Li et al. (2011) employed 

the strain gradient theory to deal with size effect in 

transverse bending, vibration and buckling behaviors of 

nanobeams. Akgöz and Civalek (2015) investigated bending 

response of functionally graded microbeams embedded in 

an elastic medium based on modified strain gradient 

elasticity theory. Mercan and Civalek (2016, 2017) 

analyzed the buckling behaviour of silicon carbide and 

boron nitride nanotubes with surface effects. Civalek and 

Demir (2016) further proposed a simple nonlocal beam 

model to study buckling response of protein microtubules 

surrounded by an elastic matrix by nonlocal finite element 

method. Extending the usual strain gradient and nonlocal 

beam theories, Shen et al. (2012) considered a generalized 

nonlocal gradient beam and studied the behavior of flexural 

waves of carbon nanotubes. Based on the Bernoulli-Euler 

beam theory and high-order surface stress model, the 

transverse vibration of an axially compressed nanowire 

embedded in elastic medium is investigated by Zhang et al. 

(2015). Li et al. (2016a) used Hamilton‟s principle to 

deduce the equations of motion and boundary conditions for 

free vibration of functionally graded beams within the 

framework of the nonlocal strain gradient Timoshenko 

theory. Wu et al. (2017) dealt with free and forced vibration 

of nanowires with the surface effects and demonstrated 

size-dependent natural frequencies within the framework of 

the Timoshenko beam theory. Choi et al. (2010) employed  
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Fig. 1 Schematic of a clamped-elastically restrained 

nanobeam under a subtangential follower force 

 

 

finite element method to calculate the natural frequencies 

and mode shapes of a nanosized thin film with 

consideration of surface effects. Wang and Wang (2014) 

analyzed the effect of surface energy on the sensing 

performance of bridged nanotube-based micro-mass 

sensors. Ansari et al. (2013) coped with the size-dependent 

vibration of functionally graded curved microbeams on the 

basis of the modified strain gradient elasticity theory. For a 

cracked nanobeam, the influence of surface energy on 

vibration frequency has been studied (Hasheminejad et al. 

2011, Wang and Wang 2015). Ebrahimi et al. (Ebrahimi et 

al. 2016) studied the influence of thermal loading and 

surface effects on mechanical behavior of nanotubes. For an 

elastic plate with surface effects, Shaat and Mahmoud 

(2015) established a new Mindlin functionally graded plate 

incorporating surface energy. Zhu et al. (2014) gave a 

buckling analysis of an elastic plate with attached thin films 

with intrinsic stresses. On the other hand, the effect of 

surface elasticity on the elastic properties of nanowires was 

confirmed through various approaches (Asthana et al. 2011, 

Yao et al. 2012, Zheng et al. 2010).  

The above-mentioned researches mainly focus on 

vibration of nanobeams under the condition of conservative 

forces if any. For the case of nonconservative forces, work 

on dynamic behavior of nanobeams is very limited, 

although a large number of studies on classical beam-

columns subjected to nonconservative forces have been 

reported (Elishakoff 2005, Langthjem and Sugiyama 2000). 

For micro/nano beam-columns, Xiang et al. (2010) applied 

Eringen‟s nonlocal elasticity theory to investigate the 

dynamic instability of a nanocantilever under a follower 

force. Li et al. (2016c) studied the influences of surface 

effects on flutter instability of a nanorod with an additional 

mass attached to the end. Dynamic stability of 

microcantilevers with surface effects on an elastic 

foundation has been addressed when a subtangential 

follower force is loaded (Li et al. 2016b).  

This paper aims at the vibration and dynamic stability of 

a clamped-elastically restrained nanobeam subjected to a 

nonconservative force or a generalized follower force. 

Emphasis is placed on the analysis of surface effects on 

critical divergence and flutter loads. The characteristic 

equation is firstly derived based on Hamilton‟s principle. 

The force-frequency interaction curve is displayed for 

various directions of applied force and values of spring 

stiffness. Whether the divergence and flutter instability 

occur is discussed in detail. 

