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Abstract.  This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous

materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and
subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the
plate). The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the
elastic coefficients of the plate material except the Poisson’s ratio varying continuously throughout the thickness and radial
directions according to an exponential function. These equations are solved semi-analytically by employing the state space
method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the
FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly
distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis,
numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation
gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the
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static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads

are compared.
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1. Introduction

In recent years, new class of advanced composite
materials known as functionally graded porous materials
(FGPM) has introduced in the literature and attracted a lot
of attention by researchers. These materials have found
practical applications in many scientific and engineering
fields (i.g., aerospace, vehicles, civil, mechanical, nuclear
and biomedical) due to their smooth variation in properties.
On the other hand, the modeling, analysis and optimization
of basic structures (beams, plates and shells) interacting
with the elastic foundations is a topic in engineering. As
basic structural elements, circular plates composed from
heterogeneous porous materials supported by elastic
foundations have found a wide range of engineering
applications. Typical examples may be found in the design
and analysis of interaction between structure and foundation
of storage tanks and silos, driven plates of friction clutches
and brake disks of machine tools and vehicles. Besides, in
modern engineering this topic may be used to formulate the
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effect of the artificial organs interacting with the biological
medium and nano-plates embedded in an elastomeric
substrate.

Taking into account the plate theories, many researchers
have been used analytical methods to study the static
bending, buckling behavior, vibration problems and
dynamic response of heterogeneous circular plates. In this
regard, axisymmetric bending of thick functionally graded
circular plates with various outer edge conditions was
studied by Saidi et al. (2009), based on third order shear
deformation plate theory. Fallah and coauthors (2012, 2015)
used first-order shear deformation plate theory (FSDT) with
Von Karman geometric non-linearity to investigate the
bending and post-buckling behaviors of FG circular plates
under asymmetric loading in conjunction with thermal
loading and in-plane loading. On the basis of the classical
plate theory (CPT), Khorshidvand et al. (2014) obtained the
critical buckling load of porous circular plate integrated
with piezoelectric sensor-actuator layers under uniform
radial compression. They employed the energy method and
calculus of variations to derive the governing equations and
carried out an eigenvalue solution for the plate with
clamped edge. Utilizing CPT and FSDT theories, Jabbari et
al. (20144, b, c) studied the buckling of a porous circular
plate. They investigated the effect of porosity and pore fluid
properties on the critical buckling load. They also studied
the effect of thermal load and constant applied voltage on
piezoelectric layers. In other investigation, Jabbari et al.
(2013) developed an analytical method to obtain the steady
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state thermal and mechanical stresses of a poro-piezo-FGM
hollow sphere. Farzaneh Joubaneh et al. (2015) provided
an analysis to obtain the critical buckling temperature of
porous circular plates integrated with piezoelectric sensor-
actuator patches under uniform thermal load. They obtained
the governing equations, based on the CPT, by employing
the energy method and calculus of variations. They also
assumed the material properties of porous plate to vary by a
power law distribution through the thickness of the plate,
and the plate pores are saturated with fluid. Mojahedin et al.
(2016) used the higher order shear deformation plate theory
(HSDT) to obtain the pre-buckling force and critical
buckling loads of porous FGM circular plates. They derived
the equilibrium and stability equations by using energy
method and the calculus of variations, and considering the
Sanders non-linear strain-displacement relations. Chen et al.
(2015) used the Timoshenko beam theory to accomplish the
static bending and buckling analysis of functionally graded
porous beams. Benferhat et al. (2016) used sinusoidal shear
deformation theory and presented an analytical solution to
investigate the effect of porosity on bending and free
vibration behavior of simply supported FG rectangular plate
resting on Winkler-Pasternak foundation. Recently, Akbas
(2017) employed finite element and Newton-Raphson
methods to analyze the post-buckling of FG beams with
porosity effect under compression load. Using the Runge-
Kutta method and deformation map approach, the axially
symmetric deformations and stability of a geometrically
nonlinear circular plate subjected to multiparametrical static
loading have been investigated by Drawshi and Betten
(1992).

Differential quadrature (DQ) method as an efficient and
accurate numerical tool has been used to study the bending,
buckling, thermoelastic and dynamic behavior of
homogeneous and heterogeneous circular plates under
various loads. Civalek and Ulker (2004) used the harmonic
differential quadrature (HDQ) method to predict the linear
bending behavior of circular plates. In other study, Civalek
(2004a) applied the DQ and HDQ methods to illustrate the
bending, buckling and free vibration analysis of thin
isotropic plates and elastic columns. Considering the 2D
thermo-elasticity theory, Sepahi et al. (2010) used the DQ
method for axisymmetric large deflection response of a
simply supported annular FG plate resting on a nonlinear
elastic foundation (Pasternak type). Taking into account the
first order shear deformation theory (FSDT) and adopting
this technique, Malekzadeh et al. (2011) studied the free
vibration of temperature-dependent functionally graded
annular plates on elastic foundations. The free vibration
problem of the thick FG annular plates on an elastic
foundation was investigated by the Yas and Tahouneh
(2012) based on the 3D theory of elasticity. On the basis of
the classical plate theory (CPT), Kumar and Lal (2013)
predicted the free axisymmetric vibration of two directional
functionally graded annular plates resting on a Winkler
foundation, using DQ method and Chebyshev collocation
technique. In their study power law type property
distribution in both thickness and radial directions is
considered. Baccicchi and coauthors (2015, 2016) studied
the vibration characteristic of variable thickness plates,

shells and doubly-curved shells using GDQ method.

The differential transformation method (DTM), based
on the Taylor series expansion, is one of the mathematical
techniques which has been used to solve the differential
equation of structures in recent years. Shariyat and Alipour
(2011) considered the classical plate theory and DTM to
analyze the free vibration and modal stress of two-
directional functionally graded circular plates embedded on
two-parameter elastic foundations. The static behavior of
FG circular plates with power law distribution of
constituents resting on a Winkler-type elastic foundation
was studied by Abbasi et al. (2014). On the basis of the
Mindilin’s shear deformation plate theory and assuming the
material properties of the FG circular plate to vary in the
transverse direction by a power-law and exponentially in
the radial direction, Alipour and Shariyat (2013) analyzed
the buckling behavior of variable thickness of 2D-FGM
circular plates resting on non-uniform elastic foundations
by using DTM. Lal and Ahlawat (2015a, b) employed the
CPT and DTM to analyze the buckling and vibration
behaviors of uniform and non-uniform FG circular plates
resting on Winkler foundation.

