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1. Introduction 
 

The degenerate scale problem in antiplane elasticity or 

Laplace equation attracts many researchers with 

considerable attention (Hu et al. 1996, Chen et al. 2001, 

Chen et al. 2000, Kuo et al. 2013ab, Chen 2013, 2016, 

Chen and Lin 2010, Corfdir and Bonnet 2013). The 

problem typically appears in the Dirichlet problem for an 

exterior region. For example, even vanishing boundary 

value is assumed on the contour, non-vanishing solution for 

the Laplace equation exists in the exterior region when the 

scale takes a critical value.  

A simple convenient method was suggested to evaluate 

the degenerate scales (Hu et al. 1996). On the other hand, 

using the necessary and sufficient boundary integral 

formulation could eliminate the non-equivalence of the 

conventional boundary integral formulations. In the 

potential problem, the Dirichlet boundary value problem 

was shown to yield a nonunique solution when the 

configuration reaches the degenerate scale (Chen et al. 

2001). The degenerate scale was studied using the 

degenerate kernels and circulants. The degenerate scale for 

BIE in plane elasticity and antiplane elasticity was 

evaluated by using the complex variable and the conformal 

mapping (Chen et al. 2000). Basic equations in the complex 

variable method of plane elasticity were compactly 

addressed. From the formulation of an exterior problem in 

plane elasticity, the background for existence of the 

degenerate scale was discussed in detail. 

It was proved that the unit leading coefficient of the 
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linear term in the conformal mapping resulted in an interior 

null field which matched well the BEM (boundary element 

method) result once the degenerate scale happened (Kuo et 

al. 2013a). Degenerate scale of a regular N-gon domain was 

studied by using the BEM and complex variables (Kuo et 

al. 2013b). It was found that the contour of nonzero exterior 

field for the degenerate scale using the BEM matched well 

with that of Schwarz-Christoffel transformation. A solution 

for the degenerate scale for N-gon configuration in 

antiplane elasticity was provided (Chen 2013). The solution 

depends on a conformal mapping function of N-gon 

configuration in an infinite region. 

The degenerate scale problem for the Laplace equation 

in a multiply connected region with an outer elliptic 

boundary was studied (Chen and Lin 2010). Inside the 

elliptic boundary, there are many voids with arbitrary 

configurations. When the used scale coincides with the 

degenerate scale, a non-trivial solution is found. 

The degenerate scale issue does not appear only for 

Dirichlet condition of the Laplace equation but also for 

Robin boundary condition and some other conditions 

(Corfdir and Bonnet 2013, 2017).  

The problem of finding a degenerate scale for Laplace 

equation in a half-plane was studied (Corfdir and Bonnet 

2013). It was shown that if the boundary condition on the 

line bounding the half-plane is of Dirichlet type, there was 

no degenerate scale. In the case of a boundary condition of 

Neumann type, there was a degenerate scale. A numerical 

solution for the degenerate scale in antiplane elasticity using 

the null field BIE (boundary integral equation) was 

suggested (Chen 2016). 

Similarly, many researchers studied the degenerate scale 

problem in plane elasticity (Vodicka and Mantic 2008, 

Vodicka 2013, Vodicka and Petrik 2015). The solution of a 

Dirichlet boundary value problem of plane isotropic 
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Fig. 1 (a) A contour Σ with the exterior region S
-
, (b) A 

degenerate contour Σd, (c) The unit circle Γ in ς-plane 

 

 

elasticity by the BIE of the first kind obtained from the 

Somigliana identity was considered (Vodicka and Mantic 

2008). The logarithmic function appearing in the integral 

kernel leads to the possibility of this operator being non-

invertible. A kind of the degenerate scale problem in plane 

elasticity was studied (Vodicka and 2013). It was pointed 

out that the logarithmic function appearing in the integral 

kernel may cause that the operator is non-invertible. In 

addition, the degenerate scales closely connected to the 

presence of a logarithmic function in the integral kernel of 

the single-layer potential operator (Vodicka and Petrik 

2015).  