2. Basic equations 
 

A schematic of a clamped-elastically restrained 

nanobeam with surface effects is shown in Fig. 1. For 

example, such a structure can be used as a fluid energy 

harvesting device which consists of a piezoelectric bimorph 

cantilever. Consider dynamic stability of a nanobeam 

subjected to a generalized follower force P with tangency 

coefficient β, which can be used to simulate the situation of 

some loading such as wind or fluid acting at the surface of a 

plate at the elastically restraint end. Here, a translational 

spring is linked to the free end of the nanobeam. Since 

cantilever beams at nano scale have evident size effects and 

in the present analysis we invoke the surface elasticity 

theory to account for the size effects. That is, based on the 

surface stress-strain relation (Gurtin and Murdoch 1975) 

0 0 0 0( ) 2( )s s s su                        (1) 

Where λ
s

 and μ
s
 are the Lame constants for surface material 

and σ0 
is the residual surface stress, we can obtain one-

dimensional version as follows 

0

s s sE      (2) 

Recalling the one-dimensional version of the constitutive 

equation for bulk material 

E    (3) 

where σ(ε) and σ
s
(ε

s
) are axial stress (strain) and surface 

axial stress (strain), respectively, E and E
s
 represent moduli 

of bulk and surface elasticity respectively. 

Under infinitesimal deformation assumption, the strain 

energy of a deformed nanobeam can be expressed as 
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and the kinetic energy is expressed as 
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(5) 

where D denotes effective bending stiffness, m stands for 

effective mass per unit length, wL the value of deflection w 

at x=L, K spring stiffness of the elastic restraint end, and  
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d d

E J
D EI

EI
       (6) 
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m m

C
m A
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
  


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2 2

A C
I z dA J z ds      (8) 

In the above, L is the beam length, I moment of inertia 
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of cross section, J moment of inertia of surface cross 

section (boundary), A cross-sectional area, C the boundary 

of the cross-section A, ρ mass density, and ρ
s
 surface mass 

per unit length. Also, the Euler-Bernoulli beam theory 

incorporating the surface elasticity is adopted, and the axial 

strain can be expressed in terms of the deflection w as 

2

2

w
z

x



  


 (9) 

where the x-axis is longitudinal coordinate along the 

undeformed axis of the nanobeam, and the positive z axis is 

normal to the x -axis. The strain energy (4) is composed of 

two terms, the last term of which arises from the 

contribution of the elastic restraint end.  

A nonconservative load P can be decomposed into a 

horizontal force component and a vertical force component. 

The horizontal component Pcos(βw
′
L)

 
approximately equals 

to P according to the assumption of small deflection. Then 

the work done by the horizontal component is 

 
2

0

1

2

L w
V P H dx

x

 
    
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  (10) 

where small axial deformation has been neglected before 

buckling, and H represents a resultant force of the surface 

residual tension over cross-section, i.e. 

0
C

H ds   (11) 

Similarly, the vertical component of the load Psin(βw
′
L) 

approximately equals to Pβw
′
L, which is nonconservative, 

and the work done by the vertical component is 

E L LV Pw w      (12) 

where w
′
L denotes the value of dw/dx at x=L. 

Then, we substitute Eqs. (4), (5), (10) and (12) into 

Hamilton‟s principle 
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 By variational operation, we simultaneously get the 

governing partial differential equation 
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and associated boundary conditions 
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We note that if setting spring stiffness K to vanish, the 

boundary conditions in (16) reduce to the boundary 

conditions of the free end. Moreover, β=0 corresponds to a 

conservative force, whereas β=1 gives a case of a tangential 

follower force (Beck‟s column). 

 

 

3. Characteristic equation 

In this section, the flutter instability of a clamped-

elastically restrained nanobeam subjected to a 

nonconservative force is studied. For flutter problems, we 

take the deflectio w having the form w=   i tW Le   where 

1i   , x L   ,   is the circular frequency, and W is 

the dimensionless amplitude. Introduce dimensionless 

parameters as follows 
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p k
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Inserting the expression for w into (14) one obtains  
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where the prime represents differentiation with respect to ξ. 

The boundary conditions given by (15) and (16) become 
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Substituting ( )W e   into Eq. (18), we can obtain 

the following algebraic equation in γ 
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By solving the above algebraic equation, one obtains 

two pairs of distinct roots as ±γ1 and ±iγ2, where 
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With the above roots, it is a simple matter to write a 

general solution of Eq. (18) as 

       1 1 2 1 3 2 4 2cosh sinh cos sin ,W C C C C            (24) 

where C1, C2, C3 and C4 are four unknown constants to be 

determined through boundary conditions. To this end, 

substitution of (24) into the boundary conditions (19) and 

(20) gives  
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The determinant of the coefficient matrix has to vanish 

because of the existence of a non-trivial solution of the 

system of algebraic equations. We can obtain, after some 

algebraic manipulations, the characteristic equation can be 

obtained as follows 
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The characteristic Eq. (33) governs dynamic behavior of 

a clamped-elastically restrained nanobeam subjected to a 

nonconservative force at the elastically restrained end.  