Numerous investigations have been analytically reported
in the literature to characterize the bending, dynamic and
thermoelastic behavior of FG and smart functionally graded
porous material structures. Li et al. (2008) obtained
elasticity solutions for transversely isotropic FG circular
plates subjected to an axisymmetric transverse load in the
form of an even order polynomials (e.g., q r*, k is zero or a
finite even integer). On the basis of the three dimensional
theory and utilizing direct displacement method, Wang et
al. (2010, 2016) presented an analytical solution for the
axisymmetric bending of FG circular plate and the FG
annular plates made of magneto-electro-elastic and
piezoelectric materials, respectively. Sburlati and Bardella
(2011) developed a three-dimensional elasticity solution for
the bending problem of the FG thick circular plates
subjected to axisymmetric conditions. The equilibrium
equations are described in terms of the potential functions
based on Plevako’s representation. The material properties
were varied along the thickness of the plate. Assuming the
material properties to vary through the thickness of a sphere
according to power law functions, Jabbari et al. (2013)
carried out an analytical solution for the thermo-elastic
analysis of a poro-piezo-FGM hollow sphere. They
obtained the temperature distribution along the sphere
thickness, and solved Navier equations analytically, using
Legendre polynomials and Euler differential equations
system to investigate the effect of graded indices,
compressibility and porosity on mechanical and electrical
guantities. Yang et al. (2014) presented an approximate
elasticity solution for the bending analysis of simply
supported or clamped transversely isotropic FG circular
plates subjected to a concentrated force at the center of its
upper face by extending England’s method.

Wirowski et al. (2015) analyzed the dynamic behavior
of FG annular plates resting on a two parameter elastic and
heterogeneous material foundation using an averaged
mathematical model. Sladek et al. (2015) considered the
uncoupled thermo-elasticity theory and meshless local
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Petrov-Galerkin method to investigate the bending of a
porous piezoelectric cylinder under thermal loading.

The semi-analytical method which was originally
proposed for free vibration analysis of generally laminated
beams by Chen et al. (2004), is applicable to more
complicated problems. This approach employs the state
space method (SSM) to express exactly the plate behavior
along the thickness direction, and the one dimensional
differential quadrature (DQ) rule to approximate the radial
variations of the parameters. Assuming exponentially
distributed mechanical properties in the thickness direction
and considering the 3D theory of elasticity, Behravan Rad
and co-authors (2010, 2012a) discussed static behavior of
FG circular and annular plates resting on linear elastic
foundations under the effect of axisymmetric transverse
load. Nie and Zhong (2007) analyzed the three dimensional
free and forced vibration of FG circular plate with various
boundary conditions. Alibeigloo and Simintan (2011)
investigated the static response of the FG circular and
annular plates embedded in piezoelectric layers. Jodaei
(2014) reported the static behavior of functionally graded
piezoelectric annular plates resting on a Pasternak type
elastic foundation. Behravan Rad (2015) extracted a new
differential equation to describe the normal interaction
between gradient hybrid foundation-structure, and analyzed
the thermoelastic behavior of the FG circular plates
supported by unconventional hybrid foundation under
asymmetric and non-uniform mechanical loads and uniform
thermal load, on the basis of the classical thermo-elasticity
theory.

Assuming the material properties to vary with an
exponential law in both thickness and radial directions, Nie
and Zhong (2007a) investigated the axisymmetric bending
of 2D-FG circular and annular plates. Davoodi et al. (2012)
demonstrated the free vibration problem of multi-directional
FG circular and annular plates. Their work covers the effect
of different parameters on natural frequencies and
corresponding mode shapes. Tahouneh and Yas (2014)
analyzed the free vibration of thick multidirectional FG
annular sector plates under various boundary conditions. In
other study, Yas and Moloudi (2015) used this method to
make three-dimensional free vibration analysis of multi-
directional functionally graded piezoelectric annular plates
on a two parameter elastic foundation. Asgari (2015)
considered the finite element and Genetic Algorithm
methods to optimize the materials distribution in a thick
hollow cylinder with finite length made of 2D-FGMs under
steady-state thermo-mechanical loading. In a series of
papers, Behravan Rad and co-authors (2012b, 2013a, b)
developed a semi-analytical solution to demonstrate the
static behavior of uniform and non-uniform multi-
directional functionally graded circular and annular plates
supported by uniform and variable elastic foundations under
compound mechanical loads. The progresses in the
mechanics of functionally graded materials and structures
have been reviewed in Gupta and Talha (2015) and
Swaminathan et al. (2015) in a detailed manner. The
Development of various semi-analytical numerical methods
in the mechanics of functionally graded elastic/piezoelectric
plates and shells has been introduced in Wu and Liu (2016).

The literature search indicates that there is no work
covering the three dimensional static analysis of variable
thickness of two directional functionally graded porous
material circular plate supported by a heterogeneous hybrid
foundation including horizontal friction force and subjected
to compound mechanical loads. Hence, present study is
devoted to this problem and investigates the static behavior
of the plate in un-drain condition. Inclined traction and
concentrated force in the center of the plate are taken into
account to propose a more general solution. In this work,
the elastic coefficients of the plate material are assumed to
be graded in the thickness and radial directions according to
an exponential law. The formulations are based on the
three-dimensional theory of the elasticity, and a semi-
analytical approach is employed to solve the governing
equations. The accuracy of the proposed method is
validated by comparing the results are available in the
literature. A convergence study is accomplished to
demonstrate the rapid convergence of the proposed method
and its capability to solve the governing equations of
complicated problems. The effects of material properties
gradient indices, loads ratio, thickness to radius ratio,
foundation parameters, foundation friction coefficient,
variations of compressibility and porosity on the
displacements and stress components are intensively
investigated.

The novelties of the present study may be outlined as
follows:

1) Multi-directional functionally graded porous material
is introduced.

2) A semi-analytical solution is extended for the static
analysis of variable thickness of 2D functionally graded
porous materials (FGPM) circular plate with complicated
boundary conditions.

3) The model of structure-foundation interaction is
developed by considering a horizontal friction force in
contact surface of plate and foundation.

4) The effect of concentrated force at the center of solid
circular plate is approximated by
considering a shear force uniformly distributed over the
inner boundary of annular plate.

5) The effect of compressibility, porosity and foundation
friction coefficient variations on the static behavior of
variable thickness of 2D-FGPM circular plate is illustrated
for the first time.