An exact solution was proposed for the hypersingular 

boundary integral equation of two-dimensional 

elastostaticcs (Zhang and Zhang 2008). Properties of 

integral operators in complex variable boundary integral 

equation in plane elasticity were investigated (Chen and 

Wang 2013), which are derived from the Somigliana 

identity in the complex variable form. 

This paper investigates some general properties in the 

degenerate scale problem of antiplane elasticity or Laplace 

equation. For a given configuration, the degenerate scale 

problem is solved by using the null field BIE (Chen 2016, 

Chen and Wu 2007). After solving the problem, we can 

define and evaluate the degenerate area which is defined by 

the area enclosed by the contour in the degenerate 

configuration. The degenerate area is defined from the 

conformal mapping of the contour configuration. After 

using the conformal mapping, the degenerate area can be 

easily evaluated. In the case of non-circular contour, the 

degenerate area takes the maximal value for the contour 

with the symmetric configuration. For example, the 

degenerate area for the square configuration is larger than 

that for the rectangular contour. The degenerate area for 

many configurations, from triangle, quadrilles and N-gon 

configuration are evaluated numerically. Note that those 

properties can only be found by numerical computation at 

present time. The investigated properties provide a deeper 

understanding for the degenerate scale problem. 

 

 

2. Analysis 
 

2.1 Formulation of the degenerate scale problem 
based on conformal mapping 
 

After using complex potential ϕ*(z) in antiplane 

elasticity, all the physical quantities can be expressed 

through a complex potential ϕ*(z) (Chen et al. 2000) 

),(),()(* yxiFyxGWz           (1) 

In Eq. (1), z=x+iy, G denotes the shear modulus of 

elasticity, W(x,y) is the displacement in the longitudinal 

direction, F(x,y) is the conjugate harmonic function with 

respect to the function GW(x,y). Clearly, the displacement 

component W(x,y) and F(x,y) satisfies the following 

Laplace equation 

0),(2  yxW , 0),(2  yxF , 

where 
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From Eq. (1), we can express the displacement W(x,y) 

by 
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2
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G
yxW            (3) 

The degenerate scale or size is defined such that a non-

trivial solution exists in the exterior Dirichlet boundary 

value problem of antiplane elasticity or Laplace equation 

even the vanishing displacement is assumed on the 

boundary. Now we will introduce a particular Dirichlet 

problem for exterior BVP (boundary value problem) as 

follows (Fig. 1) 

0),( 
d

yxW , or 0))()(( ** 
d

zz     (4) 

where Σd is a particular configuration to be investigated 

(Fig. 1). 

In the formulation of the degenerate scale problem, the 

following mapping function is used  

)()(  Rz  , with )()(
1







k

k
kq   

(R -positive real, kq -complex value)      (5) 

which maps the unit circle and its exterior region in ς-plane 

into some contour Σ and its exterior region in the z-plane 

(Fig. 1). After using the conformal mapping, we can define 

the following complex potential 

)(* )()(






z

z             (6) 
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Clearly, from Eq. (6), the condition shown by Eq. (4) 

can be rewritten in the following form 

0)()( 


 , (with 
 ie )      (7) 

where Γ denotes the unit circle in the ς-plane (Fig. 1). 

Since we have z≈Rς at infinity, the investigated complex 

potential ϕ(ς) can be expressed in the following form 

)ln()(  R                (8) 

Substituting Eq. (8) into (7) yields  

1 dRR                  (9) 

where the subscript „d‟ denotes a critical value . Therefore, 

we can conclude that the following mapping function 

z=ω(ς) |R=1=χ(ς) maps the unit circle on the ς-plane into a 

critical contour, or the degenerate contour Σd, in the z-plane 

(Fig. 1). 