Here consider two limiting cases k→0 and k→∞. The 

former corresponds to a clamped-free nanocantilever, 

whereas the latter corresponds to a clamped-hinged 

nanobeam. For the former case, the characteristic Eq. (33) 

simplifies to 
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(38) 

identical to that derived in (Li et al. 2016c) in the absence 

of attached mass. Furthermore, in the limiting case of the 

frequency Ω→0, Eq. (38) becomes 

 1 cos 0,
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 (39) 

which may be used to determine the divergence loads of a 

clamped-free nanocantilever under a nonconservative force.  

For the latter case, i.e., k→∞, the system is a clamped-

hinged column. Evidently, there is no transverse 

displacement at the hinged end, even subject to a 

subtangential follower force. It is readily found that if 

setting k→∞, the characteristic Eq. (33) reduces to 

1 2 2 1tan tanh 0      (40) 

This equation governs the dynamic behavior of a 

clamped-hinged nanobeam.  

In addition, as a check, we let surface effects disappear, 

that is to say E
s
=0, ρ

s
=0 and σ0=0. Under such 

circumstances, we find  
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and the characteristic Eq. (33) simplifies to 
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(42) 

which is in exact agreement with that for flutter instability 

of a classical Euler-Bernoulli beam (Pedersen 1977, 

Sundararajan 1976). In particular, the characteristic Eq. (38) 

for k=0 in the absence of surface effects reduces to 
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in accordance with that reported in (Chen 2003). In the 

following analysis, we see how the surface effects affect 

flutter instability of a clamped-elastically restrained 

nanobeam under a nonconservative force. 

 
 
4. Numerical results 
 

In this section, numerical computations are performed to 

illustrate the effect of surface effects on the flutter 

instability of a clamped-elastically restrained nanobeam. 

The values of surface elastic modulus and surface stress are 

reported in some papers (Ibach 1997, Shenoy 2005). Here, 

we choose a nanobeam with material properties λ=μ=22.5 

GPa, ρ=3×10
3
 kg/m

3
, σ0=110 N/m, λ

s
=7×10

3
 N/m, μ

s
=8×10

3
 

N/m, ρ
s
=7×10

-4
 kg/m

2
 (Gurtin and Murdoch 1978). From 

these material constants, we can evaluate Young‟s modulus 

and Poisson‟s ratio for the bulk material and surface 

material. We can easily obtain, for rectangular cross-section 

with height h and breadth b 
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C b h A bh I bh J           (44) 

and for circular cross-section with diameter d 

3
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d
C d A d I d J


          (45) 

The geometric parameters used in the following are 

length L=180 μm, diameter d=20 μm. From the above we 

get the values of λd, λm 
and η. 

First numerical results for a clamped-free nanobeam and 

a clamped-hinged nanobeam corresponding to k→0 and 

k→∞, respectively, are calculated. In fact, they are two limit  
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Fig. 2 The force-frequency interaction curves for clamped 

free nanobeam with and without surface effects 

 

 

Fig. 3 The force-frequency interaction curves for a 

clamped-hinged nanobeam with and without surface effects 

 

 

cases of an elastically restrained nanobeam. Fig. 2 shows 

the interaction between the dimensionless frequency 

parameter Ω and the subtangential follower force parameter 

p for a clamped-free nanobeam. In the following, three 

typical interaction curves are displayed, i.e., β=0,0.5,1, 

where β=0 corresponds to the case of a conservative force, 

and β=1 corresponds to the case of a usual tangential 

follower force (Beck‟s column). On the other hand, the 

force parameter p may be positive or negative, p>0 

indicates compressive follower force and p<0 a tensile 

follower force. From Fig. 2, it is seen that for the case of 

β=0, there are two distinct curves, corresponding to the first 

and the second mode of vibration, regardless of the surface 

effect included (solid lines) or excluded (dashed lines), 

while for β=0.5 or 1, two curves coalesce to a continuous 

curve. These two cases represent two different 

characteristics. For various values of β, i.e., β=0,0.5,1, the 

first- and second-order natural frequencies can be given 

from the first and second intersecting locations of the force-

frequency interaction curve with the Ω -axis, respectively, 

i.e., Ω1=3.516 and Ω2=22.034, in exact agreement with the 

well-known results (Pilkey 1994). When taking the surface 

effects into consideration (solid lines), the values of the first 

two frequencies Ω1 and Ω2 are added to 3.962 and 23.333, 

respectively. 