6) And last but not least, quite a new and interesting
stress and deformation results for the
non-uniform2D-FGPM circular plate are presented.

7) The static response of multidirectional FG and Porous
FG circular plates to compound mechanical loads are
compared, for the first time.

2. Mathematical formulations
2.1 Problem description
Consider a continuously varying thickness bi-directional

porous FGM circular plate with thickness (h,) at the center
and radius (a) resting on a gradient hybrid foundation and
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Rigid substrate

Fig. 1 Geometry of variable thickness of 2D Porous FG
circular plate resting on a gradient hybrid foundation
including friction force

subjected to compound mechanical loads, as shown in Fig.
1. The plate is clamped or simply supported at the
circumferential edge. Its bottom surface is flat and attached
to supporting medium. The thickness of the plate at upper
surface varies along the radial direction by continues
function h(r). A cylindrical coordinate system (r, 0, z)
whose origin o located at the center of bottom plane of the
plate is employed to describe the displacement field.

The plate elastic constants, external loads and plate
thickness variations are considered as follows

Ci(r.z)=C§ exp{nl(%}nz(a} 1)

i. Quadratic loads
2
P(r,0,2) :p{u pl[éj +p, (;j } cos(0),

2
Q(r.6,2)=q, 1+q1(£]+q2[;j cos(6) (2

ii. Sinusoidal loads

P(r,6,2) :po{1+ AaSin [ngﬂ cos(6)

Q(r,e,z):qo{lﬂzsin(ngﬂ cos() ©)

Exponential type thickness variation

wnefull] 0

where Cic} is the elastic coefficients at the center of
bottom surface of the plate, n;, n, denote the parameters
indicating the trends of the plate material properties
gradient, po, g, specify the values of external loads at the
center of the plate, «;, p;, di i and i=1,2,3 characterize the

plate geometry and external loads variation coefficients.

Qo

Ol-b-'

(b)
Fig. 2 Sketch of a non-uniform 2D porous FGM
circular plate concentrically loaded

a—

2.2 FGM circular plate with concentrated force at
the center

Consider a porous FG circular plate subjected to a
concentrated force F at the center with thickness h(r) and
radius a as shown in Fig. 2(a). The concentrated force can
be approximated with resultant shearing force Q.(r) at a
distance r from the center of the plate. The following
equation can be achieved from equilibrium in the z-
direction.

F
- 5)
2 2mrh

Now the FGPM circular plate can be replaced by an
FGPM annular plate. Suppose the FGPM annular plate with
a small inner radius b and resultant shearing force

F . A :
Qo = 2nbhib) uniformly distributed along the inner edge,

as depicted in Fig. 2(b). The Egs. (1) through (4) can be

stated as
Ci(rz)=C} exp{nl[ﬁjmz(;:m (6a)
h(r)= hoexp{al(;__zﬂ (6b)

P(r.6,2)=p, _1+ pl(;:l;j +p, (r—kk)j} cos(6)

b b’
Q(r.6,z)=q, 1+ql[ﬁj+q2(;__b) ]cos(e) (6c)

S0

Eﬂ cos(6)  (6d)

P(r,e,z)=po{1+}usin(n£I

Q(r,6,2)=q0{1+xzsin(n;:
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2.3 Derivation of governing equations

In the absence of body forces, the elastic equilibrium
equations are

69)20

-1 -1
Tror H1 GoptTorz T 20 19=0 Q)

-1 -1
Orrtl "Troot Trzztr (Gr_

-1 -1 _
Trzr 'l "Tezet Gzt r 1,=0

where o, oy, 03, T2, Trp are the stress components and the
comma denotes differentiation with respect to the indicated
variable.

The displacements field is considered as (Nie and Zhang
2007)

u(r,0,z)=u(r,z) cos(0)
v(r,0,2)=V(r,z)sin(6) (8)
w(r,0,z)=w(r,z)cos(0)
where u,v,w denote the displacement components in the r, 8
and z directions.
The Cauchy’s strain components are:
er=u(r0,2)
go=rV(r,0,2) g+rtu
e2=W(r,0,2),
Y, =u(r,0,2) ,+w(r,0,z) |
Yo, =1 W(,0,2) 4 +V(r,0,2) , ©)
Tro=r U(r0,2) ¢ +v(r,0,2) —r'v(r,0,2)
where &, &g, &1, Vs You» Yro denote the strain components.
The linear constitutive relations for a functionally

graded porous material circular plate are as follows (Jabbari
etal. 2013)

or=Cugr+Ci2e9+Cize,~YP, tz=CauYy,

60=Carer *C2e9+Ca3e,~ 7P, 0z = Cs5 Yo, (10)

67=Ca18r+Ca89+Caz e, — VP, Tr0 = Cé6 V1o
where y denotes the Biots coefficient of effective stress and

P is the pore pressure. Other material properties for porous
materials can be stated as

Pz(\y—yg)d), o= }\'u;k , B:Lu—}\ ,
’Y ’Y7\4u
(11)
s

Ay =M1+

(@=7)(1 =g s+ Oy

For fluid in un-drained condition (yw=0) the first term of
Eq. (11) leads to

P=—®y£=—y®(8r+ge+gz) (12)

where y, ¢, @, 4, 4, 4, B, ¢, denote the variation of fluid
content, volumetric strain, Biots Moduli, undrained bulk
modulus, drained bulk modulus, bulk modulus of fluid,

compressibility coefficient and porosity. Substituting Eq.
(12) in to Eq. (10) leads to (Jabbari et al. 2013)

or=C1 u(r,0,2) +Cp, r‘l(v(r,G,z)]e+ u(r,e,z))
+C13W(r,0,2),
Go=C1 U(r,0,2) ,+Ch r’l(v(r,e,z)ye+u(r,6,z))
+CW(r0,2),
62=Coa(r,0,2) +C 1} (v(r,0,2) 4 +u(r,0,2)]
+C3W(r,0,2),

Trz = C44(U(r,9,2)’z + W(r'e’z),r)

92:C55(r_1w(r,6,z)’e+V(|’,9,Z)YZ) (13)
Tr0= (;Ga(v(r,e,z)vr —rtv(r,0,z)+ 7t u(r,e,z)’e)
where
Cl1=C1+7°®, Cr=Cpo+y’®
(14)

* 2

C33=Cg3t+y" @

* 2 * 2
C12=C12+y D, C13=Cp3+7° @

In order to transform from physical domain to
computational domain and to present more general results,
the following non-dimensional parameters are introduced