In this case, we can evaluate the area bound by the 

contour Σd 


d

ydxAd               (10) 

The value Ad defined by Eq. (10) is called the 

degenerate area in the present study. Note that the 

integration in Eq. (10) is performed in the anti-clockwise 

direction (Fig. 1).  

In Eq. (5), we make the following substitution ς=e
iθ

, and 

obtain 

)()(
1











k

ki
k

i

e
eqeiyx i



     (11) 

Substituting Eq. (11) into (10) yields 

)1(
1
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k

kd qkydxA
d

 , 

(where kkk qqq 
2

)           (12) 

This equation was proposed by other researcher. 

From Eq. (12) we see that the degenerate area Ad solely 

depends on the coefficients qk (k=1,2,..) involved in the 

mapping function. We also see that if qk≠0 (k=1,2, …), the 

degenerate area Ad satisfies the following inequality 

dA                 (13) 

Clearly, in the condition of qk=0 (k=1,2,3,..), or χ(ς)=ς, 

we will obtain the maximum value for the degenerate area 


 ,..2,1,0max, kqd

k

ydxA        (14) 

Therefore, The degenerate area Ad takes its maximum 

Ad,max=π in the case of circular boundary.  

In a real computation using BIE, we must design a 

normal configuration to perform computation (see below 

section 2.2). In the case of an elliptic contour with two 

semi-axes “a” an “b”, if choose b=5 and a=10, we have 

relevant area A=πab=50π which satisfies the condition 

 
(a) 

 
(b)                     (c) 

Fig. 2 Formulation of the degenerate scale problem, (a) the 

degenerate scale, (b) the first normal scale with the relation 

to the degenerate scale by xd=h1x1, yd=h1y1, ad=h1a1, (b) the 

second normal scale with the relation to the degenerate 

scale by xd=h2x2, yd=h2y2, ad=h2a2 

 

 

A>>Ad,max (Ad,max=π). Therefore, it (choosing b=5, a=10) is 

an appropriate option for the solution of the exterior BVP of 

Laplace equation in the case of elliptic contour. 

In the meantime, if one does not know the conformal 

mapping function beforehand, one can evaluate the Ad from 

a numerical solution. 

 

2.2 Formulation of the degenerate scale problem 
based on the null field boundary integral equation 

 

In the following derivation, the formulation for the 

degenerate scale problem is based on the null field BIE 

(Chen 2016, Chen and Wu 2007) (Fig. 2)  

It is assumed that for a particular scale or the degenerate 

scale Σd, there is a non-trivial solution for p(x) to the 

following integral equation 

0)()(ln  xdsxpx d
d

 , 

(for iD )                 (15) 

where ξDi denotes the null nodes (Fig. 2) . 

The proposed null field BIE shown by Eq. (15) may be 

solved in the normal scale with coordinates oxjyj (j=1,2). 

The two coordinates oxjyj (j=1,2) and oxdyd have the 

following relations (Fig. 2) 

jjd xhx  , jjd yhy  , jjd aha   (j=1,2)    (16) 
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where hj (j=1,2) denotes a magnified or a reduced factor. 

For solely evaluating the solution for the generate scale 

problem, one only needs to solve one of cases for j=1,2, for 

example, j=1. However, in order to prove the invariant 

poverty for the degenerate configuration, or for ad, we have 

to solve and propose the problem for two cases, or j=1,2, 

simultaneously. 

Since 
jjd yxoindyxoin

xx   lnln jhln (j=1,2), 

substituting this relation into Eq. (15) yields 

jjj hQxdsxpx
j

ln)()(ln   , 

 (for iD . j=1,2)            (17) 

where 

)()( xdsxpQ jj
j
 , (j=1,2)        (18) 

Note that the integration contour Σj in Eq. (17) is a 

normal scale. In the case, the integral operator in the left 

hand side of Eq. (17) is invertible. 