Table 1 Dimensionless critical loads of a clamped-free 

nanobeam under a subtangential follower force 

β 
with the surface 

effects 

without the  

surface effects 

(Mutyalarao et 

al. 2013) 

Divergence 

0 3.3272 2.4709 2.4675 

0.1 3.8116 2.8300 2.8297 

0.2 4.4825 3.3255 3.3252 

0.3 5.4799 4.0554 4.0552 

0.4 7.2277 5.2926 5.2930 

Flutter 

0.5 18.8147 16.0523 16.0547 

0.6 19.1219 16.2589 16.2607 

0.7 19.7935 16.7874 16.7891 

0.8 20.7819 17.5887 17.5903 

0.9 22.0963 18.6680 18.6689 

1.0 23.7612 20.0506 20.0522 

1.2 28.1925 23.7971 - 

1.5 35.9358 30.6282 - 

 

 

Similarly, for β=0, the first and second divergence loads 

can be determined from the first and second intersecting 

locations of the force-frequency interaction curve with the 

p-axis. Nevertheless, for β values larger than 0.5, the 

intersecting locations of the force-frequency interaction 

curve with the p-axis disappear and in this case divergence 

load does not exist. Divergence instability at zero frequency 

does not occur. Instead, flutter instability happens at a 

nonvanishing frequency. That is, for a larger value of β, 

e.g., β>0.5, two curves coalesce to a continuous curve, and 

there is a maximum positive value of p at the force-

frequency interaction curve, which just corresponds to the 

flutter load. For example, the maximum p values of the 

force-frequency interaction curve for β=0.5,1 are about 

pcr=16.052, 20.051, respectively, for dashed lines. For solid 

lines, a similar feature is also observed. Moreover, more 

interesting is that all the dashed or solid curves have an 

intersecting common point at about pcr=16 or 18.8. This is 

to say that there exists a minimum flutter critical load for 

possible tangency coefficients, coinciding with that 

observed in (Li et al. 2016c). In addition, compressive force 

may give rise to occurrence of flutter instability, and tensile 

force obviously does not cause flutter instability. However, 

for combined forces consisting of tensile and compressive 

forces, occurrence of flutter instability still possible (Leung, 

2008). For those p values less than the flutter load, 

harmonic vibration takes place. In particular it is viewed 

that tensile subtangential forces (p<0) gives an increase in 

the natural frequencies of a nanocantilever for small values 

of β, which is understood in the way that a nanocantilever 

under a tensile force looks like stiffer and gives higher 

natural frequencies. However, for β=1, a tensile tangential 

follower force decreases the first frequency and increases 

the second frequency, as seen in Fig. 2. When the surface 

effects are taken into account, the natural frequencies, 

divergence and flutter loads increase. Here, Table 1 lists 

critical loads for a clamped-free nanobeam with and without 

surface effects for typical tangency coefficients. We can see 

that the results in the absence of surface effects agree well 

with those given in (Mutyalarao et al. 2013).  
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(a) 

 
(b) 

 
(c) 

Fig. 4 The force-frequency relationship curves for a 

clamped-elastically restrained nanobeam with and without 

surface effects, (a) β=0, (b) β=0.5, (c) β=1 

 

 

For another limit case of k→∞, Fig. 3 shows the force-

frequency interaction curves of a clamped-hinged 

nanobeam with and without the surface effects. From the 

expression in (40), we notice that the system is independent 

of β. As viewed in Fig. 3, the system has the divergence 

instability type alone with divergence loads at the p-axis 

intersecting locations of these curves. 

Next, let us discuss dynamic stability of a general 

nanocantilever linked to a translational spring. In Figs. 4(a)-

(c), the force-frequency interaction curves are presented for 

three different values of spring stiffness k=0,10,35 for a 

conservative force, a subtangential follower force, and a 

tangential follower force, respectively. For the case of β=0, 

divergence instability occurs but flutter instability does not, 

as seen in Fig. 4(a). The divergence loads and natural  

 

Fig. 5 Critical loads versus spring stiffness parameter for 

three different tangency coefficients β=0,0.5,1 

 

 

Fig. 6 Critical loads versus the tangency coefficient β for 

different spring stiffness parameters, k=0,10,60 

 

 

frequencies increase with the increasing of spring stiffness, 

and the surface effects have an enhancing trend. From Fig. 