_u(r,0,z) _v(r,0,2) _w(r,6,2) _r
“Thy T T T T T VA
_ho z(r)

n=te e=Tl. 0<est

(_;i(}=(;}}/(;33 i,j=1,2, 3, ES:C”/C’:;3 i,j=4,5,6,

r=-Q,/C%. I=rr, r=1
==, O, =5, T =5,
OnTy 00Ty Pe Ty e Ty (15)
_Toz Tro
- To= Y =1GPa

Taking into account the Egs. (6)-(15), the normalized
form of the governing differential equations of the plate in
the framework of the uncoupled poro-elasticity theory are
obtained as

_ | Cu 2 2 1 n»
Uge= [CSJ(h) { nn“{nJrl—b/a+
H[Lyn
n 1— b/a XZ X3
C12 2 2 C66 i
(&t (G J »
(G Joraor i

ZXZJU,n
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—0
[922 OFfd [C%](mz 2

55

1V +[X2_12]V‘|
o

~ N1y (W + 2 W)=y U e

Cis |, { [ ns 1J
| S8 W+ i W
C55] n 1—b/a n

—0
Cazs | X
[—53]1 Wé*hh(w,ng*XzW,g) (16a)
Css) "

Ve =

—0
C”](hf’“(u V) [C?J(h)zxfuz
C n 4 n

44 4

—0
C 1 1
*[(_:ij(h)lez{n { [Xz 1nb2/a]+nzlu}

[Cﬂ](hf Y [C%]m) +[2x2+5+ " ]V,n
Cu n Cu n 1-bja

+n1hX1 “NVe+— Czs]Wi (16b)
44
1 \
W ez = ”1[Cé3]hX1[U,n+(X2+nJU} “{Cgs]h n
33 33
[ 2 n
[_34]h2X1{W'“”+( "o L@ajw"
33
1 n | 1
+{Xs Xz(n+1—b/aJ 112} }
cy 1 Ce
_[—%JSJEX{Uné*[Xern]U,é}_[—g]hxl{uné
Css3 33
n 1 EO g
2 - _| 23 s
(1—b/a %2 nJU’&} {_Zjh oy MWe (%9

-b/a 2
where Xlzexp{al{lb/aﬂ' *a” (1%/3), * [1_(1;1/&]

2.4 Coupled effect of gradient hybrid elastic
foundation

The gradient hybrid foundation model provided by
Behravan Rad (2015) is employed in this study. It is
assumed that, the proposed foundation model is perfect,
attached to the plate, isotropic (T,=T,=T), non-uniform and
involves the horizontally distributed variable friction force
in the radial direction. The considered model consists of a
perfectly flexible membrane under constant tension T and
two layers of independent axial springs with stiffnesses ki,
k, as shown in Fig. 1. In the referred coordinate system, the
distributed normal traction and associated horizontal
friction force on the plate are expressed as follows

‘P—Eir T oY) 10 T o¥
rorl k+ky or ) r206| ki+k, 06
kiky |, 10f Tky ow) 10 Tky ow) o
ki+ky rorl ki+ky or ) (206(k+k, 00
Ff:Mf\P (18)

where W denotes the foundation reaction per unit area and w
is the lateral deflection of the bottom surface of the plate.
ki, T, k, and g, specify the hybrid foundation stiffnesses and
foundation friction coefficient, respectively. Two types of
radial variations of the foundation coefficients are
considered in the present study.

i. Exponential type

k(r,0,2)= k,oexp{fl(;:zﬂ cos(0)
T(r,0,2)= Toexp{fz[ﬁﬂcos(e)

ku (r,e, Z): kUOEXp{fS(;__EJ}COS(O)
r—

kel

- EH cos(0) (19b)

(19a)

ii. Sinusoidal type

U

o

ki (r,6,2)= Ko {1+ ;,llsm[

a_

£ eoso)

where ky, (N/m?), T, (N/m) and kg (N/m®) are the elastic
coefficients of hybrid foundation at the center of bottom
surface of the plate and f;, i and i=1,2,3 characterize the
foundation inhomogeneity exponents.

T(r,6,2)=T, {1+ pzsm(

ky(ri6,2)= Ko {1+ p3sin(n

3. The solution technique

In order to study the static behavior of the FGPM
circular plate, the expressed differential equations in Eq.
(16) is solved utilizing a semi-analytical method. By
employing this method, the mathematical model of
proposed problem is transformed to computational domain
and then by implementing the edge and the boundary
conditions, the established linear eigenvalue system from
state variables at all sample points is solved. Finally, the
displacements and stress components of the plate under
compound mechanical tractions are obtained.

3.1 DQM procedure and its application

Differential quadrature (DQ) method is a numerical
technique whit fast rate of convergence and less required
grid points in the solution domain. This method is
dominated by these two features. DQ method divides the
continuous domain in to a set of discrete points and replaces
the derivative of an arbitrary unknown function with the
weighted linear summation of the function values in the
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whole domain. According to this method, the nth-order
derivative of a continuous function g(r) defined in an
interval re[0,1], with respect to argument r at an arbitrary
given point r; can be approximated as follows (Jodaei 2014,
Behravan Rad 2015)

(n) ) N
a#n(rl):zAi(j”)g(rj)
or =1
i=12---,N and n=12---,N-1 (20)

where A{" is the weighting coefficients matrix of the nth-

derivative determined by the coordinates of the sample
points r; and N is the number of the grid points in the radial
direction.

There are different ways to estimate the weighting
coefficient matrix, because different functions may be
considered as test functions. In this study a set of Lagrange
interpolation polynomials are employed as test functions to
procure the weighting coefficients, and to achieve more
accuracy, the non-uniform grid spacing is adopted. Explicit
expressions of the first and second derivatives of the
weighted coefficients matrices and also criterion to adopt
non-uniformly spaced grid points are as follows (Behravan
Rad 2012a). The first order derivative of the weighting
coefficients matrix is

N
IT (ri-ry

L ji

Aik= N ,
(ri-r IT (rk—ryp (21)
j=Lj=k
i=k, k=123 N
N
Ai== 2 Ajj
=1, j=i
i=k, i=123--,N

Furthermore, for the second-order derivative, the
weighting coefficients matrix may be approximated by the
following relations.