In order to find a non-trivial solution from Eq. (17), we 

propose the following basic solution for the BIE in the 

normal scale defined by 

1)()(ln  xdsxpx j
j

  , 

(for iD , j=1,2)            (19) 

Since the BIE shown by Eq. (19) is formulated in the 

normal scale, or Σj, it must have a definite solution. This 

solution for Eq. (19) is denoted by p*j(x). Thus, we have 

1)()(ln *  xdsxpx jj
j

 , 

(for iD , j=1,2)           (20) 

From obtained solution p*j(x), we can evaluate 

)()(** xdsxpQ jjj
j
 , (j=1,2)      (21) 

From Eqs. (17) and (20), we see the following relation 

)(ln)( * xphQxp jjj , (j=1,2)      (22) 

After using the following operator )({....} xds j
j
 to 

both sides of Eq. (22), and using Eqs. (18) and (21) , we 

have 

1ln*  jj hQ , or )
1

exp(
* j

j
Q

h  , 

(j=1,2)                  (23) 

Finally, we will find the following degenerate scale 

jjjd aha , , (j=1,2)             (24) 

Therefore, the degenerate scales ad is finally evaluated. 

In the following derivation, we denote γ=a2/a1. To prove the 

invariant property of the degenerate scale ad, it is equivalent 

to prove the following equalities  

2,1, dd aa  , or 1122 ahah  , or 


1

1

2 
h

h
, 

or ln)ln(
1

2 
h

h
, 

or ln
11

1*2*


QQ

 , 

or 1*2*2* )ln1( QQQ            (25) 

In the first step of derivation, we want to find the 

relation between two functions p*2(x) and p*1(x). Clearly, 

from Eq. (20) we have the following integral equation  

1)()(ln 22*
2

 xdsxpx  , 

(for iD )               (26) 

By adding  ln)()(ln 2*22*
2

Qxdsxp   to Eq. 

(26), we have 

 ln1)()()ln(ln 2*22*
2

Qxdsxpx  , 

(for iD )                (27) 

In addition, Eq. (27) can be converted into (Note

)()( 12 xdsxds  ) 






ln1
)()(ln 2*

12*
1

Q
xdsxpx


 , 

(for iD )               (28) 

Thus, comparing Eq. (19) with (28), we will find 

)(
ln1

)( 1*
2*

2* xp
Q

xp



          (29) 

In addition, from Eqs. (21) and (29), we have (Note

)()( 12 xdsxds  ) 

)()()()( 12*22*2*
12

xdsxpxdsxpQ  
   

1*2* )ln1( QQ                (30) 

Finally, the validity of Eq. (25) is finally proved.  

Therefore, we find the first property in the degenerate 

scale problem. Without regarding the option of the normal 

scale, for example a1 or a2 (Fig. 2), we will obtain the 

invariant values for the degenerate scale, or ad,1=ad,2, or 

h2a2=h1a1. 

The merit of the derivation from Eq. (15) to (30) is 

compactly introduced below. In the transfer coordinate 

method, it is necessary to choose a normal scale for 

evaluating the degenerate scale. From the mentioned 

derivation, we can confirm that under the different normal 

scales, the obtained degenerate scale is unique  
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Fig. 3 Different configurations in the degenerate scale 

problem (a) a triangle, (b) an isosceles triangle, (c) an 

equilateral triangle, with the relation Ad |case a<Ad |case b<Ad 

|case c 

 

Table 1 The degenerate scale ad (=f1(α, β)) and the 

degenerate area Ad (=πg1(α, β)) with β=bd/ad (see Eqs. (31), 

(32) and Fig. 3(a)) 

f1(α, β) 