4(b) and (c), for β=0.5,1.0, whether flutter instability takes 

place depends on the tangency coefficient and spring 

stiffness. Or rather, for smaller spring stiffness (e.g., k<10) 

rather than larger ones (e.g., k=35), flutter instability readily 

occurs for a clamped-elastically restrained nanobeam. 

When the spring stiffness is gradually raised to be relatively 

large (e.g., k=35), the flutter instability transits to 

divergence instability at a certain spring stiffness. It is 

interesting to mention that there is still a dimensionless 

frequency parameter Ω corresponding to the intersection 

point of the curves, regardless of the presence and absence 

of the surface effects, and moreover, this frequency 

parameter is Ωcr=7.36 for the surface effects are taken into 

account and Ωcr=7.06 for the surface effects are excluded, 

which is independent of β and k. This phenomenon 

coincides with that pointed out in (Pedersen 1977). As 

mentioned before, the corresponding pcr value at the 

intersection point actually gives the minimum flutter load if 

flutter instability occurs (Li et al. 2016c). 

For clarity, the influence of the spring stiffness 

parameter k on the critical load of a clamped-elastically 

restrained nanobeam with three tangency coefficients 

β=0.5,1.0 is illustrated in Fig. 5. Here the critical load refers 

to the divergence load denoted as pD and the flutter load 

denoted as pF in Fig. 5. Since there is only divergence 

instability for any k value in the case of β=0, in Fig. 5 the 

critical divergence load monotonically increases with the 
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increasing of spring stiffness. However, by observing the 

critical load curves for β=0.5,1, we find that it is completely 

different from the above trend and critical flutter load for 

β=0.5 gradually rises up to a value of about k=30.62 with 

the spring stiffness rising. At this position, there is a sudden 

drop in the critical load as k is further raised and the 

instability type transfers from flutter to divergence. From 

this point onwards, the increase of k gives rise to the 

decrease of divergence critical load. The critical load curve 

for β=1 has a trend similar to that for β=0.5. We note a 

difference that there exists a range: 34.8<k<51.6, in which 

flutter and divergence instability appear simultaneously, but 

divergence instability takes place firstly. For sufficiently 

large spring stiffness, all critical load curves intersect at a 

common point, meaning that the critical divergence loads 

are independent of β and in fact correspond to the Euler 

buckling loads of a clamped-hinged nanobeam with and 

without the surface effects. This is in line with that observed 

in Fig. 3. For solid lines, the critical loads with 

consideration of the surface effects obviously increase. 

Finally, we examine the effect of the tangency 

coefficient on the critical load. Fig. 6 gives the critical load 

as a function of β for k=0, 10, 60. In the case of k=0, the 

critical divergence load pD increases monotonically with an 

increase of β and the curve has an inflexion point at about 

β=0.5. It is worth noting that at this particular value of 

β≈0.5, the type of instability suddenly changes from 

divergence to flutter, as pointed out in (Chen 2003). Later 

with an increase of β, the critical flutter load decreases 

slightly at first and then increases, that is, there is a 

minimum value of critical flutter load for a certain value of 

β. For k=10 a similar phenomenon is observed. For k=60, 

the instability type exhibits only divergence type and no 

flutter occurs. Moreover, the critical divergence load 

increases monotonically as k increases. The critical loads 

for solid curves (with the surface effects) significantly 

increase. 

 

 

5. Conclusions 
 

This paper investigated the influences of surface 

properties and spring stiffness of the restraint end on the 

dynamic behavior of a clamped-elastically restrained 

nanobeam under the action of a subtangential follower 

force. We first employed Hamilton‟s principle and derived 

the characteristic equation governing the force-frequency 

interaction. Based on the resulting equation, the influences 

of the surface effects, spring stiffness on the critical loads 

were analyzed. Some conclusions are drawn as follows:  

• The surface properties evidently change critical loads 

and natural frequencies, as well as the type of instability 

of a nanocantilever. 

• For a clamped-hinged nanobeam, only divergence 

instability exists and divergence loads are independent 

of β. 

For a conservative force, divergence instability of 

system always occurs, regardless of the value of spring 

stiffness. 

• For a nonconservative force, the spring stiffness plays 

a dominated role of instability type. Flutter instability 

and divergence instability can transit when the tangency 

coefficient of applied force and the spring stiffness are 

changed. 
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