Ai(lf)zz(AiiAik_ Ak ] '
ri—rk
izk , i,k=123--N (22)
N
2 2
AY=- 2 AP
j=Lj=i
i=k , i=123,--,N

To achieve the more reliable and accurate results, the
Chebyshev-Gauss-Lobatto criterion is used as

i=123:---N (23)
The partial derivatives of the unknown displacements
U,V,W with respect to m appeared in Eq. (16) after

applying the DQ rule at an arbitrary sample point #; can be
expressed as

N N
U,n = EAUU] ’ V,'rl =i = EAIJV] '

n=ni

N N
W’n‘nﬂli:glAijo ) U,nn‘n:ni:giAij QJJ'
RSING) _3A@
V,ﬂﬂ‘n:ni_g‘lAij Vi W,nn‘nzni‘jzzlAij W;
N N
U,ng‘n:ni:EAijUg ) V’n&“n=ni:j§1Aij V'&j
W,nE, n_ni:%AijW,gj (24)

3.2 Boundary conditions

The following boundary conditions are considered in
this study
Clamped:

u(r,0,z)=0, v(r,0,z)=0, w(r,0,z)=0,
at r=a (25)
Simply supported:
or(r,0,2)=0, v(r,0,z)=0, w(r,0,z)=0,
at r=a (26)
On the inner edge:
or(r0,2)=0, 1,(r,0,2)=-Q, 16,(r.06,2)=0,
at r=b(27)
The bottom and top surfaces boundary conditions are
6:=Y(r.6,2), 1,0=0, 1, =Ff, at z=0 (28)

6,=-P(10,2),1,=Q(r,0,2), 1,=0,atz=h (29)

The associated edge conditions in discretized points can
be written as follows
Clamped:

Un=0. Vn=0, W =0, at n=1 (30)
Simply supported:

on=0, Vn=0, W =0, a n=1 (3
On the inner edge:

on=0,Tqe1==Qp 1 1e:1=0, at m=b/a (32

The discretized forms of the boundary conditions at the
lower and upper surfaces of the plate, Egs. (28) and (29)
can be written as
At £=0,

(U’E-")i + thi(iAijo +X2iwij =F,
(39
(V,;’)i—h MW:O

N;
N 1
0 AU A+ |Ui
~ =1 n;
(w,e) + Sy, -0
" Ca3 +tg(e) v
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ii. Sinusoidal loads

2
0= 1+(1j ixni(XAi+X6i)_X5i(XlOi+X12i)tg(e)+ Asi y
niz Ay ’ Xai* Xei =Ko |1+ 1, sin Az a cos(0),
X4iTX6i A si lo My 1-b/a
2
— (1 _ Xsi Q= 1 n;—b/a 0
\PI() X4|+X6| ngA” ‘PJ X TO +M23In T 1- b/a COS( )’
2 -b/a
[1) 1 h_'_XSi(X4i+X6i)7X5i(X7i+X9i) %A--\P _ Yei = Kuo {1‘*“35'”[“? b/a HCOS(O),
Kait Xei| M Xait Xsi a
2 _ pym n,—b/a
[Xlixélixei] _ho Wi_(lj ho X7i _Klol—b/a {cos[n 1I—b/a HCOS(@),
Xait X * ni—b/a a i
Cazexp nz{ 1-b/a H — Mo | o 7Tni—b/a cos(6)
) °1-b/a 1-b/a ’
1 XliXSiXeiIz
AW+ x5 Wi Uo7 n,—b/a
-b/ it Asi = _ 3 i
C33exp{nz[? b/aaﬂ e Xoi =Ko "y 77 | €5\ "1 pra )| (O)
2 b/a)| .
_(1) ho X10i =— Ko {1+Hlsm[n11' ia Hsm(e),
a uf -b/a
C339Xp|:n2[ 1-b/a ]:| - ni_b/a -
Y11 =~ To |1+ p,sin| 7 1 b/a sin(0),
7 Xli(XBiX6i+x9iX5i)(X4i +Xei)_X1iX5iX6i(X7i +Xgi) %A“W W n -
S S Xai Wi Yai = —Kuo [ 1+ 1gsin| n— sin(e)
X4itX6i 1-b/a
mz ho At e=1,
B g * —b/ N
C339Xp{nz[?'_b/aaﬂ (Uaé)i+hX1i[j§AijWi+X2iWiJ:0
_cotg(0
Xl XS XG @ N (Vlg)i—h Xll g( )Wi:
e ZA Wi+ 2y 2 AW i+ %5 Wi L
Xai T Aei = =1
Qi
[ T/ngexp{nz[n b/aﬂ and n-bla
. . 1-b/a C44C336Xp Nt g = 7
i. Exponential type
uh -b/a 0 ZAIJUj+[X2i ]U
4i =Kio€Xp| 1 1-b/a cos(6), (W é) +@hxh i _
Cas t9(6)
—b/ ) (34)
% ToeXp{fz[T_b/ HCOS(G) + | Vi
-P;

—b/a
Xei = kuOEXp|:f3[T_ b/a ]:| COS(G),

X7i :X4ixf1/(l_b/a)v
Xsi :XeinZ/(l‘b/a)r
Xoi :XsinS/(l‘b/a

%10i = k|oexp{f1[l b/a H (0),
o ro 15

X121 = kuoexr{fs[1 — Hsm(e)

N n,—b/a
C33€Xp| nitn2 1-b/a

3.3 The state space method
Assembling of governing equations appeared in Eq. (19)

in a state space notation at all discrete points gives the
global state equation in a matrix form as

A} =[Dia@i+BL(E)) G

Here, Ai(i)T{Ui Vi Wi Ugi Vg W,gi]
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Table 1 Mechanical constants (PZT-4)
FGM constants (GPa)

Cu=Cyp Cpp=Cy  Cy3=Cy Css Cu=Css Ces
139 78 74 115 25.6 30.5
Poro constants
y A, (GPa) 1 (GPa) 4 (GPa) B Pp
0.27 41 35 35e—6 0.45 0.02

Li(€)'=[0 0 0 1; 0 o]are the global state and

concentrated load vectors along the plate thickness at the
level of &, respectively. D;, B; are the coefficient matrices at
sample points. The details of these matrices are
demonstrated in appendix 1.

By applying boundary conditions at edges, the Eq. (35)
leads to the following equation

[26i(®)] . =[Dei [ Ac©® ]+ [Bei [ La®)]  (36)

where the subscript ‘e’ denotes the modified matrix or
unknown vector taking account of the edge conditions.