 β= 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.4 1.5 

α=            

π/6  3.3268 3.2284 3.1188 2.9919 2.8524 2.7122 2.5754 2.4424 2.3165 2.1999 

2π/6  2.8981 2.7613 2.6295 2.5019 2.3786 2.2634 2.1561 2.0561 1.9629 1.8765 

3π/6  2.6037 2.4635 2.3349 2.2165 2.1076 2.0071 1.9140 1.8286 1.7502 1.6778 

4π/6  2.4397 2.3008 2.1765 2.0647 1.9635 1.8715 1.7876 1.7108 1.6401 1.5750 

g1(α, β) 

 β= 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.4 1.5 

α=            

π/6  0.5285 0.5806 0.6192 0.6411 0.6475* 0.6439 0.6334 0.6171 0.5979 0.5777 

2π/6  0.6946 0.7357 0.7624 0.7765 0.7798* 0.7767 0.7689 0.7575 0.7435 0.7280 

3π/6  0.6474 0.6761 0.6941 0.7037 0.7070* 0.7052 0.6997 0.6919 0.6825 0.6720 

4π/6  0.4922 0.5107 0.5223 0.5288 0.5314* 0.5310 0.5285 0.5244 0.5191 0.5129 

*Taking maximum value 

 

 

3. Two numerical examples 
 

Example 1 

In the first example, we evaluate the degenerate scale 

and the degenerate area for the configuration of the triangle 

(Fig. 3). The null field BIE technique suggested in section 

2.2 or in (Chen 2016) is used to solve the problem 

numerically.  

The triangle has an arbitrary α and two edges “a” and 

“b” with different lengths (Fig. 3). The computed 

degenerate scale for length “a” is expressed by 

),(1 fad  , (with dd ab / )       (31) 

In addition, the degenerate area is expressed by 

),(1 gAd  , (from 2/)sin( 2  dd aA  )  (32) 

For the case of (a) α=π/6, 2π/6, 3π/6 to 4π/6, (b) β=0.6, 

0.7,….1.0,…..1.5, the computed results for f1(α, β) and g1(α, 

β) are listed in Table 1. 

For any given α, from Table 1 we find that g1(α, β) takes 

a maximum value at β=bd/ad=1. For example, at α=3π/6, 

β=bd/ad=1, g1(α, β) takes a maximum value of 0.7070, 

which is listed in the third row for g1(α, β) in Table 1. 

Generally, we have g1(α, β)<1. 

From the computed results, we can find the second  

Table 2 The degenerate scale ad (=f2(α)) and the degenerate 

area Ad (=πg2(α)) (see Fig. 3(b), (c)) 

α = π/12 2π/12 4π/12 4π/12 5π/12 6π/12 7π/12 8π/12 9π/12 10π/12 

f2(α) 3.2322 2.8524 2.5829 2.3786 2.2235 2.1076 2.0220 1.9635 1.9288 1.9159 

g2(α) 0.4303 0.6475 0.7508 0.7798* 0.7601 0.7070 0.6285 0.5314 0.4187 0.2921 

Note: g2,max=g2(α) | α =4π/12=0.7798, * taking maximum value 

 

  
(a) (b) 

Fig. 4 Different configurations in the degenerate scale 

problem (a) a parallelogram, (b) a rectangle , with the 

relation Ad |case a<Ad |case b 

 

 

property as follows. For a given α, among all possibilities 

for β=bd/ad, the non-dimensional degenerate area g1(α, β) 

(=Ad/π) takes a maximum value at the condition β=bd/ad=1 

(see Fig. 3(a),(b) and Table 1, maximum value marked by 

*). 

In a particular case, the triangle has an arbitrary α and 

two edges with equal lengths (Fig. 3(b)). The computed 

degenerate scale for length “a” is expressed by 

)(2 fad                    (33) 

In addition, the degenerate area is expressed by 

)(2 gAd  ,(from 2/)sin( 2 dd aA  )     (34) 

For the case of α=π/12, 2π/12, 3π/12 to 10π/12 the 

computed results for f2(α) and g2(α) are listed in Table 2.  