According to the rules of matrix operation, the general
solution to Eq. (36) is

Aei (€) =exp(EDyg;) Aci (0) + He (37)

where the term H. is the concentrate load vector defined by

He=[Fexp((e-1)De) Be(r) L(x)de  (39)

The recent integral is implemented via numerical
quadrature in the present study. Eq. (37) establishes the
transfer relations from the state vector on the bottom
surface to that at an arbitrary plane & of the plate by the
exponential matrix of exp(¢De;). Setting ¢=1 in Eq. (38)
gives

A ®=exp(Dei) A, ©) +H (39)

where exp(De;) is the global transfer matrix and H; is
obtained by setting the upper bound of integration to unity
in Eq. (38). A¢i(1), A¢i(0) are the values of the state variables
at the upper and lower planes of the plate, respectively.

Taking into account the state of tractions presented in
Egs. (33), (34), the Eq. (39) can be derived in the form of
algebraic equations as follows

MX=Q (40)

where M is a 6(N-1)x6(N-1) matrix, Q is a mechanical
traction vector and

X"'=[Ui® V0 W0 UO Vi) wi@®] .

(i =2,3,---,N-1) (41)

By solving Eg. (40), all state parameters at £=0, =1 are
obtained. Then, the Eqgs. (36) and (13) are used to calculate
the displacements and stress components at inner points of
FGPM circular plate.

4. Numerical results and discussions

This section deals with the semi-analytical based
numerical results for the static response of clamped and
simply supported plates resting on a radially graded hybrid
foundation to compound mechanical tractions. In this
regard, two types of parametric studies are considered.

1. Parametric study for static behaviour in the absence
of foundation friction force (x=0)

2. Parametric study for static behaviour in the presence
of foundation friction force (u0)

The considered plates in the examples are assumed to be
composed of PZT-4 at the center of lower surface of the
plates. To extract the numerical results, the following
material constants (listed in Tablel), boundary conditions
and other parameters are considered.

Trz:Ff'GZZIP(r’e’Z)' TSZZO’ at E":O (423.)

1,=0, o,=-1GPa,1,=1GPa, at £=1 (42b)

a=1.0m,7=0.03,b=0.002m, o; =0.1,
f1=f2=f3=0.1,kjo =kuo =1GN/m? T, =1GN/m,

Po=0o=1 Py=P,=0;=0,=01. F=IKN, 1i;=08
(42¢)

4.1 Parametric study for static behavior in the
absence of foundation friction force (14=0)

This section provides some numerical examples for the
expressed problem. In this regard, the first example is
devoted to verification purposes, the next example is
conducted to convergence study of the presented approach
and the other examples contain new results. In the plots, the
effects of material heterogeneity indices, hybrid foundation
coefficients, loads ratio, foundation graded indices;
compressibility coefficient and porosity of the structure on
the elastic field components are investigated.

Example 1: As a verification example, a uniform
simply supported FG circular plate subjected to a
concentrated force at the center of the plate considered
previously by Yang et al. (2014) is reexamined. For the ease
of comparison with this reference, the same problem is
considered.

The validity and accuracy of the present method is
investigated by solving the dimensionless deflection of the
simply supported circular plate at a location #=(a—b)/2 with
different thickness-to-radius ratios and gradient indices n;.
Comparisons of the present semi-analytical results and
Yang’s analytical results are shown on Table 2. The
difference tolerance is taken to be 0.0005 and a good
accuracy can be observed between the present numerical
results and the Yang’s analytical results. It is clear that the
difference between the results of this study and the results
of Yang’s method may be expected, because the nature of
solution methods is different. Unless otherwise stated, the
thickness variation of the plate is exponential type in the
next examples.
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Table 2 Dimensionless deflection of simply supported
circular plate at bottom plane and #=0.5

h/a=0.1 h/a=0.15 h/a=0.2
Yang et Yang et Yang et
present 1 2014) PN 41 2014) PR 4 (2014)

-2 —0.1125 -0.1120 -0.0061 -0.0058 —0.0073 —0.0069
0 -0.0404 -0.0401 -0.0023 -0.0021 -0.0026 -0.0025
2 -0.0154 -0.0152 -0.0009 -0.0008 -0.0011 -0.0009

Rigid substrate

Fig. 3 Geometry of variable thickness of 2D Porous FG
circular plate resting on a gradient hybrid foundation
without friction force

Table 3 Convergence of the DQ method, w vs. N for
clamped 2D-FGPM circular plate

N
3 5 7 9 1 13 15 17 19
n, 0.5 -0.423-0.429-0435-0.451-0.451-0.452-0.450-0.451 -0.451
= 1 -0122-0.127-0.125-0.124-0.124 -0.125-0.124 -0.124 -0.125
N2 1.5 —0.046-0.049-0.047 —0.047 —0.047 —0.048 —0.047 —0.047 -0.047

Table 4 Convergence of the DQ method, o; vs. N for simply
supported 2D-FGPM circular plate
N
3 5 7 9 11 13 15 17 19
0.5 -0.711 -0.751 -0.836 -0.863 -0.863 -0.863 -0.864 -0.863 -0.864
n=n, 1 -0.445-0.546 -0.789 -0.802 -0.803 -0.804 -0.802 -0.802 -0.803
15 -0.258 -0.584 -0.649 -0.659 -0.658 -0.659 -0.659 -0.659 -0.658

Example 2: In order to assess the convergence of the
proposed approach, non-uniform 2D-FGPM clamped and
simply supported circular plates resting on radially graded
hybrid foundation (exponential type variation) and
subjected to asymmetric and quadratic type transverse and
in-plane loads without horizontal friction force, as shown in
Fig. 3 are considered. The boundary conditions and
geometric parameters are the same as those in Eq. (45). The
effect of the number of the selected sample points on the
convergence of the dimensionless transverse deflection W
and dimensionless transverse normal stress o at a location
n=(a—b)/2, 6=60° and ¢=0.5 are presented in Tables 3-4.
From the tables, it can be seen that W, and o approaches
asymptotically to a specific value as the number of the
discretization points increases beyond 9. Hence, present
formulation converges with a high rate. In the present
research, nine non-uniformly spaced, discretization points
are adopted and all plots shown henceforth are obtained

10° 0
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Fig. 4 Effect of the material heterogeneity indices on
displacements and stress components of a clamped circular
plate at location #=(a—b)/2 and 6=x/3

according to these sample points.

Example 3: In the present example, a parametric study
is performed to illustrate the static behavior of non-uniform
2D-FGPM clamped circular plate resting on radially graded



Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation... 601

0.

0.25)

0.2]

015
2 o
0.05

0

-0.05)

-0.1]
0 0.5 1
3

(i) Tangential shear stress
Fig. 4 Continued

——Case=1 -0.05 v vv—

——Case=2
— =
0.1f| Case=3 —o.oet\‘\*\.\w+case -3 |

—=—Case=4 —aCase=4
/ _0.07\\_’4
0.08
) / > -0.08¢
” \‘/
/./“’/"'/‘X -0.09

0.04 0.1
0.02 -0.11¢
0 05 1 0 05
g 3

(b) Circurﬁferential

(a) Radial displacement displacement

-0.
ol T
-0.4] —+-Case=1
——Case=2
-0.5, —~+Case=3|, o 3
—=—Case=4
-0.6
=
-0.7
-0.8
-0.9
-1
-1.1
0 0.5 1 .
g 5

(c) Transverse displacement
0.8

0.6

0.4

0.2
*—4—4—4—4—4—4——4’/

(d) Radial stress

-0.2]

-0.4]

-0.6[{——Case=1

—-Case=2

—<+Case=3

1™ case=4

0 0.5 1 0 0.5 1
9 g

(e) Tangential stress (f) Transverse normal stress

Fig. 5 Influence of the loads ratio on variation of
mechanical entities across the plate thickness for a clamped
circular plate at section n=(a—b)/2 and 6=x/6
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hybrid foundation. The geometric parameters and boundary
conditions are the same as those in Example 2. The results
for the influence of different parameters (e.g., material
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heterogeneity graded indices, loads ratio and trends of
foundation stiffness variations) on elastic field components
are plotted in Figs. 4 to 6.

Fig. 4 depicts the influence of elastic graded indices on
distributions of displacements and stresses along the
thickness direction for a non-uniform 2D-FGPM solid
circular plate at a location x=(a—b)/2, 6=60° under
prescribed loading. Four different material graded indices
are considered in this examination n;=n,=1, 1.5, 2, 2.5. The
gradient indices increase cause to decrease U, V and W
through the thickness of the plate. Moreover, as the Figs. 4
(@), (b) and (c) show, the distribution of displacements
transforms to a monotonic distribution with increasing the
gradient indices. As the Figs. 4 (b), (d) and (e) show, the
distribution of circumferential displacement, in-plane radial
and tangential stresses (g,, op) along the thickness are more
affected by the change of material gradient indices. As the
Fig. 4(f) shows, the transverse normal stress o, is slightly
increased through the thickness direction and converges to
given boundary conditions at upper surface of the plate. It is
clear from figure that shear stresses (. 7e;) satisfy fully the
given boundary conditions, and the pick value of the stress
7, decreases as ny, n, increase. Moreover, the plate becomes
stiffer for higher values of heterogeneity indices and the
distribution of stress z,- converges to linear distribution,
which is the characteristic of thin and stiffer plate. As the
Fig. 3(h) shows, the stress e is slightly decreased at the
overall thickness of the plate and converges to given
tangential load at top plane of the plate. Fig. 4(i) shows that
the distribution of shear stress 7, through the thickness
direction decreases as ny, n, increase.

Fig. 5 presents the effect of various loads ratio on the
displacements and stress components of the plate at a
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Fig. 6 Effect of the foundation coefficients variations on
mechanical entities at location #=(a—b)/2 and 6=z/6 for a
clamped circular plate supported by a gradient hybrid
foundation

location 6=60° and x=(a—b)/2 with gradient indices
n,=n,=1. Four sets of loads ratio are considered in this
examination as follows:

Case 1: (y/Py=2.0,/F=377,

—-—k=1

0.5 1
g

(i) Tangential shear stress
Fig. 6 Continued

Case 2: (y/P,=4,0,/F=1507,
Case 3: ,/py=6,0,/F=226,
Case 4: (y/P,=8,0,/F=3014,

It can be observed from Fig. 5 that the displacements
(U, W) vary linearly and monotonically in the transverse
direction, respectively, and circumferential displacement
(V) and all stress components display an obvious non-linear
behavior. Fig. 5(d) implies that the radial stress at one point
is independent from variation of loads ratio. As the Figs. 5
(), (h) and (i) indicate, the stress component (oo, Tes Tyo)
more affected by increasing the in-plane shear traction,
especially in upper surface of the plate. It is logically
expected, because the increase of tangential force causes
extra moment relative to other tractions and consequently
causes additional compression of the layers in the
circumferential direction. It is observable from Fig. 5(f) that
the distribution of stress (o) along the thickness direction,
especially in the top surfaces of the plate is independent
from changes of in-plane shear traction. This behavior is
obvious, because of the variation of transverse normal stress
in the thickness direction mainly dependent to normal
tractions and structure stiffness. As discussed earlier, the
distribution of transverse shear stresses (., 7o) through the
thickness of the plate shown in Figs. 5 (g) and (h) satisfy
the boundary conditions, and the pick value of 7, enhances
by the loads ratio increase. The distribution of shear stress
(zye) versus thickness direction is parabolic and the pick
value of this stress component increases by enhancing the
loads ratio, as the Fig. 5(g) confirms.

In this subsection, the influence of coefficient of the
elastic foundations on the static behavior of the plate is
investigated. Results of Fig. 6 are depicted for a section
located at (0=30° and y=(a—b)/2) and ki, T,,
kwo=k=1,5,10,15. It is evident that as the stiffness of elastic
foundations increases, it will absorb much strain energy and
subsequently, the resulting displacement and stresses
become smaller, as Fig. 6 confirms. In this case the plate is
subjected to compound and non-identical moments at the
top and bottom layers, and radial movement is restricted at
the outer edge, and the stress field approaches a hydrostatic
state; so the normal stresses (o,, oe) become
compressive/tensile for all points of the plate. For this
reason, magnitudes of the transverse stresses become
negligible. Furthermore, due to the elastic foundation
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Fig. 7 Effect of compressibility coefficient on the transverse distribution of mechanical entities of the simply supported

circular plate at section #=(a—b)/2 and 6=r/6

reaction, the in-plane shear stress (z,¢) of the lower surface
of the plate is larger than the previous cases. The pick value
of stress (z,:) becomes less for higher values of foundation
stiffnesses.

Example 4: In this example, a simply supported 2D-
FGPM circular plate is considered and the effects of
structure porosity and compressibility coefficient on the
elastic field components are investigated. The other
conditions are the same as those in example 2.