We see from Table 2 that, under the condition β=bd/ad=1 

(or bd=ad), g2(α) takes a maximum value of 0.7798 at 

α=π/3, which is listed in the third row for g2(α) in Table 2 

(see Fig. 3(b), (c) and Table 2, maximum value marked by 

*) 

We will find the third property as follows. Among all 

possibilities of α in the case of isosceles triangle (see Fig. 

3(b), (c)), the non-dimensional degenerate area g2(α) 

(=Ad/π) takes a maximum 0.7798 at the condition α=π/3 

(=60 degree), or the case of equilateral triangle (see Fig. 

3(b), (c) and Table 2, maximum value indicated by *). 

From the second and third properties for the triangle 

configuration, we will find the following result, for all 

possible cases of α, β=bd/ad, g1(α, β) (=Ad/π) reaches its 

maximum 0.7798 ( see the listed results . 0.7508, 0.7798 , 

0.7601 in Table 2 ). 

 

Example 2  

In the second example, we evaluate the degenerate scale 

and the degenerate area for the configuration of the 

parallelogram (Fig. 4). As in the first example, the null field 

BIE technique is suggested to solve the problem 

numerically mentioned in section 2.2 (Chen 2016). 

The parallelogram has an arbitrary inclined angle α and 

two edges “2a” and “2b” with different lengths. The  
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Table 3 The degenerate scale ad (=f3(α, β)) and the 

degenerate area Ad (=πg3(α, β)) with β=bd/ad for the 

parallelogram configuration (see Eqs. (35), (36) and Fig. 4) 

f3(α, β) 

 β= 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.4 1.5 

α=            

π/6  1.1469 1.0774 1.0163 0.9622 0.9138 0.8704 0.8311 0.7954 0.7627 0.7328 

2π/6  1.0861 1.0191 0.9607 0.9093 0.8636 0.8227 0.7857 0.7522 0.721 6 0.6935 

3π/6  1.0670 1.0009 0.9434 0.8928 0.8479 0.8078 0.7715 0.7387 0.7087 0.6812 

4π/6  1.0861 1.0191 0.9607 0.9093 0.8636 0.8227 0.7857 0.7522 0.7216 0.6935 

g3(α, β) 

 β= 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.4 1.5 

α=            

π/6  0.5024 0.5173 0.5260 0.5304 0.5316* 0.5305 0.5277 0.5236 0.5185 0.5128 

2π/6  0.7805 0.8016 0.8142 0.8206 0.8224* 0.8209 0.8169 0.8110 0.8038 0.7956 

3π/6  0.8698 0.8928 0.9065 0.9135 0.9155* 0.9138 0.9095 0.9031 0.8953 0.8863 

4π/6  0.7805 0.8016 0.8142 0.8206 0.8224* 0.8209 0.8169 0.8110 0.8038 0.7956 

Note: g3,max=g3(α, β) | α =3π/6 β=1 =0.9155, * taking maximum 

value 

 

 

computed degenerate scale for length “a” is expressed by 

),(3 fad  , (with dd ab / )      (35) 

In addition, the degenerate area is expressed by 

),(3 gAd  , (from  sin4 2
dd aA  )   (36) 

For the case of (a) α=π/6, 2π/6, 3π/6 to 4π/6 (b) 

β=0.6,0.7,….1.0,..1.5, the computed results for f3(α, β) and 

g3(α, β) are listed in Table 3.  

From the computed results, we can find the following 

results. For a given α, among all possibilities for β=bd/ad, 

the non-dimensional degenerate area g3(α, β) (=Ad/π) takes a 

maximum at the condition β=bd/ad=1 (Fig. 4(a)). For 

example, in the condition of α=2π/6, β=bd/ad=1, g3(α, β) 

takes a maximum value of 0.8224 (see second row for g3(α, 

β)results in Table 3). 

From the computed results, we can find the fourth 

property as follows. Among all possibilities for β=bd/ad, the 

non-dimensional degenerate area g3(α, β) (=Ad/π) takes a 

maximum value at the condition β=bd/ad=1 (see Fig. 4(a), 

(b) and Table 3, maximum value indicated by *). 

Now we study the property for 
133 ),()1,(





 gg  

(or for the case of bd=ad) for the different α values. From 

Table 3 we find that, at α=3π/6, g3(α, 1) takes a maximum 

value of 0.9155. Note that α=3π/6, β=bd/ad=1 corresponds 

to a square configuration. Finally, 

16/33max,3 ),(





gg =0.9155 is the largest value for 

g3(α, β) in the studied range (see Table 3, maximum value 

indicated by *) . 

In addition, for two cases α=α1 and α=α2=π−α1 (for 

example α=α1=2π/6, α=α2=4π/6, the functions f3(α, β) or 

g3(α, β) take the same values . Generally, we have g3(α, 

β)<1. 

From the computed results, we can find the fifth 

 

Fig. 5 N-gon configuration for N=3,4,5,6,7 and 8, and the 

definition for the degenerate scale ad and the degenerate 

area Ad 

 

 

property as follows. Among all possibilities for α, the non-

dimensional degenerate area g3(α, β) |β=1 (=Ad/π) takes a 

maximum value 0.9155 at the condition α=3π/6 which 

corresponds to a square configuration (see Fig. 4(a), (b)and 

Table 3, maximum value indicated by *). 

 

 

4. Analysis for the N-gon configuration 
 

In the third example, we evaluate the degenerate scale 

and the degenerate area for the N-gon configuration (Fig. 

5). The mapping function was suggested previously (Kuo et 

al. 2013b, Chen 2013) 

)()(  Rz  , 

with 
1

2
1
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where 
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The computed degenerate scale for length “ da ” is 

expressed by 

)(4 Nfad  , (N=3,4,…)          (39) 

where 
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2
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
 , 

( 3N )                 (40) 

In addition, the degenerate area Ad is expressed by 
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Some general properties in the degenerate scale problem of antiplane elasticity or Laplace equation 

 

Table 4 The degenerate scale ad (=f4(N)) and the degenerate 

area Ad (=πg4(N)) with (see Eqs. (39), (40), (41) and Fig. 5) 

N= 3 4 5 6 7 8 9 10 

f4(N) 0.6845 0.8472 0.9102 0.9410 0.9583 0.9689 0.9760 0.9809 

g4(N) 0.7749 0.9139 0.9579 0.9763 0.9853 0.9903 0.9932 0.9951 

 

 

)(4 NgAd  , (from )/tan(2 NNaA dd  ) 

(N=3,4,..)              (41) 

For the case of N=3,4,…10, the computed results for 

f4(N) and g4(N) are listed in Table 4. From computed results 

we find the following results. Generally, we have f4(N)< 

f4(N+1) and g4(N)<g4(N+1). Particularly, when N→∞, we 

have the following limitation 1)(lim 4 


Nf
N

 and 

1)(lim 4 


Ng
N

.  

From above mentioned results, we can propose the 

fourth property in the degenerate scale problem for the N-

gon configuration. If the N-gon configuration is more nearly 

to the circular configuration, or N→∞, the degenerate scale 

f4(N)(=ad) and the moralized degenerate area g4(N) (=Ad/π) 

will approach unity, respectively. 

 

 
5. Conclusions 
 

The concept for degenerate area, or Ad, in the degenerate 

scale problem is introduced. A conjecture for the degenerate 

area is proposed in the present study. For the triangle case, 

the conjecture is as follows. Among all possibilities for the 

triangle, the non-dimensional degenerate area Ad/π takes a 

maximum value for the configuration of equilateral triangle, 

(see Fig. 3(a), (b), (c)). This conjecture has been proved 

numerically in the first example. However, this conjecture 

is not easy to prove analytically. Clearly, this conjecture is 

also valid for the N- gon configuration with different edge 

lengths.  
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