The effects of the compressibility coefficient (B) on the
resulting displacement and stress components of the plate
are demonstrated in Fig. 7, for a section at (y=(a—b)/2,
6=30°). It can be seen from Fig. 7(a, b) that the plate
becomes more compliant and stiffer in transverse and radial
directions as the compressibility coefficient of the plate
increases; so that the radial and transverse stiffnesses of the
plate increase and decrease, respectively. For this reason
and due to in-plane traction the values of circumferential
displacement (V) and stresses (e, 7,0) have increased. The
stress (o,) transforms from tensile at lower surfaces of the
plate to compressive at upper surfaces of the plate and its
values decreases with increasing the compressibility
coefficient at top layers. Furthermore, this stress component
is independent from variations of compressibility at one
point, as Fig. 7(d) implies.

The influence of the porosity of the structure of the plate
is investigated considering four distinct porosity values
(¢,=0.01, 0.02, 0.04, 0.08). Due to presence of
incompressible fluid content in the pores, increasing the
porosity leads to a stiffer plate and consequently, to smaller

displacement and stress components, as Fig. 8 confirms.
Results of Fig. 8 are extracted for n;=n,=1, #=(a—b)/2 and
6=n/6. The Effect of the porosity on decreasing the
displacement components becomes less for higher porosity
values. Indeed, it can be observed that the influences of the
porosity are opposite to those of the compressibility
coefficient. Increasing the porosity has also decreased the o,
and og stress components of the top and bottom layers.
However, location of the maximum transverse shear stress
(7,2 has almost remained unchanged. Furthermore, Figs.
7(h) and 8(h) reveal that the stress (zq.) is independent from
compressibility and structure porosity variations.

4.2 Static analysis of the problem in the presence of
foundation friction force

Example 5: In this example, a multidirectional FGPM
circular plate with clamped edge, variable thickness,
sinusoidal type tractions and elastic foundations as shown in
Fig. 2 is considered. The effects of foundation graded
exponents and foundation friction coefficient on the elastic
field components are studied. The numerical data necessary
to do the calculations is considered same as those in
example 2.

The influence of the elastic foundation exponents on
through-thickness distributions of mechanical quantities are
reported in Fig.9. Results of this figure are plotted for the
mid radius of the plate (y=(a—b)/2, 6=30°) and u;=u,=
uz=1=—0.8,-0.1,0.5,1, n=n,=1, 1,=1,=0.2. A quick glance
at Fig. 9 reveals that the magnitudes of all displacement and
stress components decrease by increasing the stiffness
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exponent through regular trends. This behavior is logically
expected, because: when the foundation graded exponents
increase, the elastic foundation becomes stiffer and it

absorbs much strain energy and consequently, the resulting
displacements and stress components become smaller.
Furthermore, due to the non-uniform foundation friction
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ress components distributions for a clamped circular plate at

displacement (V) and stress (z,;) exhibit more sensitivity
relative to results discussed in Fig. 6.
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The effect of the foundation friction coefficient is (n=(a—b)/2, 6=60°). As Fig. 10 shows, magnitudes of all
investigated in the results plotted in Fig. 10, for wuy=u,= displacement and stress components decrease by increasing
us=1, 41=4,=0.2, 14=0.1,0.2,0.4,0.8 and a section located at the friction coefficient through regular trends. Furthermore,
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as Figs. 10(b), (c) and (g) reveal, rotations of the section,
transverse deformation and stress (z,;) are significantly
affected by foundation friction coefficient changes.

Three dimensional representations of the simultaneous
radial and transverse variations of the displacements and
stress components of the clamped circular plate at section
6=60° are portrayed in Fig. 11. This figure reveals that all
displacements and stress components display an obvious
non-linear behavior. Furthermore, as figure implies, due to
non-identical moments that exert in different planes and
movement restriction of plate at clamped edge, the elastic
field components exhibit rough and crispy distributions at
adjacent of outer support.

In Fig. 12, the effect of the thickness to radius ratio on
the static behavior of the porous heterogeneous plate is
presented for thr=%=0.02,0.04,0.06,0.08 at location of
radius midpoint and 6=n/3. A quick glance at Fig. 12
reveals that the increase in the 7 causes decrease in U, V,

W, a,, - components, (U is tension). The pick value of 7,
increases as the thickness to radius ratio increases. This
feature is logically expected, because the distribution of
transverse shear stress along the thickness direction for
relative thick plates is quite parabolic while the distribution
of this stress component for thin plates is parabolic with low
pick value and tends to linear distribution. Furthermore, as
Fig. 12(i) shows, the stress 7, exhibits somewhat cubic
distribution for high thickness to radius ratios.

In order to establish a comparative analysis, the
dimensionless displacements and stress components are
extracted to 2D-FG and 2D-FG porous circular plates at
section 6=x/4 and radius midpoint. The achieved results are
illustrated in Fig. 13. As the figure shows, the magnitude of
displacements and stresses (o, ge, 7,0) for porous FG plate
are lower than the FG plate. It can be deduced the load
carrying capacity of porous FG plate is high.

5. Conclusions

A three-dimensional elasticity solution is presented for
static analysis of non-uniform functionally graded porous
material circular plates resting on gradient hybrid elastic
foundations including horizontal friction force, under non-
uniform and asymmetric tractions. Results reveal that:

1) Exponents of the elasticity modulus significantly

affect the location of the inflection section of the plate

and consequently, distributions of the displacement and
stress components are affected.

2) In stiffer foundations, the stress field approaches a

hydrostatic state; so that magnitudes of the transverse

stresses become negligible but the in-plane shear stress

(t,0) Of the plate becomes larger.

3) In the presence of in-plane traction, through thickness

distribution of stress, (rgs) is independent from

foundation coefficients, compressibility, porosity,
foundation graded indices and foundation friction
coefficient variations.

4) The porosity and compressibility coefficient exhibit

opposite behavior on elastic field

components.

5) Three dimensional theory of elasticity presents an
accurate prediction of three axes Von-Misses stress, and
as a result, it can accurately estimate the structure
strength.

6) The effect of foundation friction force on
displacements (U, V) and stress (r,:) become more
remarkable for greater friction coefficients.

7) Load carrying capacity of porous FG plate is higher
than the FG plate.

8) The porosity has a very important role on the static
behavior of the porous heterogeneous plates.
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Appendix

1. Elements of state matrix at discretized points
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2. Elements of concentrated force matrix
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